用户名: 密码: 验证码:
混凝—水解/好氧MBBR-Fenton法处理抗生素发酵废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于多数制药企业来说,高浓度制药废水因其成分复杂、有机物含量高、色度深、可生化性差,难以被微生物降解,采用单一的水处理技术往往难以达到理想的效果。因此,当前急需开发一套对这类废水行之有效的处理新工艺,使其满足越来越严格的排放标准。本文根据哈尔滨某制药厂某车间排放的抗生素发酵废水水质(COD为14700~17600mg·L~(-1);BOD5/COD为0.25~0.26),研究采用混凝-水解酸化/好氧移动床生物膜-Fenton法来处理该废水。
     首先进行了混凝法处理高浓度制药废水的实验研究。根据抗生素发酵废水中胶体的带电性质,选用和比较了六种混凝剂的处理效果;并对筛选出的混凝剂PFS从pH值、投加量、搅拌时间和沉淀时间等几方面考察了其对COD去除效果的影响;采用SEM、TEM、FT-IR以及XRD等对筛选出的混凝剂进行形貌表征,初步探讨了混凝剂形貌与混凝机理之间的联系;通过对混凝后絮体形貌的观测,研究了混凝的分形维数与絮体沉降性能的关系;通过考察不同粒径颗粒物的分布,研究了不同粒径颗粒的沉降速率对固液分离的影响。得出混凝最佳工艺参数如下: PFS最优投加量为135.26mg/gCOD,废水初始pH为4.0左右,快速搅拌(300r·min~(-1))时间为1min,慢速搅拌(50r·min~(-1))时间为12min,沉降时间为60min。在最优混凝工艺条件下,废水经过混凝处理后COD和SS去除率分别达到62.2%和88.2%,有机负荷大大降低,但B/C仅仅由0.25提高至0.28。
     研究了水解酸化-好氧MBBR法处理抗生素发酵废水工艺。包括水解酸化-好氧MBBR反应器的启动研究;水解酸化反应器的pH、HRT和OLR等工艺参数进行了优化;好氧反应器的HRT、曝气量和OLR等工艺参数进行了优化;水解酸化-好氧MBBR反应器内微生物相表征及生物膜形貌的表征。采用SEM对水解酸化菌和好氧菌的生物相进行了表征;采用电子显微镜对好氧反应器内悬浮填料的生物膜厚度进行了测定,并采用计算流体力学软件Fluent对填料内部流化状态进行了数值模拟,初步探讨了悬浮填料内部流场分布与生物膜厚度的关系。实验结果表明,在抗生素废水进水COD浓度为6000~7000mg·L~(-1)条件下,经水解-好氧MBBR串联工艺处理,COD总去除率可达93.09%,最终出水COD浓度为449.3mg·L~(-1)。水解酸化反应哈尔滨工业大学工学博士学位论文器进水pH在5.5~7.0范围内,适宜水解酸化菌生存,有利于水解反应进行。在pH为6.5时,水解效果最高,VFA产量达到741.12mg·L~(-1),水解酸化率为11.4%,水解段COD去除率为15.38%。在HRT为12h,水解段效果最佳,VFA产量高达931.75mg·L~(-1),水解酸化率为14.33%,COD去除率为26.59%,B/C由0.28提升到0.40,有利于后段处理。进水pH和HRT对生物系统处理效果影响很大,但对水解发酵类型和酸化产物影响较小。本试验中,水解出水中VFA均以乙酸为主,丙酸次之,丁酸、戊酸产量较低。好氧MBBR反应器在HRT为12h,好氧段效果最佳,COD去除率为89.6%;当曝气量为1.5m3·h-1时,好氧段效果最佳,COD去除率为91%。水解酸化-好氧MBBR适宜的有机负荷率应为13kgCOD·(m3·d)-1。生物膜生物相分析表明,水解酸化细菌主要为杆菌呈长杆状;好氧菌多为球状菌和短杆菌。好氧生物膜厚度要比水解酸化生物膜厚度厚的多,好氧生物膜平均生物膜厚度为1.0~1.2mm,且厚度不均匀。填料内流速分布与生物膜厚度分布一致,因此生物膜厚度的分布可以通过Fluent软件进行模拟预测。
     研究了移动床生物膜处理抗生素发酵废水的好氧生化动力学,建立了新模型,即S=(S0-Sn)exp(-K2Xt)+Sn。通过不同初始浓度和不同填料填充比下的实验数据模拟结果表明该模型能够描述生物膜法处理抗生素发酵废水的生物降解过程,其动力学参数K2能够直观地反映底物的降解速率,Sn可以作为抗生素发酵废水的可生化性和可降解程度的评价指标。
     研究了不同类型Fenton体系对抗生素发酵废水的处理效果。对经典Fenton工艺的初始Fe2+浓度、H2O2浓度、pH、反应时间、沉淀pH、载气以及H2O2等操作参数进行了优化;研究了Fenton过程的反应动力学;通过采用EPR法对不同Fenton体系的羟基自由基进行了测定;进行了Fenton连续流实验,并给出整个工艺不同工段进出水水质的比较分析;最后对不同组合工艺进行了比较与评价。通过实验研究得出Fenton工艺的最佳工艺参数如下:废水初始pH为3.0、初始Fe2+浓度为60.8mg·L~(-1)、H2O2投加量为1/2理论投加量(Qth),以空气为载气,反应3h,然后调节废水至7.0沉降出水,其中Fe2+和H2O2在反应开始1h内平均分三次投加。在该工艺条件下,COD去除率可达80.0%。本文最后通过对三种不同组合工艺的比较,给出了不同组合工艺的适用范围。对于本实验所处理抗生素发酵废水应采用PFS混凝-水解酸化/好氧MBBR-Fenton法处理较为适宜。
As for most pharmaceutical enterprises, high concentration pharmaceutical wastewater is one kind of refractory industry wastewater due to the complicated components, high quantity organic compounds, deep color and low biodegradability. Furthermore, it is difficult to biodegrade the antibiotic wastewater and single wastewater treatment has been imperfect. Hence, it is imperative to develop a series effective new process for wastewater treatment, which can meet the increasing strict discharge standards. The combined coagulation-hydrolysis/oxidation MBBR-Fenton process was adopted for the treatment of high concentration antibiotic fermentation wastewater which was originated from a workshop of some pharmaceutical factory of Harbin (COD 14700~17600mg·L~(-1); BOD5/COD ratio 0.25~0.26).
     According to colloid charge charactes in antibiotic fermentation wastewater, the coagulation efficiencies of six kinds of selected coagulants were compared. The results indicated that Polyferric Sulfate (PFS) was the best compared to the others, so it was chosen as the coagulant for the pharmaceutical wastewater. The effects of PFS dosage, initial pH, strring time and settling time in coagulation process were investigated. The relationship between PFS coagulation mechanisms and PFS modalities were discussed by SEM, TEM, FT-IR and XRD characterization of PFS. The effects of the fractal dimension of PFS floccules and the distribution of different size particles after coagulation to sedimentation performances were also studied. The optimal operational parameters of coagulation were determined as follows: PFS dosage of 135.26mg/gCOD, initial pH of 4.0 around, high speed agitation of 300r·min-1 with 1min, low speed agitation of 50r·min-1 with 12min and sedimentation time of 60min. After coagulation, 62.2% COD and 88.2% SS removal were achieved, and the organic load was evidently decreased, but B/C ratio only increased from 0.25 to 0.28.
     Hydrolysis/aerobic MBBR were applied to treat antibiotic fermentation wastewater, and the correlative operational parameters were investigated. The start of hydrolysis/aerobic MBBR was studied. On the one hand, the pH,HRT and OLR of hydrolysis MBBR were optimized; On the other hand, the HRT, aeration rate and OLR of aerobic MBBR were also optimized. The microorganisms and biofilms which were in hydrolysis/aerobic MBBR were observed. Hydrolysis/acidification bacteria and aerobic bacteria were characterized by SEM. The thickness of biofilm that was in aerobic MBBR carries was measured, and then flow status which was inside carries were simulated by the computed fluid dynamics software Fluent. The simulated results were used to analyze the relationship between distributions of flow field and distributions of biofilm thickness. The experimental results showed when COD of influent were 6000~7000mg·L~(-1), the COD removal efficiency could reach 93.09% after series hydrolysis/oxidation MBBR treatment. And the final COD of effluent was 449.3mg·L~(-1). In addition, when the pH was in 5.5-7.0 range, the hydrolysis/acidification bacteria were suitable to survive, i.e., it would be good at hydrolysis reaction. At pH 6.5, the hydrolysis efficiency was upmost, and the VFAs production could reach 741.12mg·L~(-1) accompanying with 11.4% acidification degree and 15.38% of COD removal. At HRT 12h,the hydrolysis efficiency was optimum, and B/C was improved from 0.28 to 0.40 accompanying with 931.75mg·L~(-1) of VFAs, 14.33% acidification degree and 26.59% of COD removal, which were very benefit for the latter biological treatment. Although the pH and HRT were influenced the treatment efficiency, the type of hydrolysis was not changed basically. Acetate was the main composition of VFAs. The Propionate was the second, butyrate and valerate were lowest. At HRT 12h of aerobic MBBR, the COD removal efficiency could reach 89.6%. At aeration rate 1.5m~3·h~(-1), the COD removal efficiency could reach 91%. The feasible OLR of whole MBBR process was 13kgCOD·(m3·d)~(-1). The results of biofilm measures showed hydrolysis/acidification bacteria mainly were bacilli. From the observations by SEM, some fields mainly contained zoogloea; some fields mainly contained filamentous bacteria. Aerobic bacteria mainly were cocci and short bacilli. From the observations by SEM, some fields mainly contained short bacilli; some fields mainly contained cocci; in addition, some fields mainly contained bacilli and cocci. The experimental results showed the thickness of aerobic biofilms was thicker than hydrolysis/acidification biofilm. The thickness of aerobic biofilms was 1.0~1.2mm and was asymemetry. The simulated results showed the distributions of flow filed of inside carriers in accordance with thickness of biofilms. Hence, it could use the Fluent-software to simulate the distributions of thickness of biofilms.
     Batch tests were carried out to investigate the COD degradation kinetics of antibiotic fermentation wastewater by aerobic MBBR and a modified bio-kinetic model was set up to describe the biological reaction, that is, S=(S0-Sn)exp(-K2Xt)+Sn. The experimental results obtained from different initial concentration and different bio-carrier volume showed that the model could well describe the biodegradation of antibiotic fermentation wastewater, and the kinetic parameter K2 could be used as indicator of degradation rate and Sn could be used to estimate the biodegradability of antibiotic fermentation wastewater.
     The oxidation effects of three kinds of Fenton systems were compared. The effect of initial Fe2+ dosage, pH, reaction time, agitation time, the sedimentation pH, carrier gas and manner of H2O2 addition were investigated. The kinetics of Fenton process was also studied. The hydroxyl radical of Fenton system were measured by EPR. The continuous running experiments were conducted, and the qualities of influent and effluent in different process were analyzed. The different combined processes were compared and estimated. The Optimum conditions of Fenton process for treating the effluent of coagulation were determined as: adjusting initial pH of wastewater about 3.0, controlling initial Fe2+ concentration of 60.8mg·L~(-1), adding half the stoichiometric calculated quantities (Qth) of H2O2, using air as carrier gas, reacting for 1h, pH was then adjusted to 7.0, in which Fe2+ and H2O2 were added every 20 minutes during the first hour of reaction. Under these conditions, 80% of COD removal was obtained. Finally,the application ranges of different combined processes were given by comparisons. It was feasible to apply coagulation-hydrolysis/aerobic MBBR-Fenton process to treat antibiotic fermentation wastewater.
引文
1 S. Z. Li, X. Y. Li, D. Z. Wang. Membrane (RO-UF) Filtration for Antibiotic Wastewater Treatment and Recovery of Antibiotics. Sepatation and Purification Technolgy. 2004, 34(1-3):109~114
    2 M.J. Gomez, A. Aguera, M. Mezcuaa, et al. Simultaneous Analysis of Neutral and Acidic Pharmaceuticals As Well As Related Compounds by Gas Chromatography–Tandem Mass Spectrometry in Wastewater. Talanta. 2007,(73): 314~320
    3 C. C. Jara, D. Fino, V. Specchia, et al. Electrochemical Removal of Antibiotics from Wastewaters. Applied Catalysis B: Environmental. 2007, 70(1-4):479~487
    4 I. Arslan-Alaton, S. Dogruel. Pre-treatment of Penicillin Formulation Effluent by Advanced Oxidation Processes. Journal of Hazardous Materials. 2004, 112(1-2): 105~113
    5 H. Claus, S. Gerhard, I. Wurdack, et al. Oxidative Degradation of AOX and COD by Different Advanced Oxidation Processes: a Comparative Study with Two Samples of Pharmaceutical Wastewater. Wat. Sci. Tech. 1997, 35(4):257~264
    6 G. Wilhelm, F.S. Horst. Liquid Chromatography–(tandem) Mass Spectrometry for the Follow-up of the Elimination of Persistent Pharmaceuticals during Wastewater Treatment Applying Biological Wastewater Treatment and Advanced Oxidation. Journal of Chromatography A. 2007(1160): 34~43
    7北京水环境技术与设备研究中心.三废处理工程技术手册一废水卷.化学工业出版社, 2000:205~220, 622~665
    8 C. Zwiener and F. H. Frimmel. Oxidative Treatment of Pharmaceuticals in Water. Water Research. 2000, 34(6):1881~1885
    9马文鑫,陈卫中,任建军,等.制药废水预处理技术探索.环境污染与防治. 2001, 23(2):87~89
    10陆杰,徐高田,张玲,等.制药工业废水处理技术.工业水处理. 2001, 21(10):1~5
    11孙贤风,宋志文,姜蔚.高浓度土霉素废水预处理工艺的试验研究.四川环境. 2005, 24 (6): 8~9
    12 D. S. S. Raj, Y. Anjaneyulu. Evaluation of Biokinetic Parameters for Pharmaceutical Wastewaters Using Aerobic Oxidation Integrated with Chemical Treatment. Process Biochemistry. 2005, 40(1):165~175
    13刘家辉.制药废水的混凝强化生物处理试验研究.工业水处理. 2006, 26(9):36~40
    14夏元东,周立綮,武鹏昆.制药废水絮凝过滤预处理试验研究.青岛建筑工程学院学报. 2002, 23(4):47~50
    15李德亮,张凌,钟先锦,等.强力霉素废水的吸附-混凝预处理研究.化学通报. 2006, (8): 577~581
    16纪国慧,向琼,张文德,等.水介质分散型阳离子聚丙烯酰胺在制药废水处理中的应用.工业水处理. 2006, 26 (5): 29~31
    17 I. A. Balcioglu, M. Otker. Treatment of Pharmaceutical Wastewater Containing Antibiotics by O3 and O3/H2O2 Processes. Chemosphere. 2003, 50(1): 85~95
    18 I. A. Alaton, S. Dogruel, E. Baykal, et al. Combined Chemical and Biological Oxidation of Penicillin Formulation Effluent. Journal of Environmental Management. 2004, 73 (2):155~163
    19 W. G. Kuo. Decolorizing Dye Wastewater with Fenton's Reagent. Water Research. 1992, 26(7):881~886
    20 M.J. Xu, Q.S. Wang, Y.L. Haoa. Removal of Organic Carbon from Wastepaper Pulp Effluent by Lab-scale Colar Photo-Fenton Process. Journal of Hazardous Materials. 2007,(148): 103~109
    21 W. Z. Tang, S. Tassos. Oxidation Kinetics and Mechanisms of Trihalomethanes by Fenton's Reagent. Water Research. 1997, 31:1117~1125
    22 B. G. Kwon, D. S. Lee, N. Kang, et al. Characteristics of p-Chlorophenol Oxidation by Fenton's Reagent. Water Research. 1999, 33(9):2110~2118
    23 H. Tekin, O. Bilkay, S. S. Ataberk, et al. Use of Fenton Oxidation to Improve the Biodegradability of a Pharmaceutical Wastewater. Journal of Hazardous Materials. 2006, 136(2):2 58~265
    24 N. S. S. Martínez, J. F. Fernández, X. F. Segura, et al. Pre-oxidation of an Extremely Polluted Industrial Wastewater by the Fenton’s Reagent. Journal of Hazardous Materials. 2003, 101(3): 315~322
    25翁宏定.土霉素生产废水的处理试验.工业用水与废水. 2005, 36 (3): 49~51
    26王春敏,张捷.类Fenton试剂及其在废水处理中的应用.山西化工. 2006, 26 (2): 40~42
    27 I.A. Alaton, F. Gurses. Photo-Fenton-like and Photo-Fenton-like Oxidation of Procaine Penicillin G formulation Effluent. Journal of Photochemistry and Photobiology A: Chemistry. 2004, 165 (1-3): 165~175
    28于现荣,申震,蔡联添,等.电解-阳极间接氧化法处理医药废水研究.环境科学与技术. 2005, 28 (5): 26~27
    29刘贤伟,刘丹彤,张成禄.腐蚀电池法预处理抗生素废水.中国环保产业. 2004, 12: 32~33
    30蒋展鹏,杨宏伟,谭亚军.催化湿式氧化技术处理Vc制药废水的试验研究.给水排水. 2004, 30(5): 41~44
    31 P. R. Gogate, A. B. Pandit. A Review of Imperative Technologies for Wastewater Treatment I: Oxidation Technologies at Ambient Conditions. Advances in Enviyonmental Research. 2004, 8(3-4):501~551
    32谢嫚,张东翔,曹明嫚.头孢生产废水的光催化氧化特性.安全与环境学报. 2005, 5(4): 55~57
    33肖广全,陈玉成,杨志敏,等.超声波—好氧生物接触法处理制药废水.给水排水. 2005, 31 (1): 65~67
    34肖广全,黄毅,刘文艳.微波—生物接触氧化法处理制药废水的研究.中国给水排水. 2006, 22 (11): 76~79
    35严建华,杜长明, B. G. Chero,等.滑动弧等离子体技术用于环境治理领域的研究进展.热力发电. 2005, (5): 1~6
    36纪树兰.纳滤膜浓缩回收制药废水中洁霉素的试验研究.环境科学学报. 2001, 21 (增刊): 133~136
    37 E. U. Cokgor, I. A. Alaton, O. Karahan, et al. Biological Treatability of Raw and Ozonated Penicillin Formulation Effluent. Journal of Hazardous Materials. 2004, 116(1-2): 159~166
    38相会强,李树新,曹相生.抗生素废水两段生物接触氧化脱氮试验研究.水处理技术. 2006, 32(3):35~38
    39 H. Tekin, O. Bilkay, S.S. Ataberk, et al . Use of Fenton Oxidation to Improve the Biodegradability of a Pharmaceutical Wastewater. Journal of HazardousMeterials. 2006,136(2):258~265
    40潘志彦,陈朝霞,王泉源,等.制药业水污染防治技术研究进展.水处理技术. 2004, 30(2):67~71
    41 D. T. Sponza, P. Demirden. Treatability of Sulfamerazine in Sequential Upflow Anaerobic Sludge Blanket Reactor(UASB)/Completely Stirred Tank Reactor(CSTR) Processes. Separation Purification Technology. 2007, 56(1):108~117
    42陈业钢,祁佩时.复合厌氧反应器的生产性快速启动研究.给水排水. 2002, 28(11):45~49
    43 A. M. Enright, G. Collins, V. O. Flaherty. Temporal Microbial Diversity Changes in Solvent-Degrading Anaerobic Granular Sludge from Low-Temperature(15℃) Wastewater Treatment Bioreactors. Systematic and Applied Microbiology. 2007, 30(6):471~482
    44娄锦丽,黄胜炎.水解酸化预处理制药废水研究与应用现状及展望.医药工程设计. 2006, 25(5): 62~64
    45王洪波,李梅,陈建和.水解-SBR-好氧工艺在制药废水处理中的应用.工业水处理. 2006, 26(2): 72~74
    46 Y. A. Oktem, O. Ince, T. Donnelly, et al. Determination of Optimum Operating Conditions of an Acidification Reactor Treating a Chemical Synthesis-based Pharmaceutical Wastewater. Process Biochemistry. 2006, 41 (11):2258~2263
    47相会强,刘雪莲,李立敏.抗生素废水水解酸化预处理试验研究.环境科学与技术. 2005, 28(6):77~79
    48孙京敏,王路光,王世研.水解酸化法预处理青霉素废水的试验.环境工程. 2006, 24(1):30~32
    49祁佩时,丁雷,刘云芝,等.复合微氧水解-好氧工艺处理抗生素废水.环境工程. 2006, 24(1):24~26
    50 Noble and Jack. GE Zee Weed MBR Technology for Pharmaceutical Wastewater Treatment. Membrane Technology. 2006, 9:7~9
    51王庆生,李捍东,常冠钦,等.优势工程菌在H/O工艺中处理制药废水的研究.云南环境科学. 2000, 19(增刊):150~152
    52 B. Rusten, C. H. Johnson. Biological Pretreatment of a Chemical Plant Wastewater in High-rate Moving Bed Biofilm Reactor: Application andResults. Wat. Sci. Technol. 1994, 29(10-11):157~165
    53 H.?degaard, B.Rusten. A New Moving Bed Biofilm Reactor: Application and Results. Wat.Sci.Technol. 1994,29(10-11):157~165
    54王奕,张兴文,杨凤林.移动床生物膜反应器的研究及应用现状.环境污染治理技术与设备. 2002, 3(7):78~80
    55 J. Suvilampi, A. Lehtomaki, J. Rintala. Comparison of Laboratory-scale ThermopHilic Biofilm and Activated Sludge Process Integrated with A MesopHili Activated Sludge Process. Bioresource Technology. 2003, 88(3):207~214
    56 I. Comett-Ambriz, S. Gonzalez-Martinez, P. Wilderer. Comparison of the Performance of MBBR and SBR Systems for the Treatment of Anaerobic Reactor Biowaste Effluent. Wat. Sci. Technol. 2003, 47(12):155~161
    57 Y. Suzuki. Development of Simulation Model for a Combined Activated-Sludge and Biofilm Process to Remove Nitrogen and Phosphorus. Wat. Environ. Res. 1999, 71(4):388~397
    58 B. Rusten, L. H. Hem, H. Odegaard. Nitrification of Municipal Wastewater in Moving-bed Biofilm Reactors. Water Environment Research. 1995, 67(1):75~86
    59张景丽.移动床生物膜工艺特点,研究现状及发展.工业安全与环保. 2003, 29(4):13~15
    60 S. Chen, D. Z. Sun, J. S. Chung. Treatment of Pesticide Wastewater by Moving-bed Biofilm Reactor Combined with Fenton-Coagulation Pretreatment. Journal of Hazardous Materials. 2006, 144(1-2):577~584
    61 D. H. Shin, W. S. Shin, Y. H. Kim. Application of a Combined Process of Moving-Bed Biofilm Reactor(MBBR) and Chemical Coagulation for Dyeing Wastewater Treatment. Water Science and Technology. 2006, 54(9):181~189
    62 S. Chen, D. Z. Sun, J. S. Chung. Simultaneous Removal of COD and Ammonium from Landfill Leachate Using an Anaerobic-Aerobic Moving-Bed Biofilm Reactor System. Waste Management. 2008, 28(2):339~346
    63季民,王苗苗,姜少红,等. AF-MBBR技术处理高盐垃圾渗滤液的试验研究.中国给排水. 2006, 22(21):93~98
    64 R. Canziani, V. Emondi, M. Garavaglia. Effect of Oxygen Concentration on Biological Nitrification and Microbial Kinetics in a Cross-Flow MembraneBioreactor (MBR) and Moving-Bed Biofilm Reactor (MBBR) Treating Old Landfill Leachate. Journal of Membrane Science. 2006, 286(1-2):202~212
    65于龙,赵雅芝,童健,等. MBBR处理制药废水的试验研究.环境科学与技术. 2007, 30(3):66~67
    66 W. N. Lee, I.J. Kang, C. H. Lee. Factors Affecting Filtration Characteristics in Membrane-Coupled Moving Bed Biofilm Reactor. Water Rwsearch. 2006, 40(9):1827~1835
    67张雪辉,周律,朱天乐.移动床生物膜反应器载体亲水改性的试验研究.环境科学. 2007,28(2):368~370
    68朱文亭,颜玲,阎海英,等.循环移动载体生物膜反应器的试验研究.中国给排水. 2000,16(11):51~54
    69 G. Pastorelli, R. Canziani, L. Pedrazzi, et al. Phosphorus and Nitrogen Removal in Moving-bed Sequencing Batch Biofilm Reactors. Wat. Sci. & Tech, 1999, 40(4):169~176
    70杜瑛珣,年跃刚,周明华,等.类Fenton降解对氯苯酚中Fe3+的还原—两种途径及其作用.浙江大学学报. 2005, 39(10):1618~1622
    71 K. Ntampegliotis, A. Riga, V. Karayannis. Decolorization Kinetics of Procion H-exl Dyes from Textile Dyeing Using Fenton-like Reaction. Journal of Hazardous Materials. 2006, 136:75~84
    72 R. Chen, J. Pignatello. Role of Quinone Intermediates as Electron Shuttles in Fenton and Photo-assisted Fenton Oxidation of Aromatic Compounds. Environmental Science and Technology. 1997, 31:2399~2406
    73 Y. W. Kang, K. Y. Wang. Effect of Reaction Conditions on the Oxidation Efficiency in the Fenton Process. Water Research. 2000, 34:2786~2790
    74 P. K. Malik, S. K. Saha. Oxidation of Direct Dyes with Hydrogen Peroxide Using Ferrous Ion as Catalyst. Separation and Purification Technology. 2003, 31(3):241~250
    75 A. F. Martins, T. G. Vasconcelos, M. L. Wilde. Influence of Variables of the Combined Coagulation–Fenton-Sedimentation Process in the Treatment of Trifluraline Effluent. Journal of Hazardous Materials. 2005, 127(1-3):111~119
    76张娴娴,尹光志,李东伟. Fenton试剂催化氧化法处理焦化废水的实验研究.矿业安全与环保. 2005, 32(2):12~13, 17
    77 K. Eakalak, W. Roger. Mineralization and Biodegradability Enhancement of Low Level p-Nitrophenol in Water Using Fenton’s Reagent. Journal of Environmental Engineering. 2005, 131(2):327~331
    78 N. S. S. Martínez, J. F. Fernández, X. F. Segura, et al. Pre-oxidation of an Extremely Polluted Industrial Wastewater by the Fenton’s Reagent. Journal of Hazardous Materials. 2003, 101(3):315~322
    79杨新萍,王世和. Fenton试剂处理有机氯农药废水的研究.环境污染治理技术与设备. 2006, 7(6):60~64
    80 K. Swaminathan, S. Sandhya, A. Carmalin Sophia, et al. Decolorization and Degradation of H-acid and Other Dyes Using Ferrous–Hydrogen Peroxide System. Chemosphere. 2003, 50(5):619~625
    81王子,梅平,王国栋.混凝-Fenton氧化处理采油废水的影响因素.水处理技术. 2006, 32(1):76~79
    82顾泽平,孙水裕,肖华花. Fenton试剂处理选矿废水的试验研究.水资源保护. 2006, 22(4):82~84
    83彭军,胡勇有. Fenton试剂在印制电路板工业废水处理中的应用.工业用水与废水. 2006, 37(3):31~34
    84 C. Z. Hu, H. J. Liu, Jiuhui Qu. Coagulation Behavior of Aluminum Salts in Eutrophic Water: Significance of Al13 Species and pH Control. Environ. Sci. Technol. 2006,40:325-331
    85国家环境保护总局和《水和废水监测分析方法》编委会.水和废水监测分析方法.第四版.中国环境科学出版社, 2002:1~200
    86 R. M. Sellers. Spectrophotometric Determination of Hydrogen Peroxide Using Potassium Titanium(Ⅳ) Oxalate. Analyst. 1980, 105:950~954
    87 H. J. Liu, J. H. Qu, C. Z. Hu, et al. Characteristics of Nanosized Polyaluminum Chloride Coagulant Prepared by Electrolysis Process. Colloids and Surfaces A: Physicochem. Eng. Aspects 2003, 216(1-3):139~147
    88王艳芳.类Fenton法处理难生物降解有机废水的试验研究.西安建筑大学硕士学位论文. 2005:22
    89 J. P. Wang, Y. Z. Chen, X. W. Ge, et al. Optimization of Coagulation–Flocculation Process for a Paper-recycling Wastewater Treatment Ssing Response Surface Methodology. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2007, 302 (1-3) 204~210
    90 M. Guida, M. Mattei, C.D. Rocca, et al. Optimization of Alum-Coagulation/Flocculation for COD and TSS Removal from Five Municipal Wastewaters. Desalination. 2007, 211: 113~127
    91 C. Z. Hu, H. J. Liu, Jiuhui Qu. Coagulation Behavior of Aluminum Salts in Eutrophic Water: Significance of Al13 Species and pH Control. Environ. Sci. Technol. 2006,40:325~331
    92张开仕,曾凤春.聚合硫酸铁铝的制备及混凝效果研究.无机盐工业. 2005, 37(10):44~46, 55
    93 W. Q. Han, L. J. Wang, X. Y. Sun, et al. Treatment of Bactericide Wastewater by Combined Process Chemical Coagulation, Electrochemical Oxidation and Membrane Bioreactor. Journal of Hazardous Materials. 2008, 151(2-3):306~315
    94刘海龙,王东升,王敏,等.强化混凝对水力条件的要求.中国给水排水. 2006, 22(5):1~4
    95汤鸿霄.无机高分子絮凝理论与絮凝剂.中国建筑工业出版社, 2006:182~183
    96 W. P. Cheng, F. H. Chi. A Study of Coagulation Mechanisms of Polyferric Sulfate Reacting with Humic Acid Using a Fluorescence-Quenching Method. Water Research. 2002, 36(18):4583~4591
    97徐晓军.化学絮凝剂作用原理.科学出版社, 2005:87~92, 128~149
    98 W. P. Cheng. Hydrolysis Characteristic of Polyferric Sulfate Coagulant and its Optimal Condition of Preparation. A: Physicochemical and Engineering Aspects. 2001, 182:57~63
    99 K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley. New York, 1997:23~24
    100 B. Z. Tian, H. X. Tang. Infrared Spectra and Electrical Conductivity of Polymeric Fe(Ⅲ) species. Environmental Chemistry. 1990, 9:70~76
    101 A.I. Zouboulis, P.A. Moussas and F. Vasilakou. Polyferic sulphate: Preparation, Characterization and Application in Coagulation Experiments. Journal of Hazardous Materials. (2007) doi:10.1016/j.jhazmat.2007.11.108 (in press)
    102 J. L. Xua, K. A. Khor, Z. L. Dong. Coagulation of Humic Substances and Dissolved Organic Matter with a Ferric Salt: An Electron Energy LossSpectroscopy Investigation. Water Research 2005, 39 (16) 3849~3862
    103 K.N. Exall, G.W. Vanloon. Using Coagulants to Remove Organic Matter. J. AWWA. 2000,92(11):93~102
    104 S. Babel, K. Fukushi, B. Sitanrassamee. Effect of Acid Speciation on Solid Waste Liquefaction in an Anaerobic Acid Digester. Wat. Res.. 2004, 38(9): 2416~2422
    105于宏兵,林学钰,杨雪梅,等.超高温厌氧水解酸化特征与效果研究.中国环境科学. 2005, 25(1): 75~79
    106 L. guerrero, F. Omil, R. Méndez, et al. Anaerobic Hydrolysis and Acidogenesis of Wastewaters from Food Industries with High Content of Organic Solids and Protein. Water Research. 1999, 33(15): 3281~3290
    107 L.L. Liu, Z.P. Wang, J. Yao, et al. Investigation on the Properties and Kinetics of Glucose-fed Aerobic Granular Sludge. Enzyme Microbial Technol. 2005, 36: 307~313
    108 A.A.L. Zinatizadeh, A.R. Mohamed, G.D. Najafpour, et al. Kinetic Evaluation of Palm Oil Mill Effluent Digestion in a High Rate Up-flow Anaerobic Sludge Fixed Film Bioreactor. Process Biochem. 2006, 41: 1038~1046
    109 T. L. Chan, J. Z. Lin, K. Zhou, et al. Simultaneous Numerical Simulation of Nano and Fine Particle Coagulation and Dispersion in a Round Jet. Aerosol Science. 2006, 37(11):1545~1561
    110 B. Rusten, B. Eikebrokk, Y. Ulgenes, et al. Design and Operations of the Kaldnes Moving Bed Biofilm Reactors. Aquacultural Engineering. 2006, 34(3):322~331
    111 R. C. Wang, X. H. Wen, Y. Qian. Influence of Carrier Concentration on the Performance and Microbial Characteristics of a Suspended Carrier Biofilm Reactor. Process Biochem. 2005,.40(9):2992~3001
    112 D. Kiranmai, A.Jyothirmai, C.V.S. Murty. Determination of Kinetic Parameters in Fixed-Film Bio-reactors: An Inverse Problem Approach. Biochem. Eng. Journal. 2005,23:73~83
    113张乃东,黄君礼,郑威.强化UV/Fenton法降解水中苯酚的研究.环境污染治理技术与设备. 2002, 3(2):220~223
    114 F. Raquel, N. Pupo, J. R. Guimaraes. Photodegradation of DichloroaceticAcid and 2, 4- Dichlorophenol by Ferrioxalate/H2O2 System. Water Research. 2000, 34(3):895~901
    115陈传好,谢波,任源,等. Fenton试剂处理废水中各影响因子的作用机制.环境科学. 2000, 21(3):93~96
    116 F. Chen, Y. D. Xie, J. J. He, et al. Photo-Fenton Degradation of Dye in Methanolic Solution Under Both UV and Visible Irradiation. Journal of Photochemistry and Photobiology A :Chemistry. 2001, 138:139~146
    117 S. Meric, H. Selcuk, V. Belglorno. Acute Toxicity Removal in Textile Finishing Wastewater by Fenton’s Oxidation, Ozone and Coagulation–Flocculation Processes. Water Research. 2005, 39: 1147
    118 S. F. Kang, C. H. Liao, M. C. Chen. Pre-oxidation and Coagulation of Textile Wastewater by the Fenton Process. Chemosphere. 2002, 46(6): 923~928
    119 M. Rodriguez, V. Sarria, C. Esplugarin, et al. Photo-Fenton Treatment of a Bia-recalcitrant Wastewater Generated in Textile Activities: Biodegradability of the Photo-treated Solution. Journal of photochemistry and Photobiology A: Chemistry. 2002, 151:129~135
    120 G. V. Buxton, C. L. Greenstock, W. P. Helman. Critical Review of Rate Constants for Reaction of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O?) in Aqueous Solutions. Journal of Physical and Chemistry Reference Data. 1988, 17(2):513~886
    121 S. Cheng, D.Z. Sun, J.S. Chung. Treatment of Pesticide Wastewater by Moving-Bed Biofilm Reactor Combined with Fenton-Coagulation Pretreatment. Journal of Hazardous Materials. 2007, 144(1-2): 577~584
    122 S. Hong, H. C. Zhang, C. M. Duttweiler, et al. Degradation of Methyl Tertiary-Butyl Ether (MTBE) by Anodic Fenton Treatment. Journal of Hazardous Materials. 2007, 144(1-2):29~40
    123 F. J. Benitez, J. L. Acero, F. J. Real. Degradation of Carbofuran by Using Ozone, UV Radiation and Advanced Oxidation Processes. Journal of Hazard Mater. 2002, 89: 51
    124陈琳,雷乐成,杜瑛珣. UV/Fenton光催化氧化降解对氯苯酚废水反应动力学.环境科学学报. 2004, 24(2):225~230
    125 P. Montserrat and T. Francesc. Removal of Organic Contaminants in Paper Pulp Treatment Effluents under Fenton and Photo-Fenton Conditions.Applied Catalysis B: Environmental. 2002, 36:63~74
    126天津大学物理化学教研室.物理化学(下册).高等教育出版社. 1999:190~299
    127张世贤,王兆英.水分析化学.第二版.中国建筑工业出版社. 2001:1~23
    128 N. Watanabe, S. Horikoshi, H. Hidaka, et al. On the Recalcitrant Nature of the Triazinic Ring Species, Syanuric Acid, to Degradation in Fenton Solutions and in UV-illuminated TiO2 (Naked) and Fluorinated TiO2 Aqueous Dispersions. Journal of Photochemistry and Photobiology A: Chemistry. 2005,174:229~238
    129 L.X. Li, A. Yoshihiro, K.K., et al. Iron-Chelating Agents Never Suppress Fenton Reaction But Participate in Quenching Spin-Trapped Radicals. Analytica Chimica Acta. 2007,599:315~319
    130 Y.F. Wang, W.H. Ma, C.C. Chen, et al. Fe3+/Fe2+ Cycling Promoted by Ta3N5 Under Visible Irradiation in Fenton Degradation of Organic Pollutants. Applied Catalysis B: Environmental. 2007,75:256~263

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700