用户名: 密码: 验证码:
石灰立窑代焦型煤的研制及其干燥与燃烧特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石灰立窑型煤代焦,可有效地缓解焦煤资源的紧缺和焦炭供需的矛盾,显著提高石灰生产的经济性,同时还可起到一定的节能与环保功效,是一项应用价值高、市场前景广的新课题。
     论文以研制满足氧化铝工业机械混料式石灰立窑生产要求的代焦型煤为研究目标展开。首先全面系统地阐述了型煤的特点、成型方法、粘结机理、应用情况及发展趋势,解释了型煤代焦的原因并进行了可行性分析。
     然后在确定石灰立窑代焦型煤具体考核指标的前提下,以低阶无烟煤为原料,并掺配少量烟煤,筛选出一种以镁基固化剂、镁基活化剂、生物质纤维和减水剂组成的复合粘结剂,采用L27(3~(13))的正交试验和多指标综合加权评分法,通过极差分析、方差分析确定代焦型煤复合粘结剂配方及与之匹配的关键成型工艺参数,并对粘结剂的粘结机理及防水性能进行了分析。试验结果表明,石灰立窑代焦型煤复合粘结剂的最优组合为4%的镁基固化剂、0.6%的镁基活化剂、1%的生物质纤维和0.12%的减水剂;相应的关键成型工艺参数为:成型压力20kN,成型水分17%,煤料粒度组成为0.5mm以下粒级含量58%、0.5~1mm粒级含量为14%、1~2mm粒级含量17%、2~3mm粒级含量11%;烟煤的掺配量为无烟煤的10%;生物质纤维对型煤的抗跌强度具有明显的增强作用;代焦型煤在低干燥强度下具有较好的防水性能。
     实验测试了代焦型煤的孔隙率,研究了代焦型煤的热对流干燥特性以及型煤含水率与其冷态强度的关系,并分析了型煤热对流干燥的传热传质机理。研究结果表明,代焦型煤的孔隙率ε为16.23%;其热对流干燥过程经历了升速干燥期、恒速干燥期和降速干燥期三个阶段,其中以降速干燥期为主;型煤干燥过程中存在蒸发界面内移的现象;代焦型煤的冷态机械强度随其含水率的降低先升高后下降,存在一个极大值,代焦型煤干燥的最佳含水率为2.32%;代焦型煤干燥过程传热与传质相互耦合,在升速干燥与恒速干燥阶段,为外部条件控制过程,而在降速干燥阶段则为内部条件控制过程。
     基于Whitaker的体积平均理论,运用Darcy定律,从质量守恒和能量守恒的角度,建立了代焦型煤热对流干燥过程的数学模型,并以残余饱和度S_(ir)为判据将型煤干燥过程分为干区和湿区两个区域,干、湿区模型通过动态蒸发界面耦合。湿区模型以含湿饱和度S和温度T、干区模型以蒸汽压力P_g和温度T为基本状态参数。采用全隐式有限数值差分法对控制方程、边界条件和蒸发界面动态边界进行离散,将非线性方程组逐步线性化处理后采用迭代法进行数值求解。采用VB6.0编制计算程序,得到了代焦型煤热对流干燥过程中型煤含水率MC和温度T的变化曲线,计算结果与试验结果基本一致。然后利用该模型数值模拟具体分析了型煤尺寸、干燥介质温度、对流传热系数及传质系数等因素对代焦型煤干燥过程的影响。
     采用热重分析法对代焦型煤的热解和燃烧特性进行了实验研究,并将代焦型煤与无烟块煤和焦炭进行对比分析。研究结果表明,代焦型煤的着火性能、稳燃性能及综合燃烧特性优于焦炭和无烟块煤,而释热强度和燃尽性能介于焦炭和无烟块煤之间;代焦型煤燃烧属于一级反应模型,代焦型煤的平均活化能比焦炭小很多,而略高于无烟块煤;煅烧温度对单颗粒型煤燃烧速率的影响较小,在一定范围内减小型煤尺寸和改善通风条件有利于提高其燃烧速率,相同条件下,代焦型煤的燃烧速率低于焦炭而高于无烟煤块煤;代焦型煤比无烟煤块煤更适合作为石灰立窑的替代燃料。
     综合研究结果表明,代焦型煤在冷、热态机械强度以及燃烧特性方面均能满足机械混料式石灰立窑生产的要求,但也需相应地对石灰立窑进行一些必要的技术改造或变动。论文研究结果对石灰立窑型煤代焦具有重要的理论意义和指导价值。
Developing a type of briquette as a coke substitute used in the lime shaft furnace is a new project with high application value and wide market prospect,which can alleviate effectively the lack of the coking coal resource and the contradiction between supply and requirement of coke.It will improve the economical benefit for lime production,obtain significant energy saving and protect environment efficiently.
     This article involved in the development of the briquette as a coke substitute for mechanical mixer lime shaft furnaces of alumina production industry.In the first part,the characteristics,briquetting methods,adhesive mechanism,application and development trend of briquette were presented in detail,the reason of substituting coke with briquette and its feasibility was analyzed.
     Subsequently,the evaluation indexes for the lime-shaft-furnace briquette used as a substitute for coke was confirmed by contrasting the coke and lump anthracite.The low rank anthracite was selected as the material of the briquette,and a little soft coal was added into it.A compound binder including the magnesium-base curing agent,magnesium-base activator,biomass fiber and water reducing agent was chosen.An orthogonal experiment with L27(3~(13)) orthogonal table was carried out.Due to 6 evaluation indexes adopted,a multi-index integrated evaluation method based on weighting factor was used to turn the multiple indexes into one.The optimal component of the compound binder and corresponded key briquetting parameters were obtained with the range analysis and variance analysis in the orthogonal experiment.Then the adhesive mechanism and waterproof performance of the compound binder were qualitatively analyzed.The experimental results showed that the optimal component was 4%of magnesium-base curing agent,1%of biomass fiber,1%of magnesium-base activator,0.12%of water reducing agent,and the key briquetting parameters were 20kN briquetting pressure,17%of briquetting water,and 58%of the anthracite size less than 0.5mm,14%between 0.5mm and 1.0mm,17%between 1.0mm and 2.0mm size and 11%between 2.0mm and 3.0mm size. The mixture ratio of bituminous coal was 10%.The biomass fiber could obviously enhance the cold impact resistance index of briquette.Under a little drying condition,the briquette as a coke substitute has a better waterproof performance.
     The porosity of the briquette as a coke substitute was measured,and the drying characteristics and the correlation between water content and cold mechanical strength of briquette were tested experimentally.Then,the heat and mass transfer mechanism for the wet briquette convective drying was qualitatively analyzed.The results showed that the porosity of the briquette as a coke substitute was 16.23%,and the convective drying process experienced three stages which include the acceleration,constant and deceleration. The deceleration drying stage was dominated among the three stages.During the whole drying process,the evaporation interface in the briquette moved inward.The cold mechanical strength of the briquette as a coke substitute increased,and then decreased with the decrease of water content,so there was a maximum value.The best water content of the briquette was 2.32%.During the heat convective drying process of briquette,the heat transfer was intercoupled with mass transfer.It was dominated by the external drying conditions during the acceleration and constant drying stages and dominated by the inner conditions during the deceleration drying stage.
     Based on the Whitaker volume average theory and the Darcy law,the mathematics model for the heat convective drying of briquette as a coke substitute was established from the conservation of mass and energy.The wet and dry regions appearing in the drying process are distinguished with the criterion of irreducible saturation S_(ir).The wet and dry region models are coupled at a moving boundary of evaporation front.The two state-variables: saturation S and temperature T were basic parameters in the wet region model,while pressure of vapor P_g and temperature T in the dry region model.With fully implicit finite difference discretization of governing equations,coupling with boundary conditions and dynamic evaporation boundary condition,a non-linear equation group was obtained,which was numerically solved by using an iteration method.VB6.0 was used for program compile and run.The curves of the water content MC and temperature T changing with time during the drying process were obtained.The results were basically identical with experimental results.Then,with this mathematical model,the effect of factors such as the drying medium temperature,briquette size,convective coefficients of mass transfer and heat transfer etc. was simulated and their influences rule was analyzed.
     The pyrogenation and combustion characteristics of the briquette as a coke substitute were studied by using the thermo gravimetric analysis method.The briquette as a coke substitute was compared with the coke and lump anthracite coal.The results showed that the briquette was characterized by the best igniting capability,stabilized combustion capability and integrated combustion performance,while the intermediate heat released and burnout performance.The combustion reaction of the briquette as a coke substitute belonged to the one order reaction,and the average activation energy was very smaller than that of coke and was slightly higher than that of lump anthracite coal.The combustion rate of single briquette was slightly influenced by the furnace temperature,while was obviously influenced by the size of briquette and air-supply condition.Under the same conditions,the combustion rate of briquette was lower than that of coke,while was higher than that of lump anthracite coal.Experimental results showed that the briquette as a coke substitute could be more suitable for the alternative fuel of the lime shaft furnace than the lump anthracite coal.
     With all results integrated,it showed that the briquette as a coke substitute could meet the production demand of the mechanical mixer lime shaft furnace on the cold and hot mechanical strength and combustion characteristics,but some necessary technical innovations or modifications must be made for the lime shaft furnace.The research in this dissertation has the theoretical significance and guiding value for substituting coke with briquette in the lime shaft furnace.
引文
[1]徐振刚,刘随芹.型煤技术[M].北京:煤炭工业出版社,2001.
    [2]吴占松.煤炭清洁有效利用技术[M].北京:化学工业出版社,2007.
    [3]韩锦德,高俊,徐桂芹.工业型煤的现状与开发应用[J].洁净煤技术,2000,5(1):22-24.
    [4]惠世恩,徐通模,刘仲军,等.工业锅炉自身成型型煤燃烧特性的试验研究[J].动力工程,1990,10(1):54-59.
    [5]温翔宇,阎亚明,武戈等.锅炉型煤的技术经济分析及其应用途径[J].煤炭转化,1999,22(4):21-25.
    [6]刘随芹.无烟煤气化型煤热强度测定方法的研究[J].煤炭学报,2000,25(2):203-207.
    [7]李永恒.型煤的研制与应用综述[J].小氮肥,2003,(2):7-13.
    [8]王燕芳,高晋生,吴春来.气化型煤粘结剂的研究[J].华东理工大学学报,1998,24(2):150-156.
    [9]张建平.无烟煤炼制型焦新工艺[J].煤化工,1994,(2):41-44.
    [10]王燕芳,高晋生,吴春来,等.工艺条件对型焦质量的影响[J].煤炭转化,1998,21(4):29-32.
    [11]张建生,崔智勇.关于型煤产业发展现状的几点看法[J].中国煤炭,2004,(10):59-60.
    [12]徐云生,沈际群,陈仁辉.型煤的化学反应活性和热变形特性研究[J].昆明工学院学报,1995,20(4):3-7.
    [13]吕一波,何京东,陈俊涛.动力煤燃前加工[M].哈尔滨:哈尔滨工程大学出版社,2007
    [14]张全国.劣质型煤着火燃烬性能的研究[J].农业工程学报,1995,11(2):86-91.
    [15]钱剑青,任有中,李洪强,等.固硫洁净型煤的工业性应用研究[J].浙江大学学报,2001,35(4):356-359.
    [16]徐康富,马光亮,常新莲,等.生物质型煤工业成型新方法及影响因索分析[J].环境科学,2001,(4):22-25.
    [17]Yaman S,Sahan M,Haykiri-acma H,et al.Production of fuel briquettes from olive refuse andpaper mill waste[J].Fuel Processing Technology,2000,68:23-31.
    [18]Yaman S,Sahan M,Haykiri-Acma H,et al.Fuel briquettes from biomass-lignite blends[J].Fuel Processing Technology,2001,72:1-8.
    [19]Demirbas A,Sahin A,Evaluation of biomass residue-briquetting waste paper and wheat-straw mixtures[J].Fuel Processing Technology,1998,55:175-183.
    [20]王志和.煤木混合型煤的特性试验与研究[D]南京林业大学,2006
    [21]陈华艳.生物质型煤优化配比及燃烧特性研究[D].长春:吉林大学,2006.
    [22]徐德良.杨树废料型煤燃烧和固硫特性的研究[D].南京:南京林业大学,2007.
    [23]甘正旺,许振良.洁净煤技术及其发展前景[J].辽宁工程技术大学学报,2005,24(5):253-255.
    [24]戈.帕萨尔格.型煤与型煤技术[J].山西能源与节能,2002,(1):39-43.
    [25]郑楚光.洁净煤技术[M].武汉华中理工大学出版社,1996
    [26]陈雪枫.中国无烟煤利用技术[M].北京:化学工业出版社,2005.
    [27]Sharma A K,Das B P,Tripathi P S.Influence of properties of bituminous binderson the strength of formed coke[J].Fuel Processing Technology,2002,76:211-230.
    [28]高建辉.国内外型焦生产工艺及发展前景[J].煤化工,2004,(4):8-12.
    [29]Benk A,Talu M,Coban A.Phenolic resin binder for the production of metallurgical quality briquettes from coke breeze:Part Ⅰ[J].Fuel Processing Technology,2008,89:28-37
    [30]赵玉兰,常鸿雁,吉登高等.粉煤成型机理研究进展[J].煤炭转化,2001,24(3):12-14.
    [31]任祥军,吴保军,李玉山.煤岩学原理在粉煤成型机理中的应用[J].黑龙江科技学院学报,2001,11(3):13-16.
    [32]赵玉兰,刘翼州,韩晋民,等.粉煤可压缩性与成型特性的研究[J].煤炭学报,1999,24(2):203-206.
    [33]周民.工业型煤粘结剂研究开发的探讨[J].煤炭转化,1998,21(3):29-32.
    [34]康铁良.型煤与型焦粘合剂的研究及开发[J].农业工程学报,2006,22(1):259-262
    [35]谌伦建,柴一言,祝朝晖.型煤微观结构的研究[J].煤炭学报,1996,22(3):304-306.
    [36]王卫东,刘虎.型煤技术基础理论与总结探讨[J].煤炭加工与综合利用,2004,(5):38-41.
    [37]董凡,蒋雪辉,赵广播.成型压力和炉膛温度对单颗粒型煤燃烧失重特性的影响[J].热能动力工程,20054,19(1):59-62.
    [38]吉登高,王祖讷,张丽娟,等.粉煤成型原料粒度组成的试验研究[J].煤炭学报,2005,30(1):100-103.
    [39]谌伦建,阳虹,赵跃民,等.原料煤级配对型煤强度的影响[J].矿业安全与环保,2001,28(1):6-7.
    [40]邓加耀,张会强,吴坚,等.粒度、压力和水分对型煤冷态强度的影响[J].工程热物料学报,2004,25(增刊):182-184.
    [41]Osipov V A,Ungurtsev V N.Composition and fabrication of magnesia briquettes from refractory scrap for repairing the lining of oxygen converters[J].Refractories and Industrial Ceramics,2005,46(2):87-88.
    [42]王文生.工业蜂窝型煤的配比及燃烧特性研究[D].长春:吉林大学,2005.
    [43]Demirba A.Physical properties of briquettes from waste paper and wheat straw mixtures[J].Energy Conversion & Management,1999,40:437-445.
    [44]Thoms L J,Snape C E,Taylor D.Physical characteristics of cold cured anthracite/coke breeze briquettes prepared from a coal tar acid resin[J].Fuel,1999,78:1691-1695.
    [45]Rubio B,Izquierdo M T,Segura E.Effect of binder addition on the mechanical and physicochemical properties of low rank coal char briquettes[J].Carbon,1999,37:1833-1841.
    [46]Demirbas A,Sahin A.Evaluation of biomass residue 1.Briquetting waste paper and wheat straw mixtures[J].Fuel Processing Technology,1998,55:175-183.
    [47]Steven A P,Ashley S H,Henry P,et al.Use of asphalts for formcoke briquettes[J].Fuel Processing Technology,2002,76:211-230.
    [48]Blesa M J,Miranda J L,Moliner R.Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes[J].Journal of analytical and applied pyrolysis,2003,70:665-677.
    [49]NaethJ,Asmus S C,Littke R.Petrographic and geophysical assessment of coal quality as related to briquetting:the Miocene lignite of the Lower Rhine Basin,Germany[J].International Journal of Coal Geology,2004,60:17-41.
    [50]Debdoubi A,Elamarti A,Colacio E.Production of fuel briquettes from esparto partially pyrolyzed[J].Energy Conversion and Management International,2005,46:1877-1884.
    [51]Amaya A,Medero N,Tancredi N,et al.Activated carbon briquettes from biomass materials[J].Bioresource Technology,2007,98:1635-1641.
    [52]沈嘉龙.工业型煤发展状况调研[J].北京节能.1996(3):21-23
    [53]李师仑.中国型煤的发展现状及展望[J].中国能源,1997,(8):24-28.
    [54]刘随芹,徐振刚,田波,等.中国工业型煤的现状与展望[J].山西能源与节能,1997,(3):24-29.
    [55]安文兰.型煤技术发展概况[J].选煤技术,2000,(3):4-6.
    [56]张香亭.我国工业型煤发展现状及技术方向[J].辽宁工程技术大学学报,2002,21(4):533-534.
    [57]钱剑青.工业洁净型煤的技术研究与应用[J].山西能源与节能,2003(1):12-15
    [58]阎杏幢,田晓艳.中国型煤技术特点及发展动向[J].煤炭科学技术,1995,23(5):41-44.
    [59]丁乐富.工业型煤的发展与存在的问题浅析[J].煤矿设计,2001,(1):28-29.
    [60]邓胜祥.石灰炉在线仿真技术与炉况诊断及复杂系统智能控制研究[D].长沙:中南大学能源科学与工程学院,2004.
    [61]关宸祥.石灰窑[M].北京:中国建筑工业出版社,1986.
    [62]段润林.石灰石在竖式石灰窑内的煅烧过程分析[J].山西化工,2000,30(3):39-41.
    [63]刘永轶,徐丽琼,张磊.生烧石灰对氧化铝生产过程的影响及石灰炉热工现状分析[J].有色冶金节能,2006,(5):16-19.
    [64]张玉君.用晋城无烟粉煤生产型焦的试验研究[J].选煤技术,1999,(6):17-19.
    [65]王燕芳,吴春来,高晋生,等.龙岩无烟煤冷压法炼制型焦的研究[J].煤炭学报,1998,23(2):212-215.
    [66]段新山.白煤代焦在节能降耗中的作用[J].有色冶金节能,2002,19(2):18-19.
    [67]刘永轶,田跃飞.以煤代焦烧制石灰的节能实践[J].有色冶金节能,2006,4(2):19-22.
    [68]郭汉杰,尹志明,王宏伟.冶金活性石灰烧制过程最佳工艺制度[J].北京科技大学学报,2008,30(2):148-152.
    [69]赵国武,卿玉国,朱学安.粒煤混烧工艺生产优质石灰的实践[J].山东冶金,2007,29(3):24-25.
    [70]朱之培,高晋生.煤化学[M].上海:上海科学技术出版社,1984.
    [71]顾惕人,马季铭,戴乐蓉.表面化学[M].北京:科学出版社,1999.
    [72]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997.
    [73]王萍,李国昌.结晶学教程[M].北京:国防工业出版社,2006.
    [74]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [75]何少华,文竹青,娄涛.试验设计与数据处理[M].长沙:国防科技大学出版社,2002
    [76]陶菊春,吴建民.综合加权评分法的综合权重确定新探[J].系统工程理论与实践,2001,(8):43-48.
    [77]魏效玲,赵立新,任建华.多指标试验设计综合加权评分值的确定[J].河北建筑科技学院学报,2003,20(4):68-72.
    [78]孙学信.燃煤锅炉燃烧实验技术与方法[M].北京:中国电力出版社,2002.
    [79]张传祥,宋士玉,谌伦建,等.型煤热稳定性测定方法的研究[J].洁净煤技术,2001,7(4):32-35.
    [80]煤炭科学总院北京煤化学研究所.煤质分析应用指南[M].北京:中国标准出版社,1991
    [81]熊明森,梅洪福.焦粉成型焦的生产工艺及其在炼铁生产中的应用[J].重庆钢铁高等专科学校学报,1994,9(1-2):21-24.
    [82]肖成平.增强木质素磺酸钙对水泥适应性的几种途径[J].新世纪水泥导报术,2000,(1):21-22.
    [83]北京大学数学力学系数学专业概率统计组编.正交设计[M].北京:人民教育出版社,1976.
    [84]中国科学院数学研究所数理统计组编.正交实验法[M].北京:人民教育出版社,1975.
    [85]王燕谋.中国玻璃纤维增强水泥[M].北京:中国建材工业出版社,2000.
    [86]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.北京:科学出版社,2006
    [87]华泽钊,刘宝林,左建国.药品和食品的冷冻干燥[M].北京:科学出版社,2006.
    [88]朱政贤.木材干燥[M].北京:中国林业出版社,1991
    [89]Mujurndar A S.Handbook of industrial drying[M].New York and Basel,1987.
    [90]雷廷宙.秸秆干燥过程的实验研究与理论分析[D].大连:大连理工大学,2006.
    [91]沈维道,郑佩芝,蒋淡安.工程热力学[M].北京:高等教育出版社,2000.
    [92]黄括,李文侠.设计性物理实验与测量中误差分析[J].辽宁科技学院学报,2008,10(1):30-33.
    [93]张玉军.型煤干燥过程的研究[J].洁净煤技术,1999,5(2):29-30.
    [94]Whitaker S.Simultaneous heat,mass and momentum transfer in porous media:a theory of drying[M].Advances in Heat Transfer.1977,13:119-203.
    [95]Ilic M,Tunrer I W.Convective drying of a consolidated slab of wet porous material[J].Int.J.Heat Mass Transfer,1989,32(12):2351-2362.
    [96]王补宣.工程传热传质学[M].北京:科学出版社,1998.
    [97]李友荣,曾丹苓,吴双应.对流干燥时水分蒸发扩散过程的热力学条件[J].重庆大学学报,2000,23(4):103-105.
    [98]韩德刚,高执棣,高盘良.物理化学[M].北京:高等教育出版社,2001.
    [99]Maria C A.Transport phenomena during drying of deformable,hygroscopic porous media:fundamentals and applications[D].Texas:Texas A&M University,America,2000.
    [100]卢涛.毛细多孔介质干燥过程中传热传质模型研究及应用[D].大连:大连理工大学,2003
    [101]周萍,周乃君,蒋爱华,等.传递过程原理及其数值仿真[M].长沙:中南大学出版社,2006.
    [102]ZhaoHui Wang,GuoHua Chen.Heat and mass transfer in fixed-bed drying[J].Chemical Engineering Science,1999,54(19):4233-4243.
    [103]Prat M.Recent advances in pore-scale models for drying of porous media[J].Chemical Engineering,2002,86(2):153-164.
    [104]Nasrallah S B,Perre P.Detailed study of a model of heat and mass transfer during convective drying of porous media[J].International Journal of Heat and Mass Transfer,1988,31(5):957-967.
    [105]Pal(?)ncz B.Modeling and simulation of heat and mass transfer in a packed bed of solid particles having high diffusion resistance[J].Computers and Chemical Engineering,1985,9(6):567-581.
    [106]Comings E W,Sherwood T K.The drying of solids.Ⅵ:Difusion equations for the period of constant drying rate[J].Int.Engr.Chem.,1934,25:1134-1136.
    [107]Krischer,O.Fundamental law of moisture movement in drying by capillary flow and vapor diffusion[J].Z.VDI,1938,82:373-378.
    [108]Phillip J R,DeVries D A.Moistuer movement in porous materials under temperature gradients[J].Trans.Am.Geophys Union,1957,38(2):222-232.
    [109]DeVries D A.Simultaneous transfer of heat and moisture in porous media[J],Transactions of the American GeophysicsUnion,1958,39:909-916.
    [110]Sherwood T K.Application of the theoretical diffusion equation to the drying of solids[J].Trans.AICHE,1931,27:190-202.
    [111]Ceaglske N H,Hougen O A.Drying granular solids[J].Int.Eng.Chem.,1937,29:805-813
    [112]Henry P S.Diffusion in absorbing media[A].Proc.R.Soc.,London,1939,A 171:215-241.
    [113]Devries D.A.The theory of heat and moisture transfer in porous media revisited[J],International Journal of Heat and Mass Transfer,1957,30(7):1343-1350.
    [114]Luikov A V.Heat and mass transfer in capillary-porous bodies[J],Advanced heat transfer,1964,1:123-184.
    [115]杨世铭,肖宝成,杨强生.多孔介质内部热质传递的等效耦合扩散模型[J].上海交通大学学报,1992,26(6):52-61
    [116]孙喜山,廉乐明,李力能.粘土砖湿坯对流干燥过程的传热传质研究[J].哈尔滨建筑大学学报,1998,31(2):67-72.
    [117]朱庆霞,胡国林.多孔介质内部热质传递的等效耦合扩散模型的推导及其应用[J].陶瓷学报,2002,23(3):163-168
    [118]胡国林,朱庆霞.瓷质砖湿坯对流干燥过程的传热传质研究.硅酸盐学报,2002,30(5):597-601
    [119]陶斌斌,杨历,刘春元.多孔介质干燥的非平衡热力学模型[J].河北工业大学学报,2005,34(1):109-112.
    [120]胡松涛,刘国丹,廉乐明,等.干燥过程中热质传递交叉效应的研究[J].哈尔滨工业大学学报,2002,33(1):35-39.
    [121]卢涛,沈胜强,刘晓华.多孔介质对流干燥过程数值模拟[J].大连理工大学学报,2005,45(4):542-546.
    [122]李文军,于志明,张璧光.刨花对流干燥过程的传热传质研究动态[J].林业科学,2006,42(8):116-120.
    [123]Luo Zhongxuana,Li Fengzhi,Liu Yingxi,et al.Effect of the environmental atmosphere on heat,water and gas transfer within hygroscopic fabrics[J].Journal of computational and applied mathematics,2004,163:199-210.
    [124]Costa V A F,Mendonca M L,Figueiredo A R.Modeling and simulation of wetted porous thermal barriers operating under high temperature or high heat flux[J].International Journal of Heat and Mass Transfer,2008,51:3342-3354.
    [125]Datta A K.Porous media approaches to studying simultaneous heat and mass transfer in food processes.Ⅰ:Problem formulations[J].Journal of Food Engineering,2007,80:80-95.
    [126]Prabhu S M,Krishnan S.Nonlinear two-dimensional potential based study of coupled heat and mass transfer in a porous medium[J].Microporous and Mesoporous Materials,2006,95:241-247.
    [127]潘永康,王喜中,童景山,等.现代干燥技术[M].机械工业出版社,1998.
    [128]Reardon S A.A mathematical model for the simulation of paper drying energy consumption[D].Tasmania:University of Tasmania,Australia,1994.
    [129]Leverett M C.Capillary behavior in porous solids[J].Transactions of AIME,1941,142:151-169
    [130]武晓峰,唐杰,藤间幸久.多孔介质两相流的统一毛细压力-饱和度关系曲线[J].灌溉排水,2000,9(2):15-18.
    [131]Spolek G A,Plumb O A.Capillary pressure in softwoods[J].Wood Science and Technology,1981,15:189-199.
    [132]Zhaohui Wang,Guohua Chen.Heat and mass transfer during low intensity convection drying[J],Chemical Engineering Science.1999,54(17):3899-3908.
    [133]Rogers J A,Kaviany M.Funicular and evaporative-front regimes in convective drying of granular beds[J],International Journal of Heat and Mass Transfer,1992,35(2):469-480.
    [134]Perre P,Moyne C.Processes related to drying:Part Ⅱ:Use of the same model to solve transfers both in saturated and unsaturated porous media[J].Drying Technology,1991,9(5):1153-1179.
    [135]Turner I W,Ilic M.Convective drying of consolidated slab of wet porous material including the sorption region[J].International Communication in Heat and Mass Transfer,1990,17(1):39-48
    [136]陆金甫,关冶.偏微分方程的数值解法[M].北京:清华大学出版社,1987.
    [137]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [138]施天谟.计算传热学[M].北京:科学出版社,1987.
    [139]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [140]梅炽.冶金传递过程原理[M].长沙:中南工业大学出版社,1987.
    [141]彭担任,赵全富,胡兰文,等.煤与岩石的导热系数研究[J].矿业安全与环保,2000,27(6):16-19.
    [142]于才渊,王宝和,王喜忠.干燥装置设计手册[M].北京:化学工业出版社,2005.
    [143]张玉军,从金华.浅谈型煤的几种干燥形式及影响因素[J].选煤技术,1998,(12):28-30.
    [144]王志和.煤木混合型煤的特性试验与研究[D].南京:南京林业大学,2006.
    [145]樊越胜,邹峥,高巨宝,等.煤粉在富氧条件下燃烧特性的实验研究[J].中国电机工程学报,2005,25(24):118-121.
    [146]刘豪,邱建荣,董学文,等.生物质与煤混烧的燃烧特性研究[J].热能动力工程,2002,17(5):451-454.
    [147]刘亮,李录平,柏湘杨,等.混煤热解特性及燃烧过程的实验研究[J].动力工程,2006,26(1):130-134.
    [148]张同翔,钱剑青,于连海,等.型煤着火特性的试验研究[J].洁净煤技术,2003,9(3):18-20.
    [149]张佳丽,张如意,湛伦建.用热重法研究型煤燃烧特性[J].洁净煤技术,2005,11(3):65-68
    [150]王文生.工业蜂窝型煤的配比及燃烧特性研究[D].长春:吉林大学,2005.
    [151]刘伟军,王佐民,于晓东,等.生物质型煤燃烧机理分析和燃烧速度试验研究[J].煤炭转化,1998,21(4):52-56.
    [152]浮爱青,黄光许,谌伦建,等.生物质型煤的燃烧特性和影响因素[J].煤炭转化,2007,30(3):45-48.
    [153]黄海珍.煤与生物质混合动力学特性及成型燃料固硫特性研究[D].长春:吉林大学,2007.
    [154]陈镜汉,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [155]冉景煜,牛奔,张力,等.煤矸石热解特性及热解机理热重法研究[J].煤炭学报,2006,31(5):48-52.
    [156]韩向新,姜秀民,崔志刚,等.油页岩半焦燃烧特性的研究[J].中国电机工程学报,2005,25(15):106-110.
    [157]蒲舸,张力,辛明道.王草的热解与燃烧特性实验研究[J].中国电机工程学报,2006,26(11):65-69
    [158]王裕明,胡建红,冉景煜,等.混合工业污泥燃烧及动力学特性实验研究[J].中国电机工程学报,2007,27(17):44-50.
    [159]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [160]周志杰,范晓雷,张薇,等.非等温热重分析研究煤焦气化动力学[J].煤炭学 报,2006,31(2):219-222.
    [161]Edwige S E,Gang Y,Tim M.A simple kinetic analysis to determine the intrinsic reactivity of coal chars[J].Fuel,2005,84:1920-1925.
    [162]平传娟,周俊虎,程军,等.混煤热解反应动力学特性研究[J].中国电机工程学报,2007,27(17):6-10.
    [163]刘亮,李录平,周孑民,等.污泥和煤混烧特性的热重分析法研究[J].环境科学学报,2006,26(5):835-839.
    [164]路春美,王永征.煤燃烧理论与技术[M].北京:地震出版社,2001.
    [165]张占涛,王黎,张睿等.煤的孔隙结构与反应性关系的研究进展[J].煤炭转化,2005,28(4):62-68.
    [166]张向阳.浅析石灰窑热工过程的控制[J].无机盐工业,2003,35(3):34-36.
    [167]李永源,李正福,兰松林,等.立式炉窑布料器:中国,CN2453368[P].2001-10-10.
    [168]姜建文.竖式混烧窑生产石灰中产品活性的控制[J].化工生产与技术,2006,13(6):55-57.
    [169]鲁绪厚,李永源,韩德全.活性石灰竖窑密闭式三段出灰机构:中国,CN2234602[P].1996-09-04.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700