用户名: 密码: 验证码:
深部巷道围岩破裂演化过程及其控制机理研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭开采向深部发展,解决深部特殊环境下的巷道稳定问题及减少开采中的灾变事故成为当前面临的主要任务。针对深部工程的复杂性,现有的深部巷道围岩非线性破坏机理相关研究尚不成熟,缺乏对围岩破坏过程的应力、变形等非线性演化规律相关研究。
     本文结合国家自然科学基金重点项目子课题“深部采动覆岩移动规律与巷道稳定性控制研究”(50490273)与面上项目“深部巷道围岩变形、破坏全过程及其稳定控制机理”(50674083),以平煤集团四矿千米埋深的巷道为工程背景,采用大尺度三维模拟试验、原位测试和数值模拟,对深部巷道围岩破坏过程中的应力、变形演化规律和破坏机制进行了探讨,同时对支护结构作用和承载结构形成机理进行了分析,在此基础上,提出了深部高应力巷道破裂岩体的过程控制机理与技术。主要研究内容及结论如下:
     (1)研制了大尺度三维地下综合模型试验台(1.02m×1.02m×1.02m),并通过设计的单元应变计获得了深部巷道开挖后围岩应力重分布规律及变形情况。模拟结果发现,开挖过程中应力大小有一个非线性的变化过程。
     (2)三维模拟试验研究发现深部高应力巷道普遍处于破裂状态,且在一定条件下出现与浅部巷道破坏机理显著不同的特点,即巷道围岩出现新的分区破裂特征。试验结果表明,高应力巷道围岩开挖卸载过程中,围岩应力急剧调整且出现主应力轴轮换现象,并发现-0 .2<μ_σ<0.1时出现了局部剪切带,而μ_σ→-1时则出现了明显的分区破裂现象。
     (3)采用能量分析方法获得了分区破裂产生的条件,并对压剪和拉剪两种情况下裂缝的发展进行了分析,提出分区破裂是压剪和拉剪破坏共同作用的结果。认为主应力大小的变化是裂缝扩展的主要原因,主应力方向的变化决定了形成环形裂缝的可能,高地应力则是形成分区破裂的前提条件。
     (4)物理模拟发现:现有的支护形式无法阻止高地应力的释放和围岩的破坏,其支护作用机理主要体现为改善围岩应力状态、遏制碎胀变形的发展、降低围岩破碎程度和提高破裂岩体力学性能等。同时,数值模拟试验结果表明,及时有效将围岩变形控制在“软化变形”阶段,使围岩破裂过程中粘聚力下降不超过50%;或采取加固措施能将破裂围岩残余强度提高到原来的30%以上,将能有效减小变形量,并有利于围岩的二次稳定。
     (5)根据深部巷道破裂演化过程中的应力、变形规律及分区破裂特征,研究了深部巷道“应力状态恢复改善、围岩强度固结修复、分步联合整体抵抗”的过程控制机理及适应深部巷道变形特征的“三锚”耦合动态叠加支护技术,以实现对围岩应力的释放和变形破坏的控制。
     (6)根据研究结论,对平顶山四矿埋深1100m巷道设计了“三锚”+ U型钢的支护方案,并进行了原位实测分析和工程应用。实测结果表明,应力变化规律和模拟研究结论基本一致,且通过锚杆受力分析发现受剪切滑移面的严重影响,锚杆中出现了极高的弯曲和剪切应力,使其极易断裂。另外,试验巷道变形监测结果表明,“三锚”耦合动态迭加支护有效地控制千米埋深巷道的变形和稳定,验证了论文研究结论的实用性和可靠性。
It has become the primary mission in deep underground mining to solve the stabilization of roadway excavated in deep special conditions and to reduce the disasters. Due to the complexity of deep underground engineering and the nonlinearity of fractured rock mass, the existing research findings concerning the failure mechanism of surrounding rock of deep roadways are still imperfect. They seldom concern the investigation of nonlinear evolution of stress and deformation of the surrounding rock during its failure process.
     Under the financial support of National Natural Science Foundation of China (Grant No.50490273 and 50674083) and taking a deep roadway whose embedded depth is over 1000 m in the Fourth Colliery of Pingdingshan Group Company of Coal Industry as engineering background, this dissertation investigated the evolution law of stress and deformation of the surrounding rock and the rock failure mechanism, and analyzed the support effect and the forming mechanism of rock bearing structure. On that basis, it pup forward the mechanism and technology of controlling fractured rock mass around deep high stress roadways.
     The main research contents and conclusions are as follows:
     (1) The stress redistribution law and deformation of surrounding rock of deep roadway during the process of excavation are obtained by physical modeling with a large scale three-dimension test bed (1.02m×1.02m×1.02m)for underground engineering and self-designed unit strain detectors.
     (2) The physical simulation results show that the surrounding rock of deep roadway is generally in fractured condition and presents the characteristic of zonal disintegration which is notably different from that in shallow roadway. The stresses alternate rapidly and the direction of principal stresses exchange during the excavating of high-stress roadway. The local shear band occurs when -0 .2<μ_σ<0.1, and the zonal disintegration appears whenμ_σ→-1.
     (3) The criterion of zonal disintegration is obtained with energy analysis method, and the mechanisms of crack propagation are analyzed under the conditions of press shearing and tensile shearing. It is proposed that the zonal disintegration is caused by the coaction of press shearing and tensile shearing. The quantitative variation of principal stresses is the primary cause of crack propagation, and the directional variation of principal stresses is likely to be the basic reason of the annular fracture. The high ground pressure is prerequisite of the zonal disintegration.
     (4) It is concluded from physical simulation that because the current support patterns can not stop the high stress releasing and fracturing of rock around deep roadway, the support functions are to improve the stress state of surrounding rock, to restrain dilatant deformation, to decrease the degree of crushing and improve the mechanical properties of fractured rock. The numerical simulation results show that if the deformation of surrounding rock is effectively restrained at the“softening deformation”stage to reduce the cohesion degradation (less than 50%), or if the residual strength of fractured rock is increased by over 30% under the action of supporting, the deformation of the surrounding rock will be decreased effectively.
     (5) According to the characteristics of stress and deformation of rock around deep roadway in the process of fracturing, the process control mechanism of deep roadway, that is“to improve stress state, to reinforce surrounding rock strength, and to resist successively and jointly”, and the so-called“three bolting”coupled dynamic support technique are developed to dynamically control the stress release and deformation of surrounding rock.
     (6) Based on the above mentioned research findings, the support scheme with“three bolting”and U-shape steel set is designed and applied to a roadway embedded 1100m underground in Pingdingshan Fourth Colliery. The in situ measurement of stress and deformation of surrounding rock and bolt indicates that the stress evolution accords well with the simulation result. The shearing slip in surrounding rock results in the very high bending and shearing stress in bolt. The deformation of the deep roadway is effectively controlled by the“three bolting”coupled dynamic support, which validated the practicability and reliability of the research findings of this dissertation.
引文
[1]钱七虎.城市可持续发展与地下空间开发利用[J].地下空间,2003,23 (1):83-86
    [2]靖洪文.深部巷道破裂围岩位移分析及应用[D].中国矿业大学,博士学位论文,2001
    [3]谢和平.矿山岩体力学及工程的研究进展与展望[J].中国工程科学, 2003, 5(3):31-37
    [4]何满朝.深部开采工程岩石力学的现状及其展望[J].第八次全国岩石力学与工程学术大会论文集.科学出版社, 2004:88-94
    [5]国家安全生产科技发展规划-煤矿领域研究报告[R].国家安全生产监督管理局, 2003.12
    [6]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858
    [7]钱七虎.深部岩体工程响应的特征科学现象及深部的界定[J].华东理工学院学报,2004,27(1):1-5
    [8]何满潮,谢和平.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(,16):2803-2812
    [9]何满潮.中国煤矿软岩巷道支护理论与实践.中国矿业大学出版社,1996
    [10] Malan D F,Basson F R P. Ultra-deep mining:the increase potential for squeezing conditions[J]. J. S. Afr. Inst. Min. Metall.,1998,98:353–363
    [11] Malan D F. Simulation of the time-dependent behavior of excavations in hard rock[J]. Rock Mechanics and Rock Engineering,2002,35(4):225–254
    [12]翟新献,李化敏.深井软岩巷道围岩变形特性的研究[J].煤,1995,4(5):24–26
    [13]姜耀东,赵毅鑫等.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004,23(7):2396–2401
    [14] Muirwood A M. Tunnels for roads and motorways[J]. Quart. J. Eng. Geol.,1972,5:119–120.
    [15] Barla G. Squeezing rocks in tunnels[J]. ISRM,New J.,1995,2:44–49
    [16] Aydan O,Akagi T,Kavamoto T. The squeezing potential of rock around tunnels:theory and prediction with examples taken from Japan[J]. Rock Mechanics and Rock Engineering,1996,29:125–143
    [17] Kwasniewski M A. Laws of brittle failure and of B-D transition in sandstone[A]. In:Rock at Great Depth[C]. Rotterdam:A. A. Balkema,1989:45–58
    [18] Paterson M S. Experimental Rock Deformation -the Brittle Field [M]. Berlin:Springer,1978
    [19] Singh J. Strength of rocks at depth[A]. In:Rock at Great Depth[C]. Rotterdam:A. A. Balkema,1989:37–44
    [20] Cleary M. Effects of depth on rock fracture[A]. In:Rock at Great Depth[C]. Rotterdam:A. A.Balkema,1989:1153–1163
    [21]陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001:17–38
    [22] Ranalli G, Murphy D C. Rheological stratification of the lithosphere[J]. Tectonophysics,1987,132:281–295
    [23] Shimada M,Liu J T. Temperature dependence of granite strength under high confining pressures and the brittle-ductile hypothesis for seismogenic zones in the crust[A]. In: Proc. Int. Conf. on“Deformation Mechanism,Rheology and Microstructures”[C]. [s.l.]:[s. n.],1999:46–54
    [24]周小平,钱七虎等.深部岩体强度准则[J].岩石力学与工程学报,2008,27(1):117–123
    [25]李世平,吴振业,贺永年,李晓.岩石力学简明教程[M].煤炭工业出版社,1996
    [26]蒋斌松,张强等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007,26 (5):982-986
    [27]陈胜宏.三峡工程船闸边坡的弹粘塑性自适应有限元分析[J].岩土力学.1998,19(1):13-19
    [28] Cundall,P.A. Acomputer model for simulating progressive large scale movementin blocky systems. In Proc. Symp.Int. Sci. Rock Mech. 1(1):11-8,Nancy,France,1971
    [29] Cundall,P. A.Formulation of three-dimensional distinct element model,P art I,As chemeto detect and represent contactin system composed of many polyhedral blocks. In t.J. Rock Mesh .M in.Sci.Geomech.Abstr.,1988,25 (3):107-116
    [30] Shi,G .H.& Goodman,R .E. Two dimensional discontinuous analysis. Int.J. Numer.Anal. Methods Geomech.,1985,9:541-556
    [31] S hi,G .H.& G oodman,R.E. Generalization of two dimensional discontinuous deformation analysis for forward modeling. Int.J. Numer. Anal.Methods Geomech,1989,13:359-380
    [32]陶连金,张悼元,姜德义.复杂工程岩体稳定性评价[M].成都:成都科技大学出版社,1998
    [33]王渭明.围岩危石预测理论与应用[M].北京:煤炭工业出版社,1998
    [34]刘传孝,王同旭,杨永杰.高应力区巷道围岩破碎范围的数值模拟及现场测定的方法研究[J].岩石力学与工程学报,2004,23(14):2413-2416
    [35]孔德森.深部巷道围岩在复合应力场中的稳定性数值模拟分析[J].山东科技大学学报,2001,21(1):68-70
    [36]张后全,夏洪春,唐春安等.巷道围岩破坏与支护方案选取可视化研究[J].金属矿山,2004,342(14):5-8
    [37]姜耀东,刘文岗,赵毅鑫等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862
    [38]宋锦虎.深部巷道变形破坏过程的演化过程研究[D].中国矿业大学,硕士论文,2008
    [39]郭延华,李良红等.内错式下分层回采巷道围岩变形破坏机理研究[J].河北工程大学学报,2007,24(2):20-22
    [40]解联库,李华炜,杨天鸿等.侧向压力作用下巷道围岩破坏机理的数值模拟[J].中国矿业,2006,15(3):54-57
    [41]张东明.岩石变形局部化及失稳破坏的理论与试验研究[D].重庆大学博士论文,2004
    [42]翟路锁.裂隙岩体巷道稳定性模拟研究试验[J].煤矿开采,2003,55(2):46-52
    [43] Everling, G. Model Tests Concerning the Interaction of Ground and Roof Support in Gate-roads[J]. Int.J.Rock Mech Mining Sci., 1964,1(1),319-326
    [44]陈炎光,陆士良.中国煤矿巷道围岩控制[M].中国矿业大学出版社,1994
    [45]白占平,曹兰柱等.矿山层状反倾边坡岩体移动规律的试验研究[J].工程地质学报, 1997,5(1):80-85
    [46]朱德仁,王金华,康红普等.巷道煤帮稳定性相似材料模拟试验研究[J].煤炭学报,1998,23(1):42-47
    [47]任伟中.节理围岩特性及其锚固效应模型试验研究[J].地球科学—中国地质大学学报,1997,22(6):660-664
    [48]张涛,高明中.煤巷锚杆支护模型试验研究[J].煤炭科学技术,1999,27(10):43-45
    [49]李明,唐树名.主动锚和被动锚联合锚固碎裂结构岩体路堑边坡的模型试验分析[J].公路交通技术, 2003,No3:19-21
    [50]吴德海,曾祥勇等.单锚锚杆加固碎裂结构岩体模型试验研究[J].地下空间,2003,23(2):158-161
    [51]韩立军.岩石破坏后的结构效应及锚注加固特性研究[D].中国矿业大学,博士论文,2004
    [52]李仲奎,徐千军等.复杂节理裂隙岩体真三维卸载过程力学性能试验研究[J].中国岩石力学与工程学会第五次学术大会,1998
    [53]王宏图,鲜学福,贺建民等.层状复合岩体力学的相似模拟[J].矿山压力与顶板管理,1999(2):81-83
    [54] Goharizi, K.G.et al. Scale Model Studies to Investigate the Effects of Various Stress fields on the Stability of Pillars Between Mine Roadways[C]. 11th International Conference on Ground Control in Mining, the University of Wollongong, Australia, 1992,7
    [55]蔡美峰,李华斌.地应力测量原理和技术[M].科学出版社,北京,1995
    [56]王衍森,吴振业.地应力测量应变值检验及应变计最佳布片方式[J].岩土工程学报,1999
    [57]庞迎春.煤层抗张强度原位测试研究[J].煤炭技术. 2006, 25(10)
    [58]刘佑荣,唐明辉.岩体力学[M].中国地质大学出版社,1999
    [59]宋宏伟,王闯等.用地质雷达测试围岩松动圈的原理与实践[J].中国矿业大学学报,2002,31(4)
    [60]于德成.全数字钻孔摄像松动圈测试方法研究[D].中国矿业大学,硕士论文,2007
    [61] Matthews S M, et al. Horizontal Stress Control in Underground Coalmines[C]. 11th International Conference on Ground Control in Mining. The University of Wollongong, 1992(7)
    [62] [前苏联]切尔尼亚克等.深矿井采准巷道矿压控制(常惊鸿译) [M].煤炭工业出版社,1989
    [63]曲天智.深井综放沿空巷道围岩变形演化规律及其控制[D].中国矿业大学,博士论文,2008
    [64]靳晓光,李晓红,王兰生.地下工程围岩二次应力场的现场测试与监测[J].岩石力学与工程学报,2002,21(5):651-653
    [65]何满潮,袁和生,靖洪文.中国煤矿锚杆支护理论与实践[M].科学出版社,2004
    [66]陈坤福,靖洪文.基于实测地应力的围岩分类研究[J].采矿与安全工程学报,2007,24(3):349-352
    [67]吴忠,罗运军.大断面形状对巷道稳定性影响的研究[J].矿山压力与顶板管理,2004,4:41-43
    [68]江权.高地应力下硬岩弹脆塑性劣化本构模型与大型地下洞室群围岩稳定性分析[J].中国科学院武汉岩土力学研究所[D],博士论文,2007
    [69]刘军.地下工程围岩块体稳定性研究[D].成都理工学院,博士论文, 2001
    [70]孙红月,尚岳全,张春生.大型地下洞室围岩稳定性数值模拟分析[J].浙江大学学报(工学版), 2004,38(1):70-73
    [71]靖洪文,李元海,许国安.深埋巷道围岩稳定性分析与控制技术研究[J].岩土力学,2005,26(6):877-888
    [72]杨建辉.锚杆支护煤巷层状结构顶板稳定性研究与应用[D].北京科技大学,博士学位论文,2002
    [73]姚番,周占魁.模糊数学优选采矿方法[J].黄金,1992,13(4):18-22
    [74]唐绍辉.模糊综合评判法及其在岩体分类中的应用[J].矿业研究与开发,1994,14 (2):4-9
    [75] Zhang Q. The application of neural network to rock mechanics and rock engineering[J]. Int.J.Roek Heehi&Mii. Sei. Geomeeh,Abstr,1991,28(6):535-540
    [76]乔春生.岩石工程数值分析中选择岩体力学参数的神经元网络方法[J].岩石力学与工程学报,2000,19(l):64-67
    [77]张明,李仲奎.准脆性材料破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,2006,25(6):1233-1239
    [78]贺广零,洪芳,王艳苹.采空区煤柱-顶板系统失稳的力学分析[J].河北工程大学学报,2007,24(1):12-16
    [79]董方庭,宋宏伟.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(2):21-32
    [80]董方庭等.巷道围岩松动圈支护理论与应用技术[M].煤炭工业出版社,2001
    [81]方祖烈.拉压域特征及主次承载区的维护理论[M].煤炭工业出版社,北京, 1999
    [82]何满潮.软岩巷道工程概论[M].中国矿业大学出版社,徐州,1993.
    [83]徐干成,白红才.地下工程支护结构[M].中国水利水电出版社,北京,2001
    [84]杨松林,朱焕春等.加锚层状岩体的本构模型[J].岩土工程学报,2001,23(4):427-430
    [85]谭云亮,王春秋.锚杆加固巷道顶板稳定性潜力机理分析[J].岩石力学与工程学报,2003,22(增):2210-2213
    [86]侯朝炯,郭励生等.煤巷锚杆支护[M] .中国矿业大学出版社,徐州,1999
    [87]张玉军,刘谊平.锚固正交各向异性岩体的本构关系和破坏准则[J].力学学报,2002,34(5):812-818
    [88]杨双锁,康立勋,钱鸣高.煤矿回采巷道支护-围岩相互作用全过程分析[J].岩石力学与工程学报,2002,21(增):1978-1981
    [89]陈坤福,韩立军.高应力破碎顶板煤巷控顶卸压和三锚支护技术[J].矿山压力与顶板管理,2003,20(4):28-30
    [90]蒋金泉.巷道围岩弱结构灾变失稳与破坏区域形态的奇异性[J].岩石力学与工程学报,2005,24(18):3373-3379
    [91]谢和平.岩石混凝土损伤力学[M].中国矿业大学出版社,徐州,1990
    [92]唐春安.岩石破裂过程的灾变[M].煤炭工业出版社,北京,1993
    [93]王兰生.等著二郎山隧道高地应力与围岩稳定问题[M].地质出版社,北京,2006
    [94]崔广心.相似理论与模型试验[M].中国矿业大学出版社,徐州,1990
    [95]李鸿昌编著.矿山压力的相似模拟试验[M].中国矿业大学出版社,徐州,1988
    [96] Aglawe,JayPrataPrao. Unstable and violent failure around underground openings in highly stressed ground.[D].Ph.D.Thesis,Queen’s University at Kingston,Canada,1999.
    [97]李元海,朱合华,上野胜利.基于图像相关分析的砂土模型试验变形场量测[J].岩土工程学报,2004,26(1):36-41
    [98]王思敬.工程地质学岩体稳定分析[M].北京:科学出版社,1984
    [99]王克忠.大型地下洞室群层状复合围岩稳定性研究[D].北京科技大学,博士学位论文,2005
    [100]张强永,李术才等.岩体数值分析方法与地质力学模型试验原理及工程应用[M].中国水利水电出版社,北京,2005
    [101] HE M C, DUAN Q W, SUN X M. Computernumeric simulation of soft rock in China [C]. Computer Application in the Minerals Industries, Proceedings of the 29th International Symposium on Computer Application in the Minerals Industries. Beijing:[s.n.],2001, 4: 25-27
    [102] SHAPIPO A, DELPORT J L. Statistical analysis of jointed rock data [J]. International Journal of Rock Mechanics and Mining Sciences,1991 ,28(5):375-382
    [103] NAGAI T, KUNIMURA S, SUN J. Behavior of joined rockmasses around an underground opening under excavation using large-scale physical model tests[C]∥Proceedings of the Symposium on Rock Mechanics.Wuhan, China: [s.n.], 1996:116-120
    [104] KIM S H, BURD H J. Model testing of closely spaced tunnels in clay[J]. Geotechnique, 1998, 48(3):375-388
    [105]沈新普,岑章志,徐秉业.弹脆塑性软化本构理论的特点及其数值计算[J].清华大学学报,1995,35(2):22–27
    [106]杨超,崔新明,徐水平.软岩应变软化数值模型的建立与研究[J].岩土力学,2002,23(6)
    [107]张帆,盛谦,朱泽奇.三峡花岗岩峰后力学特性及应变软化模型研究[J].岩石力学与工程学报,2008,27(增1):2651–2655
    [108]勾攀峰.巷道锚杆支护提高围岩强度和稳定性的研究[D].中国矿业大学,博士论文,1998
    [109]贺永年,韩立军,邵鹏等.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-295
    [110]李世平.权台煤矿煤巷锚杆试验观测报告-兼论煤巷锚杆特点与参数选择新观点[J].中国矿业学院学报, 1979, (4),19-57
    [111]李术才,王汉鹏等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008,27(8):1545–1553
    [112]李英杰,潘一山.深部岩体分区碎裂化进程的时间效应研究[J].中国地质灾害与防治学报,2006,17(4),119-122
    [113]钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报.2004. 27(1), 1-5
    [114]李英杰.岩石分区碎裂化的机理及试验研究[D].辽宁工程技术大学硕士学位论文.2006
    [115] Kurlenya M.V Oparin V.N. Problems of nonlinear geomechanics (part I) [J]. Fiz.Tekh.Probl.Razrab.Polezn.Iskop.1999(3):1-22
    [116] Guzev M A Paroshin A A. Non-euclidean model of the zonal disintergration of rocks around an underground working[J]. Journal of Applied Mechanics and Technical Physics 2001 42(1):131-139
    [117]唐鑫.岩石分区碎裂化现象的现场观测数据分析、蠕变机理及模拟试验研究[D].辽宁工程技术大学,硕士学位论文.2006
    [118] Shemyakin I.Kyrlenya MVReva VN etal. USSR discovery No.400 phenomenon of zonaldisintegration of Rocks around underground workings[J]. Byull. Izobret. 1992(1):7-15
    [119]王明洋,宋华等.深部巷道围岩的分区破裂机制及深部界定探讨[J].岩石力学与工程学报,2006,25(9):1771-1775
    [120] Reva V N.Stability criteria of underground workings under zonal disintegration of rocks . Fiz.Tekh.Probl.Razrab.Polezn.Iskop. 2002(1):35-38
    [121]周小平,钱七虎.深埋巷道分区破裂化机制[J] .岩石力学与工程学报,2007,26(5):877-884
    [122]宋华,汪新红等.对深部地下坑道围岩分区变形机理的探讨[J].解放军理工大学学报(自然科学版),2007,8(3):274-278
    [123]刘红刚.岩石卸荷破坏特性的三轴试验研究[D].中国矿业大学,博士论文,2008
    [124]顾金才,顾雷雨等.深部开挖洞室围岩分层断裂破坏机理模型试验研究[J].岩石力学与工程学报,2008,27(3):433-438
    [125]贺永年,蒋斌松等.深部巷道围岩间隔性区域断裂研究[J].中国矿业大学学报,2008,37(3):300-303
    [126]伍佑伦.基于岩体断裂力学的巷道稳定性与锚喷支护机理研究[D].华中科技大学,博士学位论文,2004
    [127]丁遂栋.断裂力学[M].机械工业出版社,北京,1997
    [128] M.R. Yeung. Validation of Block Theory and Three-Dimensional Discontinuous Deformation Analysis as Wedge Stability Analysis Methods. International Journal of Rock Mechanics & Mining Sciences 2003 (40):265~275
    [129]刘锦华,吕祖洐.块体理论在工程岩体稳定分析中的应用.水利电力出版社,北京,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700