用户名: 密码: 验证码:
反硝化聚磷菌特性与反硝化除磷工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立社会用水的健康循环是解决我国水危机、实现水资源可持续利用的根本途径。在实现水系统健康循环的基本策略中,建立城市范畴上的再生水供应系统是重中之重。寻求经济、可行的再生水生产技术是我国水处理领域面临的首要问题。近年来反硝化除磷理论的提出给我们提供了新的思路和视角,以其“一碳两用”、“节能环保”的优势越来越受到人们的关注。针对这一现状,本课题以实际生活污水为处理对象,对反硝化聚磷菌的特性及反硝化除磷工艺展开深入研究。
     A2N双污泥同步除磷脱氮工艺是反硝化除磷理论的典型工艺。本研究以实验室内现有的A2N双污泥工艺系统为基础,对反硝化聚磷菌的生物特性进行深入研究,同时针对A2N双污泥工艺中存在的问题,提出一种改进工艺,并考察了改进工艺对生活污水的处理效能,以期寻求一种经济、可行的再生水生产技术。
     通过A2N双污泥系统的微生物研究发现:反硝化聚磷污泥和普通好氧聚磷污泥在性状上极为相似,内源物质聚β羟基丁酸和聚磷在厌氧/缺氧的交替过程中有着和厌氧/好氧相同的变化规律;系统中同时存在着两类聚磷菌,一类是可以同时以氧和硝酸氮为电子受体的聚磷菌,另一类是只能以氧为电子受体的聚磷菌。
     为了进一步研究反硝化聚磷菌的特性与生物多样性,对以氧、硝酸盐氮和亚硝酸盐氮为电子受体的生物除磷系统进行对比研究。研究发现,亚硝酸盐氮对聚磷菌好氧和缺氧吸磷的抑制浓度分别为0.88mgN/gVSS和6.72 mgN/gVSS;在以硝酸盐氮为电子受体的反硝化除磷基础上采用逐渐增加亚硝酸氮浓度的方法驯化聚磷污泥,可以增加污泥对亚硝酸盐氮的适应性,并最终可以选择亚硝酸氮作为唯一电子受体,但其除磷效率远低于以氧和硝酸盐氮为电子受体的除磷系统,同时发现除磷系统生物群落结构随着电子受体的变化而改变,聚磷菌种类具有多样性。
     通过一系列的试验对反硝化吸磷过程中的一些重要影响因子进行了考察。碳源类型对反硝化除磷影响较大。碳源的长期试验结果表明,以丙酸钠和乙酸钠为碳源的除磷系统除磷效率相当,以葡萄糖作为唯一碳源,造成了除磷系统的崩溃。DGGE分析结果显示,以乙酸钠和丙酸钠为碳源的系统生物群落结构极为相似,以葡萄糖作为唯一碳源造成了除磷系统生物群落结构的彻底改变,以Micropruina glycogenica为代表的典型聚糖菌在系统中富集起来。反硝化聚磷菌属于低温耐冷菌,低温的短期冲击对缺氧吸磷的影响并不大,10℃~20℃为反硝化除磷的高效段。增大污泥系统的MLSS,可以提高缺氧初期的反硝化吸磷速度和最终的吸磷总量,但单位污泥的吸磷量没有提高反而减小。
     针对A2N工艺运行中存在的问题,提出改进型A2N工艺,考察了改进工艺对生活污水的处理效能,并对影响系统运行的主要因素进行了探讨。在进水C/N比较低的情况下(3.5~5.5),改进A2N双污泥系统对COD、NH4+-N、TN和TP的平均去除率分别为80.93%、97.44%、81.46%和68.2%。其中COD、NH4+-N和TN的去除效果比较理想,达到国家《城镇污水厂污染物排放标准》(GB18918-2002)一级A排放标准,达到了回用水要求。系统对TP的去除有待于进一步提高,出水平均值为0.94 mg/L,达到一级B排放标准。
     和传统的A2N双污泥反硝化除磷工艺相比,改进A2N工艺流程更为简洁,在NH4+-N和TN的去除上更具优势,在大多数时间内出水NH4+-N甚至可以达到零排放,由于好气滤柱生物膜内微环境引起的自养脱氮效应,在硝化液回流比一定的情况下,TN的去除率稳定而且高效。但由于改进的A2N工艺除磷效率抗冲击性较差,再加上好气硝化滤池内“二次释磷”现象的影响,改进的A2N工艺的除磷效率低于传统的A2N工艺。
Establishment of a healthy social cycle for water utilization is a fundamental way to solve water crisis and achieve sustainable use of water resources in China. According to the strategy of the healthy water cycle, the establishment of the reclaimed water supply system in urban areas is the top priority. The most important issue we faced is to seek an economic and feasible renewable water production technology for wastewater treatment. In recent years the theory of denitrifying phosphorus removal provides us some new ideas and perspectives and attracts more and more people's attention, with its advantage of "dual-use carbon" and "energy conservation and environmental protection". In response to this status, this study focus on the characteristics of denitrifying phosphate-accumulating organisms and the performance of denitrifying phosphorus removal process for treating municipal sewage.
     A2N process is a typical process of the theory of denitrifying phosphorus removal.In this study, the characteristics of denitrifying phosphate-accumulating organisms was investigated. At the same time, for the existing problems of the A2N process, an improved process was proposed and its performance for treating municipal sewage was investigated in order to seek an economic and feasible technoloty for the renewable wastewater production.
     Microbial study on A2N process showed that the character and variation of intracellular substances PHB(Poly-β-Hydroxybutyric acid) and Poly-p(Poly-phosphate) were similiar between denitrifying phosphorus accumulating sludge and common aerobic phosphorus accumulating sludge. Two kinds of phosphorus accumulating organisms (PAOs), one used O2 as electron acceptor, the other used O2 or NO3--N, were both found in the anoxic tank of A2N process.
     To study the characteristic and diversity of denitrifying phosphorus accumulating organisms (DPAOs), three phosphorus removal reactors with different electron acceptors of O2, NO3--N and NO2--N were carried out respecitively. The results showed that nitrite inhibits both aerobic and anoxic phosphorus uptake, and the threshold for aerobic and anoxic phosphate uptake were 0.88mgN/gVSS, 6.72 mgN/gVSS, respectively. With a stepwise increasing of NO2--N concentration in the influent, DPAOs were gradually accommodated to utilize NO2--N as electron acceptor, but its phosphorus removal efficiency was lower than that of O2 and NO3--N as electron acceptors. The results of DGGE targeting 16SrRNA gene indicated a significant shift in microbial community with different electron acceptor conditions.
     Furthermore, batch experiments were carried out to study the factors affecting the denitrifying phosphorus removal. Carbon sources had a great effect on phosphorus removal. Long-term experiments showed that propionate-fed system had similar phosphorus removal efficiency with acetate-fed system, when glucose was used as the sole carbon source, it would result in the deterioration of the phosphorus removal system. DGGE analysis showed that propionate-fed system had similar biological community structure with acetate-fed system, glucose as the sole carbon source caused the biological community structure changed radically and a novel glycogen accumulating organisms (GAOs), Micropruina glycogenica have proliferated. DPAOs were low-temperature-resistant bacteria, short-term temperature changes had little effect on denitrifying phosphorus removal. With the increase of MLSS, the quantity and rate of denitrifying phosphorus removal increased, while the specific phosphorous uptake quantity decreased.
     Long-term experiments showed that modified A2N process was applicable for low C/N wastewater treatment. When the influent C/N ratio ranged among 3.5~5.5, the mean removal efficiency of COD、NH4+-N、TN and TP were 80.93%、97.44%、81.46% and 68.2%, respectively. The COD、NH4+-N and TN removal were excellent in the modified A2N process, which met the standards of urban wastewater treatment plant pollutant discharge (GB18918-2002) - level A discharge standards, and achieved the reclaimed water demand. The mean final effluent TP concentration was 0.94 mg/L,achieved level B discharge standards, and the TP removal efficiency could be further improved.
     As compared with the traditional A2N process, the modified A2N process was simpler and more efficient on NH4+-N and TN removal. NH4 +-N could even achieve zero discharge at most of the time. When the nitrified recycle ratio was constant, TN removal rate was stable and efficient because of the nitrogen loss in the biofilter. However, due to the poor stability and "the second phosphorus release" in the biofilter, the phosphorus removal efficiency in modified A2N process was lower than that of the former A2N process.
引文
1张杰,熊必永,李捷.水健康循环原理与应用.中国建筑工业出版社, 2006: 14~18
    2钱正英,张光斗.中国可持续发展水资源战略研究.中国水利水电出版社, 2001: 28~31
    3张杰,曹开朗.城市污水深度处理与水资源可持续利用.中国给水排水. 2001, 17(3): 20~21
    4国家环保总局. 2006年中国环境状况公报.中国环境科学出版社, 2006
    5王华.太湖蓝藻危机:反思与对策.第二届中国城镇水务发展国际研讨会, 2007: 18~20
    6胡国成.我国沿海发生赤潮的原因及其危害.中国水产. 2006, 2: 73~80
    7郑兴灿,李亚新.污水除磷脱氮技术.中国建筑工业出版社, 1998
    8周群英,高廷耀.环境工程微生物学.第二版.高等教育出版社, 2000
    9章非娟.生物脱氮技术.中国环境科学出版社, 1992: 26
    10罗志腾.污染控制工程微生物学.北京科学技术出版社, 1988: 190~192
    11沈耀良,王宝贞.废水生物处理新技术—理论与应用.中国环境科学出版社, 1999: 157~159
    12徐亚同.废水氮磷的处理.上海.华东师范大学出版社, 1996
    13 Baozhen Wang, jun Li, Lin Wang, et al. Mechanism of Phosphorus Removal by SBR Submerged biofilm System.Wat. Res.1998, 32(9): 2633~2638
    14龚云华.污水生物脱氮除磷技术的现状与发展.环境保护. 2000, 7: 23~25
    15张杰,臧景红,杨宏等. A2/O工艺的固有缺欠和对策研究.给水排水. 2003, 29(3): 22~26
    16任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中式研究.给水排水. 2000, 26(6): 7~10
    17中国土木工程学会水工业分会排水委员会等出版.污水除磷脱氮技术研究与实践. 2003, 3
    18周斌.改良型A2/O工艺的除磷脱氮运行效果.中国给水排水. 2001, 17(7): 46~48
    19张波,高廷耀.倒置A2/O工艺的原理与特点研究.中国给水排水. 2000, 16(7): 11~15
    20刘长荣,常建一. Carrousell氧化沟的脱氮除磷工艺设计.中国给水排水. 2002, 18(1): 67~70
    21刘章富,熊杨,侯铁等.同步生物除磷脱氮的几种实用新工艺.中国给水排水. 2002, 18(9): 65~68
    22任洁,顾国维. MSBR系统的特点及其除磷脱氮的机理分析.给水排水. 2002, 28(1): 22~24
    23王闯,杨海真,顾国维.改进型序批式反应器(MSBR)的试验研究.中国给水排水. 2003, 19(5): 41~43
    24 Hascoet M C, Florentz M. Influence of nitrates on biological phosphorus removal from wastewater. Wat. SA. 1985, 11(1): 23~26
    25 Kuba T, Van Loosdrecht, M C M. Phosphorus Removal from Wastewater By Anaerobic-anoxic Sequencing Batch Reactor. Wat. Sci. Tech. 1993, 27(5~6): 241~252
    26 Gerber A, Villiers R H, Mostert E S, et al. The Phenomenon of Simultaneous Phosphorous Uptake and Release and its Importance in Biological Nutrient Removal in:Biological Phosphate Removal from Wastewaters. Pergamon Press, Oxford. 1987: 123~134
    27 Wachtmeister A, Kuba T, Van Loosdrecht M C M, et al. A Sludge Characterization Assay for Aerobic and Denitrifying Phosphrous Removing Sludge. Wat. Res. 1997, 31(3): 471~478
    28 Hu J Y, Ong S L, Ng W J, et al. A New Method for Characterizing Denitrifying Phosphorus Removal Bacteria by Using Three Different Types of Electron Acceptors. Wat. Res. 2003, 37: 3463~3471
    29 Vlekke g j f m, Comeau Yand Oldham W K. Biological Phosphate Removal from Wastewater with Oxygen or Nitrate in Sequencing Batch Reactors. Environmental Technology Letter. 1988, 9: 791~796
    30 Takeshita M, Soud H F G D. Performance and Experience on Coal-fired Plants. London: IEA Coal Research, 1993, 35~38
    31杨永哲,王蔚蔚,王磊等.反硝化聚磷诱导过程中聚磷速率的变化特性分析.西安建筑科技大学学报(自然科学版). 2003, 35(3): 251~253
    32 Kuba T, Van Loosdrecht M C M, Brandse F A, et al. Occurrence of Denitrifying Phosphorus Removal Bacteria in Modified UCT-Type Wastewater Treatment Plants. Wat. Res. 1997, 31(41): 777~786
    33 Bortone G, Marsili Libelli S, Tilche A, et al. Anoxic Phosphate Uptake in the Dephanox Process. Wat. Sci. Tech. 1999, 40(4~5): 177~183
    34 Cech J S, Hartman P. Glucose induced break down of enhanced biological phosphate removal. Environ.Technol. 1990, 11:651~656
    35 Cech J S, Hartman P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Wat. Res. 1993, 27(7): 1219~1225
    36 Crocetti G R, Banfield J F, Keller J, et al. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology. 2002, 148: 3353~3364
    37 Fuhs G W, Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb. Ecol. 1975, 2(2): 119~138
    38 Robert J Seviour, Takashi Mino, Motoharu Onuki. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiology Reviews. 2003, 27: 99~127
    39 Nakamura K, Hiraishi A, Yoshimi Y, et al. Microlunatus phosphovorus gen-nov, sp-nov, a new gram-positive polyphosphate-accumulating bacterium isolated from activated-sludge. Int. J. Syst. Bacteriol. 1995, 45(1): 17~22
    40 Santos M M, Lemos P C, Reis M A M, et al. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus. Appl. Environ. Microbiol. 1999, 65(9): 3920~3928
    41 Stante L, Cellamare C M, Malaspina F, et al. Biological phosphorus removal by pure culture of Lampropedia spp. Wat. Res.1997, 31(6): 1317~1324
    42 Adrian Oehmen, Paulo C Lemos, Gilda Carvalho, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res. 2007, 41: 2271~2300
    43 Bond P L, Hugenholtz P, Keller J, et al. Bacterial community structures of phosphate-removing non-phosphate-removing activated sludge from sequencing batch reactors. Appl. Environ.Microbiol. 1995, 61(5): 1910~1916
    44 Bond P L, Erhart R, Wagner M, et al. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl. Environ. Microbiol. 1999, 65(9):4077~4084
    45 Hesselmann R P X, Werlen C, Hahn D, et al. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 1999, 22(3): 454~465
    46 Kong Y H, Nielsen J L, Nielsen P H. Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl. Environ. Microbiol. 2004, 70(9): 5383~5390
    47 Saunders A M, Oehmen A, Blackall L L, et al. The effect of GAOs on anaerobic carbon requirements in full-scale Australian EBPR plants. Wat. Sci. Tech. 2003, 47(11): 37~43
    48 Wong M T, Mino T, Seviour R J, et al. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorus removal plants in Japan. Wat. Res. 2005, 39(13): 2901~2914
    49 J?rgensen K, Paulii A. Polyphosphate accumulation among denitrifying bacteria in activated sludge. Anaerobe. 1995, (1): 161~168
    50 Kerrn-Jespersen J P, Henze M. Biological phosphorus uptake under anoxic and aerobic conditions. Wat. Res. 1993, 27(4): 617~624
    51 Meinhold J, Filipe C D M, Daigger G T, et al. Characterization of denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Wat. Sci. Tech. 1999, 39(1): 31~42
    52罗宁,罗固源,吉方英等.新型双泥生物反硝化除磷脱氮系统中微生物的组成.给水排水. 2003, 29(8): 33~35
    53 Ahn J, Daidou T, Tsuneda S, et al. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay. Wat. Res. 2002, 36(2): 403~412
    54 Zeng R J, Saunders A M, Yuan Z, et al. Identification and comparison of aerobic and denitrifying phosphate-accumulating organisms. Biotechnol. Bioeng. 2003, 83(2): 140~148
    55 Martin H G, Ivanova N, Kunin V, et al. Metagenomic analysis of twoenhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol. 2006, 24(10): 1263~1269
    56 He S, Gu A Z, McMahon K D. Fine-scale differences between Accumulibacter-like bacteria in enhanced biological phosphorus removal activated sludge. Wat. Sci. Tech. 2006, 54(1): 111~117
    57 Carvalho G, Lemos P C, Oehmen A, et al. Microbial diversity of the Candidatus Accumulibacter phosphatis clade in denitrifying phosphorus removal systems. In: Proceedings of the 11th International Symposium on Microbial Ecology-ISME 11, Vienna, Austria, August 20~25, 2006
    58徐伟峰,顾国维,张芳.活性污泥法脱氮除磷数学模型的发展.工业用水和废水. 2004, 35(2): 1~4
    59张亚雷,李咏梅译.活性污泥数学模型.同济大学出版社, 2002: 14
    60杨哲,吴敏.生物除磷机理与数学模型的探讨.中国资源综合利用. 2007, 25(12): 21~23
    61 Hu Z R, Wentzel M C, Ekama G A, et al. Modelling biological nutrient removal activated sludge systems - a review. Wat. Res. 2003, 37: 3430~3444
    62 Wentzel M C, Dold P L, Ekama G A, et al. Enhanced polyphosphate organism cultures in activated sludges systems. PartⅢ: Kinetic model. Water S A. 1989, 15: 89~102
    63 Wentzel M C, Ekama G A, Marais G V R. Processes and modeling of nitrification on denireification biological excess phosphorus removal systems - a review. Wat. Sci. Tech. 1992, 26(6): 59~82
    64 Henze M, Guyer W, Mino T, et al. The activated sludge model no. 2. Scienti¢c and Technical Report No. 3. International Association on Water. 1995, London
    65 Smolders G J F, vanderMeij J, vanLoosdrecht M C M, et al. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotechnol. Bioeng. 1994, 44: 837~848
    66 Barker P S, Dold P L. General model for biological nutrient removal activated sludge systems: mode presentation. Water Environ Res. 1997, 69(5): 969~984
    67 Koch G, Kuhni M, Siegrist H. Calibration and valiation of ASM3 based steady state model for activated sludge system-PartⅠ. Wat. Res. 2001, 35(9):2246~2255
    68 Murnleitner E, Kuba T, vanLoosdrecht M C M, et al. An integrated metabolism mode for the aerobic and denitrifying biological phosphorus removal. Biotechnol. Bioeng. 1997, 54(5): 434~450
    69 Comeau Y, Oldham W K, Hall K J. Dynamics of carbon reserves in biological dephosphatation of wastewater, in: Biological phosphate removal from wastewaters. Pergamon Press, Oxford. 1987, 39~55
    70卢峰,杨殿海.反硝化除磷工艺的研究开发进展.中国给水排水. 2003, 19(9): 32~34
    71王亚宜,彭永臻,王淑莹等.反硝化除磷理论工艺及影响因素.中国给水排水. 2003, 19(1): 33~36
    72张杰,李相昆,黄荣新等.连续流双污泥系统反硝化除磷试验研究.现代化工. 2005, 25(增刊): 115~118
    73李相昆,姜安玺,于键等.连续流双污泥反硝化同时除磷系统影响因素.沈阳建筑大学学报. 2005, 21(5): 560~563
    74郝晓地,刘壮,刘国军.欧洲水环境控磷策略与污水除磷技术(下).给水排水. 1998, 24(9): 68~71
    75操家顺,杨雪冬, Van Loosdrecht M C M. BCFs—生物除磷新工艺.中国给水排水. 2002, 18(3): 23~26
    76赫晓地,汪慧贞,Van Loosdrecht M C M.可持续除磷脱氮BCFs工艺.给水排水. 2002, 28(9): 7~10
    77 Wanner J, Cech J S, Kos M. New process design for biological nutrient removal. Wat. Sci. Tech. 1992, 25(4~5): 445~448
    78 ?orm R, Bortone G, Wanner J, et al. Behaviour of activated sludge from a system with anoxic phosphate uptake. Wat. Sci. Tech. 1998, 37(4-5): 563~566
    79 Kuba T, Van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying and dephosphatation and nitrification in a two sludge system. Wat. Res. 1996, 30(7): 1702~1710
    80 Ng W J, Hu J H. Denitrifying phosphorus removal by anaerobic anoxic sequencing batch reactor. Wat. Sci. Tech. 2001, 43(3): 139~146
    81罗固源,罗宁.新型双污泥生物反硝化除磷工艺.中国给水排水. 2002,18(9): 4~7
    82 Thomas M, Wright P, Blackall L, et al. Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Wat. Sci. Tech. 2003, 47(12): 141~148
    83 Oehmen A, Yuan Z G, Blackall L L, et al. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol. Bioeng. 2005, 91(2): 162~168
    84 Lu H, Oehmen A, Virdis B, et al. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Wat. Res. 2006, 40(20): 3838~3848
    85 Mino T, Van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res. 1998, 32(11): 3193~3207
    86 Zeng R J, Yuan Z, Keller J, et al. Effect of solids concentration, pH and carbon addition on production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge. Wat. Sci. Technol. 2006, 53(8): 263~269
    87 Ahn Y H, Speece R E. Elutriated acid fermentation of municipal primary sludge. Wat. Res. 2006, 40(11): 2210~2220
    88 Wong M T, Liu W T. Microbial succession of glycogen accumulating organisms in an anaerobic-aerobic membrane bioreactor with no phosphorus removal. Wat. Sci. Tech. 2006, 54(1): 29~37
    89 Chen Y, Randall A A, McCue T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios to propionic acid. Wat. Res. 2004, 38(1): 27~36
    90 Chen Y G, Liu Y, Zhou Q, et al. Enhanced biological phosphorus removal from wastewater-effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture. Biochem. Eng. J. 2005, 27(1): 24~32
    91 Oehmen A, Saunders A M, Vives M T, et al. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J. Biotechnol. 2006, 123(1): 22~32
    92 Che O J, Jong M P. Enhanced Biological Phosphorus Removal in A Sequencing Batch Reactor Supplied with Glucose as A Sole Carbon Source. Wat. Res. 2000, 34(7): 2160~2170
    93 Wang N, Peng J, Hill G. Biochemical Model of Glucose Induced Enhanced Biological Phosphorus Removal under Anaerobic Condition. Wat. Res. 2002, 36: 49~58
    94 Carucci A, Kunhi M, Brun R, et al. Microbial Competition for the Organic Substrates and Its Impact on EBPR Systems under Conditions of Changing Carbon Feed. Wat. Sci. Tech. 1999, 39: 75~85
    95 Filipe C D M, Glen T, Daigger C P, et al. pH as a key factor in the competition between glycogen-accumulation organisms and phosphorus accumulating organisms. Wat. Environ. Res. 2001, 73(2): 223~232
    96 Bond P L, Keller J, Blackall L L. Characterization of enhanced biological phosphorus removal activated sludges with dissimilar phosphorus removal performances. Wat. Sci. Tech. 1998, 37(4~5): 567
    97 Cokgor E U, Yagci N O, Randsll C W, et al. Effects of pH and substrate on the competition between glycogen and phosphorus accumulation organisms. Journal of Enviromental Science and Health PartⅠ-Toxic Hazardous Substrate & Environmental Engineering. 2004, 39(7): 1695~1704
    98 Sell R. Low temperature biological phosphorus removal.Presented at the 54th Annual Conference of Water Pollution Control Federation.Allentown PA USA. 1981
    99 Jones M, Stephenson T. The effect of temperature on enhanced biological phosphorus removal. Env. Techn. 1996, 17: 965~976
    100 Beatons D, Vanronlleghem P A, van Loosdtrecht M C M, et al. Temperature effects in bio-P removal. Wat. Sci. Tech. 1999, 39(1): 215~225
    101 Brdjanovic D, van Loodsdrecht M C M, Hooijnans C M, et al. Temperature effects on physiology of biological phosphorus removal. J. Environ. Engin. 1999, 123(2): 144~153
    102 Erdal U G Z, Erdal Z K, Randall W. The competition between PAOs and GAOs in EBPR systems at different temperatures and effects on system performance. Wat. Sci. Tech. 2003, 47(11): 1~8
    103张杰,熊必永,李捷.水健康循环原理与应用.中国建筑工业出版社,2006: 8
    104水和废水检测分析方法.第四版.中国环境科学出版社, 2002
    105马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨:哈尔滨工业大学出版社,2002
    106田淑媛,王景峰,杨睿等.厌氧下的PHB和聚磷酸盐及其生化机理研究.中国给水排水. 2000, 7~9
    107布坎南R E,吉本斯N E.伯杰细菌鉴定手册.第八版.中国科学院微生物研究所译.北京.科学出版社, 1984
    108 Lacko N, Drysdale G D, Bux F. Anoxic phosphorus removal by denitrifying heterotrophic bacteria.Wat. Sci. Tech. 2003, 47(11): 17~22
    109 Oehmen A, Lehmann B K, Zeng R J, et al. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. Journal of Chromatography A. 2005, 1070: 131~136
    110 Luísa S S, Paulo C L, Caterina L, et al. Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. Journal of Microbiological Methods. 2002, (51): 1~18
    111 Kuba T, van Loosdrecht M C M, Heijnen JJ. Effect of cyclic oxygen esposure on activity of denitrifying phosphorus removing bacteria. Wat. Sci. Tech. 1996, 34(1-2): 33~40
    112 Muyima N Y O, Momba M N B, Colete TE. Biological methods for the treatment of wastewaters. In: Microbial Community Analysis: The Key to the Design of Biological Wastewater Treatment Systems, Cloete, T.E. and Muyima, N.Y.O. (eds), IAWQ Scientific and Technical Report No.5, 1~24
    113 Amann I, Binder B J, Olson R J. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells Without Cultivation. Microbiol Rev. 1995, 59: 143~469
    114 Hu J Y, Ong S L, Ng W J et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors .Wat. Res. 2003, 37: 3463~3471
    115 Ahn J, Daidou T, Tsuneda S et al. Metabolic behavior of denitrifying phosphate-accumulating organisms under nitrate and nitrite electron acceptor conditions. J. Biosci. Bioeng. 2001, 92 (5): 442~446
    116 Wanner J, Cech J S, Kos M. New process design for biological nutrient removal. Wat. Sci. Tech. 1992, 25: 445~8
    117 Kerrn-Jespersen J P, Henze M. Biological phosphorus uptake under anoxic and anaerobic conditions. Wat. Res. 1993, 27: 617~24
    118 Kerrn-Jespersen J P, Henze M, Strube R. Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed-film reactor. Wat. Res. 1994, 28: 1253~1255
    119 Ng W J, Ong S L, Hu J Y. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor. Wat. Sci. Tech. 2001, 43(3): 139~46
    120 Peng Y Z, Wang Y Y, Ozaki M, et al. Denitrifying Phosphorus Removal in a Continuous-Flow A2N Two-Sludge Process. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substance & Environmental Engineering. 2004, 39 (3): 703~715
    121 Wachtrmeister A, Kuba T, Loosdrecht M C M Van, et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge.Wat. Res.1997, 31(3):471~478
    122 Saito T, Brdjanovic D, Loosdrecht M C M van. Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Wat. Res. 2004, 38: 3760~3768
    123蒋轶锋.短程反硝化除磷工艺特征及运行效能研究.哈尔滨工业大学博士学位论文. 2006,6
    124 Dabert R, Sialve B, Delgenes J P, et al. Characterization of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its shift to nitrate respiration. Appl. Microbiol. Biotech. 2001, 55: 500~509
    125 Shoji T, Nittami T, Onuki M, et al. Microbial community of biological phosphorus removal process fed with municipal wastewater under different electron acceptor conditions. Wat. Sci. Tech. 2006, 54(1): 81~89
    126 Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified gene coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59: 695~700
    127 Ferris M J, Muyzer G, Ward D M. Denaturing gradient gel electrophoresisprofiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ.Microbiol. 1996, 62(2): 340~346.
    128 Araya R, Tani K, Takagi T, et al. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescentin situhybridization and DGGE analysis. FEMS Microbiol Ecol. 2003, 43: 111~119
    129 Schafer H, Servais P, Muyzer G. Successional changes in the genetic diversity of a marine bacterial assemblage during confinement. Arch Microbiol. 2000, 173: 138~145
    130 Muller A K, Westergaard K, Christensen S, et al. The diversity and function of soil microbial communities exposed to different disturbances. Microb. Ecol. 2002, 44: 49~58
    131 Kowalchuk G A, Gerards S, Woldendrop J W. Detection and characterization fungal infections ofAmmophila arenaria (Marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18S rDNA. Appl. Environ. Microbiol. 1997, 63(10): 3858~3865
    132 Yang C H, Crowley D E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 2000, 66(1): 345~351
    133 Wen-Tso L, On-Chim C, Herbert H P Fang. Microbial community dynamics during start-up of acidogenic anaerobic reactors. Wat. Res. 2002, 36: 3203~3210
    134 Zhang T, Herbert H P Fang. Phylogenetic diversity of a SRB rich marine biofilm. Appl Microbiol Biotechnol. 2001, 57: 437~440
    135 Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek. 1998, 73: 127~141
    136 Kuba T, Wachtmeister A, Van loosdrecht M C M, et al. Effect of nitrate on phosphorus release in biological phosphorus removal systems. Wat. Sci. Tech. 1994, 30 (6): 263~269
    137 Brdjanovic D, Hooijmans C M, van Loosdrecht M C M, et al. The dynamic effects of potassium limitation on biological phosphorus removal. Wat. Res. 1996, 30(10): 2323~2328
    138 Pramanik J, Trelstad P L, Schuler A J, et al. Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism. Wat. Res. 1999, 33 (2): 462~476
    139 Brdjanovic D, Slamet A, van Loosdrecht M C M, et al. Impact of excessiveaeration on biological phosphorus removal from wastewater. Wat. Res. 1998, 32 (1): 200~208
    140 Oehmen A, Yuan Z G, Blackall L L, et al. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol. Bioeng. 2005, 91 (2): 162~168
    141 Lu H, Oehmen A, Virdis B,et al. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. Wat. Res. 2006, 40 (20): 3838~3848
    142 Naik R V. Enhancement of denitrification using prefermenters in biological nutrient removal systems. Orlando, FL:University of Central Florida, 1999
    143 Canizares P, De Lucas A, Rodriguez L, et al. Anaerobic uptake of different organic substrates by an enhanced biological phosphorus removal sludge. Environ.Technol. 2002, 21 (4):397~405
    144 Panswad Thongchai,Doungchai Apiradee, Anotai Jin. Temperature effect on microbial community of enhanced biological phosphorus removal system. Wat. Res. 2003, 37(2): 409~416
    145 Kumar P, Mehrotra I, Viraraghavan T. Temperature response of biological phosphorus-removing activated sludge. J. Envir. Eng. 1998, 124(2): 192~196
    146 Helmer C, Kunst S. Low Temperature Effects on Phosphorus Release and Uptake by Microorganisms in BPR plants. Wat. Sci. Tech. 1998, 37(9): 531~540
    147 Erdal U G, Erdal Z K, Randall C W. A hermal adaptation of bacteria to cold temperatures in an enhanced biological phosphorus removal system. Wat. Sci. Tech. 2003, 47(11): 123~128
    148李相昆.反硝化除磷工艺与微生物学研究.哈尔滨工业大学博士学位论文. 2006,6
    149王亚宜.硝化除磷脱氮机理及工艺研究.哈尔滨工业大学博士学位论文. 2004,6
    150 Bortone G, Marsili Libelli S, et al. Anoxic phosphate uptake in the Dephanoxprocess. Wat.Sci.Tech. 1999, 40 (4~5): 177~185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700