用户名: 密码: 验证码:
设施黄瓜不同种植模式及其土壤修复机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着设施蔬菜生产的不断发展,设施土壤连作障碍的问题日益严重,已成为设施蔬菜生产可持续发展的主要制约因素之一,因此解决设施蔬菜连作障碍的问题迫在眉睫。间套混作、轮作以及植物源土壤修复剂的开发应用正是解决这一问题的有效途径和措施。
     本研究选择设施蔬菜中栽培面积较大、且不耐连作的黄瓜作物为研究对象,以化学生态学理论--化感作用为导向,以分子生物学研究方法--DGGE等技术为手段,以间作作物(半生作物)-土壤-主作物三者之间的相互关系为主线,就不同间作模式对黄瓜生长发育及土壤环境的影响,不同作物根系分泌物对黄瓜幼苗生长及土壤环境的影响,不同作物根茬对黄瓜生长发育及土壤环境的影响,不同作物根系分泌物GC-MS分析及对黄瓜种子萌发和枯萎病菌的化感效应,不同作物根茬腐解物GC-MS分析及对黄瓜种子、幼苗和枯萎病菌的化感效应,小麦根系分泌物和根茬腐解物的复配剂对黄瓜连作土壤的修复作用等六个方面进行了一系列研究工作,试图弄清间作物(伴生作物)-土壤-主作物之间的密切关系,探讨连作土壤的修复机理,取得了一定进展,主要结果如下:
     1、不同间作模式对黄瓜生长发育及土壤环境的影响
     本试验采用了小麦、大豆、燕麦为伴生作物与黄瓜间作,研究其对黄瓜生长发育及土壤环境的影响。结果表明:三种间作处理使土壤容重显著降低,土壤总孔隙度显著提高;整个生育期内各处理均显著降低了土壤盐分积累,生育后期黄瓜-小麦处理的EC值下降幅度最大,比对照下降38.96%;处理黄瓜-小麦和黄瓜-大豆的有机质含量显著高于对照;各处理明显改善了土壤微生物的区系组成,使细菌和放线菌数量增加,土传病菌数量降低,黄瓜-小麦间作使尖孢镰刀菌数量平均下降69.44%;各处理明显促进了黄瓜的生长和产量的提高,黄瓜-小麦间作的综合效果最好,达到了缓解设施土壤连作障碍的目的。
     2、不同作物根系分泌物对黄瓜幼苗生长及土壤环境的影响
     选用10×15cm的较大营养钵,装黄瓜连作土500g,采用直播法,播种时分别用3个浓度的小麦、大豆、燕麦三种作物根系分泌物溶液浇灌,研究了三种作物根系分泌物及不同浓度对土壤环境及黄瓜幼苗生长的作用机理。试验结果表明,浇灌不同浓度的三种作物根系分泌物均明显降低了土壤容重,提高了土壤孔隙度;浇灌根系分泌物降低了pH值,增加了土壤EC值,但对pH值降低幅度不大;浇灌不同浓度的三种作物根系分泌物均明显增加了土壤有机质和矿质养分含量,明显改善了土壤微生物的区系,较高浓度的小麦根系分泌物有利于增加土壤中细菌种群和数量,减少了土壤中真菌种群和数量;100%浓度的小麦根系分泌物显著促进黄瓜幼苗植株生长。
     3、不同作物根茬对黄瓜生长发育及土壤环境的影响
     通过盆栽试验,将小麦、大豆、燕麦三种作物根茬按0.5%、1%和2%用量(注:燕麦根茬只设0.5%的用量)施入已连续栽培6茬黄瓜的土壤中,研究了不同作物根茬及不同的用量对减轻黄瓜连作障碍的作用机理。试验结果表明,添加三种作物根茬均显著降低了土壤容重,提高了土壤孔隙度,添加小麦和大豆根茬的处理土壤容重均随根茬用量的增加而降低;添加作物根茬对pH影响不同,2%的小麦根茬添加量对pH值提高最大,添加三种作物根茬均使土壤EC值明显降低;添加三种作物根茬大部分处理都增加了土壤有机质和矿质养分含量,明显改善了土壤微生物的区系,较高用量小麦根茬有利于增加土壤中细菌种群和数量,减少了土壤中真菌种群和数量;2%的小麦根茬显著促进黄瓜植株生长,产量比对照提高了34.23%。
     4、不同作物根系分泌物GC-MS分析及对黄瓜种子萌发和枯萎病菌的化感效应
     本试验研究了小麦、大豆、燕麦三种作物根系分泌物对黄瓜种子萌发及枯萎病菌的化感效应。三种作物根系分泌物对黄瓜种子萌发产生不同的化感作用。从发芽率看:小麦根系分泌物在高浓度下表现促进效应,在低浓度下表现抑制效应;大豆也表现同样规律;燕麦却表现相反的规律。较高浓度的小麦根系分泌物对黄瓜种子萌发和幼苗生长的化感效应较为显著,对黄瓜枯萎病菌也有明显抑制效应。GC-MS分析结果表明:小麦根系分泌物的CH2Cl2提取物主要包括烃类、胺类、酯类、酰胺、酮等物质,这些物质的含量有很大不同,其中2,3-Dimethoxyamphetamine(2,3-二甲氧基苯丙胺)含量最高,达到了23.70%,其次是3-Ethoxyamphetamine(3-乙氧基苯丙胺),含量达到了13.16%,其它的物质含量都很低,这些物质中胺类和酰胺还鲜见文献报道。
     5、不同作物根茬腐解物GC-MS分析及对黄瓜种子、幼苗及枯萎病菌的化感效应
     本试验采用GC-MS分析法鉴定了小麦、大豆、燕麦三种作物根茬腐解物主要成分。结果表明:小麦根茬腐解物的CH2Cl2提取物主要包括酚类、胺类、醇类、酰胺、醛、酯等物质,其中3-Ethoxyamphetamine(3-乙氧基苯丙胺)含量最高,达到了34.34%,其次是1,3-Dioxolane-4-methanol(1,3-二氧戊烷-4-甲醇)和3-Methoxyamphetamine(3-甲氧基苯丙胺),含量分别达到了27.53%和26.28%,其它的物质含量都很低,这些物质中胺类和酰胺还鲜见文献报道。
     三种作物根茬腐解物对黄瓜种子萌发产生不同的化感作用。小麦根茬腐解物对黄瓜种子发芽率有明显促进作用,相对高浓度下促进作用大,低浓度下促进作用小,大豆根茬腐解物对黄瓜种子发芽率也有明显促进作用,而且随着浓度降低,促进作用增大,燕麦根茬腐解物高浓度下显著抑制黄瓜种子发芽,浓度越高,抑制作用越强。三种作物根茬腐解物对枯萎病菌菌落生长也有显著影响。
     6、小麦根系分泌物和根茬腐解物的复配剂对黄瓜连作土壤的修复作用
     本试验在该土壤修复剂的研制中,引入化学生态学理论(化感作用)的概念,根据作物间相生相克的关系,首次选用伴生性较好的小麦作物,大量提取其根系分泌物及其根茬腐解物等化感成分作为土壤修复剂的主要成分,运用先进的分子生物学技术和方法进行科学复配。试验结果表明,小麦根系分泌物及其根茬腐解物不同的复配比例,对土壤的修复作用不同,处理STP2表现最好,该复配剂能够有效改善根际土壤微生物群落结构多样性,改善土壤的理化性状,提高土壤养分的利用率,黄瓜枯萎病病情指数降低了78.21%,降低了土壤EC值47.73%,同时提高土壤有机质含量,增加了土壤含水量,促进了黄瓜生长,表现了修复连作土壤较好效果。
With the continuous development of vegetable production, the problem of continuously cropping obstacles is more and more serious, and it has become one of the major factors of restricting sustainable development.Thus, it is imminent to solve the problem of continuous cropping obstacles . It is exactly effective ways and measures for Mixed intercropping, crop rotation and the development and application of soil remediation agents to solve this problem.
     In this study, the cucumber crop was selected to be as the research object, which was larger to be cultivated and even intolerance to continuous cropping obstacles in protected vegetables; Chemical Ecology theory - Allelopathy was as guidance, the methods of molecular biology techniques-DGGE was as a means, the inter-relationship between inter-cropping crops (companion crop) - soil - the main crops was as the main line, six items of studies had been carried out, such as the impacts for different inter-cropping patterns on cucumber growth and soil environments, the impacts for different crop root exudates on cucumber seedling growth and soil environment, the impacts for different crop stubbles on cucumber growth and soil environments, the allelopathic effects for different crop root exudates on cucumber seed germination and the Fusarium and the GC-MS analysis of different crop root exudates, the allelopathic effects for the decomposition material of different crop stubbles on cucumber seed germination and the Fusarium and the GC-MS analysis of the decomposition material of different crop stubbles, the repairing effects for the complex mixture of wheat root exudates and stubble decomposition material on continuously cropping soils and so on, to try to clarify the close relationship between the inter-crop (companion crop ) - soil - the main crop, and to explore the mechanism of repairing soil, some progresses had been made, the main results were as follows:
     1. The impacts for different inter-cropping patterns on cucumber growth and soil environment.
     In this study, wheat, soybeans, oats were selected to intercrop with cucumber, to explore the effects for different inter-cropping patterns on cucumber growth and soil environment. The results showed that: the three inter-cropping patterns decreased significantly soil bulk density, and increased total porosity of soil; each treatment significantly reduced the accumulation of soil salinity within the entire growth period, the treatment of wheat-cucumber had the biggest drop of the EC in later growth period, dropped 38.96% compared to the control; the organic matter contents of cucumber-wheat and cucumber-soybean were significantly higher than control; the treatments significantly improved the composition of microbial flora, increased the number of bacteria and actinomycetes, reduced the number of soil-borne pathogens; the treatment of cucumber-wheat dropped the number of Fusarium oxysporum by an average of 69.44%; each treatment significantly promoted the growth of cucumber and improved production, the treatment of cucumber-wheat had the best combined effects on mitigation to continuously cropping soil., reached for the purpose of easing the continuously cropping soils.
     2. The impacts for different crop root exudates on cucumber seedling growth and soil environments.
     The10×15cm nutrition bowls larger were selected to use for loading the 500g soil of continuously cropping cucumber, the broadcast method was selected to use for sowing the seeds of cucumber. three concentrations of wheat, soybean and oat root exudates were irrigated into the soil of continuously cropping cucumber, , the effects were studied for the root exudates of three crops and different concentrations on the soil environments and the growth of cucumber seedlings. Our results showed that the root exudates of three crops decreased significantly soil bulk density, and increased total porosity of soil; each treatment significantly reduced the accumulation of soil salinity within the entire growth period, the treatment of wheat-cucumber had the biggest drop of the EC in later growth period ; the organic matter contents of cucumber-wheat and cucumber-soybean were significantly higher than control; the treatments significantly improved the composition of microbial flora, increased the number of bacteria and actinomycetes, reduced the number of soil-borne pathogens; wheat root exudates on high concentrations were in favor of increasing the number of bacterial species and decreasing of fungal species in the soil;100% concentration of wheat root exudates significantly promoted the growth of cucumber seedlings.
     3. The impacts for different crop stubbles on cucumber growth and soil nvironments.
     By pot experiments, the crop stubbles of wheat, soybean and oat had been applied the soil of continuously cropping cucumber by the amounts of 0.5%, 1% and 2% (Note: oat stubble only by 0.5% of consumption) , we studied the effect of different crop stubbles and different amounts of stubbles on the soil of continuously cropping cucumber. The results showed that the three crop stubbles decreased significantly soil bulk density, and increased total porosity of soil; each treatment significantly reduced the accumulation of soil salinity within the entire growth period, the treatment of 2% of wheat stubble had the biggest drop of the pH in later growth period ; the organic matter contents of most of the treatments were significantly higher than control; the three crop stubbles of significantly improved the composition of microbial flora, increased the number of bacteria and actinomycetes, reduced the number of soil-borne pathogens; the treatment of 2% of wheat stubble significantly promoted the growth of cucumber and improved production, the output was increased 34.23 percent compared to the control.
     4. The allelopathic effects for different crop root exudates on cucumber seed germination and the Fusarium and the GC-MS analysis of different crop root exudates.
     In this test, we studied the allelopathic effects for different crop root exudates on cucumber seed germination and the Fusarium and made the GC-MS analysis of different crop root exudates.The results showed that the three types of root exudates had different allelopathic effects on cucumber seed germination. High concentrations of root exudates from wheat promoted cucumber seed germination, whereas low concentrations inhibited it. A similar pattern was observed among exudates from soybean, but the opposite trend was observed using exudates from oat roots. The three types of root exudates also had different effects on cucumber seedling growth. The integrated allelopathy index (RI) showed that most root exudates promoted seedling growth. Only the 100% concentration of oat root exudates inhibited seedling growth. Compared with the other treatments and the control, the 50% concentration of wheat root exudates showed the strongest growth promotion effect (RI = 3.333), followed by the 100% concentration of wheat root exudates (RI = 2.488). Our results showed that higher concentrations of wheat root exudates positively affected cucumber seed germination and seedling growth.
     GC-MS analysis showed that the CH2Cl2 extracts of wheat root exudates mainly included hydrocarbons, amines, esters, amides, ketones and other substances, these substances had very different content levels, one of 2,3-Dimethoxyamphetamine (2 , 3 - dimethoxy-amphetamine) was the highest, reaching 23.70 percent, followed by 3-Ethoxyamphetamine (3 - ethoxy-amphetamine), the content reached 13.16%, other substances were very low in root exudates.The amine and amide of these substances also reported in the literature uncommon.
     5. The allelopathic effects for the decomposition material of different crop stubbles on cucumber seed germination and the Fusarium and the GC-MS analysis of the decomposition material of different crop stubbles.
     In this test, we studied the allelopathic effects for different crop root exudates on cucumber seed germination ,seedling growth and the Fusarium and made the GC-MS analysis of different crop root exudates.The results showed that the three decomposition materials of crop stubbles had different allelopathic effects on cucumber seed germination and seedling growth. Decomposition of wheat stubble significantly increased cucumber seed germination rate, Whether in high or low concentrations, decomposition materials of wheat promoted cucumber seed germination, high concentrations of decomposition materials of wheat promoted greatly, low concentration promoted the role of small. soybean stubble decomposition significantly improved cucumber.seed germination rate, and along with lower concentration, promoted role increased; oat stubble decomposition significantly inhibited germination of cucumber seeds in high concentration, the higher the concentration, the stronger the inhibition. Three decompositions of crop stubbles had significant impacts on the growth of Fusarium colonies.GC-MS analysis showed that the CH2Cl2 extracts of wheat stubble decomposition mainly included phenols, amines, alcohols, amides, aldehydes, esters and other substances, these substances had very different content levels, one of 3-Ethoxyamphetamine (3 - ethoxy-amphetamine) was the highest, reaching 34.34 percent, followed by 1,3-Dioxolane-4-methanol (1,3 - dioxo-pentane -4 - methanol) and 3-Methoxyamphetamine (3 - methoxy-amphetamine), the contents reached 27.53% and 26.28%, other substances were very low, the amine and amide of these substances also reported in the literature uncommon.
     6. The repairing effects for the complex mixture of wheat root exudates and stubble decomposition material on continuously cropping soils.
     In this study, we first selected wheat crop in accordance with chemical ecology theory (allelopathy), and substantially extracted the root exudates and stubble decomposition of wheat crop as the main components of soil remediation agent, used advanced molecular biology techniques and methods to make scientific complex. The results showed that the different mixtures had different restorations of role on the soil, the treatment of STP2 was best, the mixture could effectively improve the community structure of rhizosphere microbial diversity, improve soil physical and chemical properties, improve the utilization of soil nutrients, dropped cucumber blight disease index by 78.21 percent, reduced the value of soil EC by 47.73%, at the same time,it could improve soil organic matter content, increase soil moisture, and promote the growth of the cucumber.
引文
[1]吴焕涛,魏珉,杨凤娟等.轮作和休茬对日光温室黄瓜连作土壤的改良效果[J].山东农业科学,2008,5: 59~63
    [2]周志宏,丁扣琪,陈小明等.长江中下游地区保护地土壤改良及轮作换茬技术[J].上海农业科技,2008,(4):29-30
    [3]吴凤芝,孟立君,王学征.设施蔬菜轮作和连作土壤酶活性的研究[J].植物营养与肥料学报, 2006, 12(4): 554-558
    [4]吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J].中国农业科学,2007, 40(10): 2274-2280
    [5]葛红莲,胡春红.日光温室连作黄瓜根际微生物区系的变化[J].安徽农业科学, 2009,(01)
    [6]吴艳飞,高丽红,李红岭等.连作温室夏季不同利用模式对黄瓜产量及土壤环境影响[J].中国农业科学,2006,39(12):2 551-2 556
    [7]张真和,李建伟.我国设施蔬菜产业的发展态势及可持续发展对策探讨[J].沈阳农业大学学报,2000,31(1):4-8
    [8]葛晓光.对我国北方蔬菜温室生产发展中几个问题的思考[J].中国蔬菜,1998, (4):1~5
    [9]范双喜,张春华,辛桂花.我国设施蔬菜的发展现状及展望[J].北京农学院学报,2001,(3):71~74
    [10]由海霞.设施黄瓜不同种植模式的环境效应及其化感作用研究.西北农林科技大学攻读博士学位研究生学位(毕业)论文(D),2007
    [11]吴凤芝,赵凤艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究,2002,18:20~22
    [12]吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施[J].东北农业大学学报,2000,(3)
    [13]郝永娟,刘春艳,王勇等.设施蔬菜连作障碍的研究现状及综合调控[J].中国农学通报, 2007,(08)
    [14]宛汉斌,徐冉,王桂楼.设施蔬菜连作障碍综合防治技术[J].现代农业科技, 2007,(15)
    [15]朱自学,刘天学.秸秆还田的生态效应研究进展[J].安徽农业科学,2007,(23)
    [16]孙星,刘勤,王德建等.长期秸秆还田对土壤肥力质量的影响[J].土壤, 2007,(05)
    [17]董兵.秸秆还田存在的问题及改进措施[J].河南农业, 2007,(13)
    [18]李文革,李倩,贺小香.秸秆还田研究进展[J].湖南农业科学, 2006,(01)
    [19]王娟,刘淑英,王平,吴银明.不同施肥处理对西北半干旱区土壤酶活性的影响及其动态变化[J].土壤通报, 2008,(02)
    [20]Katanelson H., J. W. Rouatt and E. A. Peterson. 1962. The rhizosphere effect of mycorrhizal and nonmycorrhizal roots of yellow birch seedlings. Can. J. Bot., 40:377-382
    [21]Yu J. Q. and Y. Matsui. 1994. phytotoxic substances in root exudates of Cueumis sativus L. J. Chem. Ecol,20:21-23
    [22]Yu J Q,Matsui Y. 1996.Effects of root exudates of cucumber and allelochemicals on ion uptake by cucumber seedling. Chem Ecol. 20(4) :817-834
    [23]Hickman M V.Long-term tillage and crop rotation effects on soil chemical and mineral properties[J].Journal of Plant Nutrition,2002,25:1457~1470
    [24] CzarnotaM A, Rimando AM,Weston L A. Evaluation of root exudates of seven sorghum accessions[J].Journal of Chemical Ecology,2003,29:2073~2083
    [25]Hyder P W, Fredrickson E L,Estell R E, Lucero M E. Transport of phenolic compounds from leaf tarbush to soil surface by precipitation[J]. Journal of Chemical Ecology,2002,28 (12): 2475-2482
    [26]胡元森,李翠香,杜国营等.黄瓜根分泌物中化感物质的鉴定及其化感效应[J].生态环境,2007,(03)
    [27]程雷绒,雷怀玉,郭文龙等.温室大棚蔬菜连作障碍及其防除[J].陕西农业科学, 2006,(06)
    [28]李东坡,武志杰,梁成华等设施土壤生态环境特点与调控[J].生态学杂志, 2004,(05)
    [29]高峰,张颖.蔬菜大棚、温室土壤存在的问题和对策[J].陕西农业科学, 2004,(04)
    [30]袁龙刚,张军林,张朝阳等.连作对辣椒根际土壤微生物区系影响的初步研究[J].陕西农业科学, 2006,(02)
    [31]申卫收,林先贵,张华勇等.不同施肥处理下蔬菜大棚土壤微生物活性及功能多样性[J].生态学报, 2008,(06)
    [32]王鹏,张玉龙,任琳等.基于不同灌水量对保护地土壤有机质及氮素的影响[J].沈阳农业大学学报, 2008,(02)
    [33]闭炬,施卫明,王俊儒.不同施氮水平对大棚蔬菜氮磷钾养分吸收及土壤养分的影响[J].土壤, 2008,(02)
    [34]张华勇,尹睿,黄锦法等.稻麦轮作田改为菜地后生化指标的变化[J].土壤, 2005,(02)
    [35]李登顺,田魁祥,孙景玉.蔬菜日光温室高效种植模式的研究[J].中国蔬菜,1997,(2)
    [36]刘玉兰.我国设施农业的发展及其存在问题[J].蔬菜,2001(11):4~6
    [37]栾非时,崔喜波,孙占海.我国高寒地区设施园艺发展存在问题及解决对策[J].东北农业大学学报.2003,34(2):226~230
    [38]闫世霞.我国设施农业现状分析[J].北方园艺.2001(6):4~5
    [39]张志斌.关于我国设施蔬菜生产可持续发展的探讨[J].沈阳农业大学学报,2000,31 (1):15-17
    [40]杨培林,郭晶,马振明.国内外设施农业的现状及发展态势[J].农机化研究.2003, (1):30~31
    [41]秦巧燕,贾陈忠,曲东等.我国设施农业发展现状及施肥特点[J].湖北农学院学报,2002,22(4):373~376
    [42]吴存浩.中国农业史.北京:警官教育出版社[M],1996:554~
    [43]杨友琼,吴伯志.作物间套作种植方式间作效应研究[J].中国农学通报,2007,23(11):192~195
    [44]王璞,赵秀琴.几种化感物质对棉花种子萌发及幼苗生长的影响[J].中国农业大学学报.2001,6(3):26~31
    [45]吴凤芝等.蔬菜作物连作障碍研究进展与展望(1)[M].中国农业出版社,2007
    [46]孔垂华.植物化感作用研究中应注意的问题.应用生态学报[J],1998,9(3):332~336
    [47]Rice E L. Allelopathy (2nd ed) [M]. New york, Academic Press Inc,1984, 309~315
    [48]吴光坤.间作套种有讲究[J].山西农业.2005(3):34
    [49]Leather,G.R. and Einhellig, F. A. Bioassays in the study ofallelopathy. In:Putnam, A.R. and Tang C. S.(eds.). The Science of Allelopathy. John Wiley & Sons,New York, 1986,133~145.
    [50]韦琦,曾任森,骆世明等.胜红蓟地上部分化感作用物的分离和鉴定[J].植物生态学报,1997,21(4):360~366
    [51]周艳丽.大蒜(Allium sativum L.)根系分泌物的化感作用研究及化感物质鉴定[D].西北农林科技大学, 2007 .
    [52]李娟.长期不同施肥制度土壤微生物学特性及其季节变化[D].中国农业科学院, 2008,(3).
    [53]李夏,周宝利,陈绍莉等.茄子自毒物质对辣椒种子萌发及枯萎菌的化感效应[J].生态学报, 2009,(02)
    [54]李彦斌,刘建国,谷冬艳.植物化感自毒作用及其在农业中的应用[J].农业环境科学学报, 2007,(1) .
    [55]柴强,冯福学.玉米根系分泌物的分离鉴定及典型分泌物的化感效应[J].甘肃农业大学学报, 2007,(05)
    [56]张学文,刘亦学,刘万学等.植物化感物质及其释放途径[J].中国农学通报, 2007,(07)
    [57]林娟,殷全玉,杨丙钊等.植物化感作用研究进展[J].中国农学通报, 2007,(01)
    [58]侯永侠,周宝利,吴晓玲等.辣椒根系分泌物化感作用的研究[J].沈阳农业大学学报, 2007,(04)
    [59]王树起,韩晓增,乔云发等.根系分泌物的化感作用及其对土壤微生物的影响[J].土壤通报, 2007,(6)
    [60]邓麟,曹金锁,王秦虎等.植物化感作用研究进展[J].陕西农业科学, 2007,(04)
    [61]张晓玲,潘振刚,周晓锋等.自毒作用与连作障碍[J].土壤通报, 2007,(04)
    [62]周艳丽,程智慧,孟焕文.大蒜根系分泌物对不同受体蔬菜的化感作用[J].应用生态学报, 2007,(01)
    [63]Haugland, E. and Brandsaeter, L. O. Experiments on bioassay sensitivity in the study of allelopathy[J]. Chem. Ecol., 1996.,22(10):1845~1859
    [64]Shilling, D.G. and Yoshikawa, F.1985.A rapid seedling bioassay for the study of allelopathy.In: Waller, G.R.(ed.). Allelochemicals: Role in Agriculture and Forestry.American Chemical Society.Washington D.C.334~342.
    [65]Leather,G.R. and Einhellig, F. A. 1986. Bioassays in the study of allelopathy. In:Putnam, A.R. and Tang C. S.(eds.). The Science of Allelopathy. John Wiley & Sons,New York, 133~145
    [66]Rice, E. L. Allelopathy.2nded.Academic Press.Orlando,1984.
    [67]Dilday. Mattice. and Moldembauer. An overview of rice allelopatby in the USA [A]. Kim. K.U. and D.H. Shin. Rice Allelopcrthy [M]. Korea: Cban Suk Park. 2000.15~26
    [68]Olofsdotter. M..Jensen. L.B. and B.Courtoris. Improving crop competitive abiliy using allelopathy an example from rice [J]. Plant Breeding. 2002.121 (1): 1~9
    [69]Weidenbamer.J.D..Distinguishing resource competition and chemical interference: overcoming the methodological impress [J]. Agnonomy Journal.1996. 88: 866~875
    [70]Olofsdotter. M..Using and improving laboratory bioassays in rice allelopathy[A]. Olofsdotter.M .Allelopcrthy[M]. Philippines: International Rice Research Institute.1998.45~55
    [71]NewmanE.I.The possible relevance of allelopathy to agriculture[J].Pestic.Sci.,1982,13
    [72]Lapara T M,Konopka A A,Nakastu C H,et al. 2001.Effects of elevated soil temperature on bacterial community structure and function in bioreactors treating synthetic wastewater, J. Ind. Microbiol .Biol Ecol,24(2):140-145
    [73]Williamson, G. B. and Richardson,D. Bioassays for allelopathy: Mersuring treatment responses with independtent controls[J].Chem. Ecol., 1988,14(1):181~187
    [74]Leather,G.R. and Einhellig, F.A.Bioassays in the study ofallelopathy. In:Putnam, A.R.and TangC.S.(eds.).The Science of Allelopathy[M]. John Wiley & Sons,New York, 1986,133~145
    [75]李阜棣,喻子牛,何绍江.农业微生物学实验技术.北京:中国农业出版社[M],1996
    [76]中国科学院南京土壤研究所微生物研究室.土壤微生物研究法(第1版) [M].北京:科学技术出版社,1985
    [77]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000:39~114
    [78]池振明.微生物生态学[M].济南:山东大学出版社,1999
    [79]泷岛.防治连作障碍的措施[J].日本土壤肥料学杂志,1983(2):170~178
    [80]喻景权,杜荛舜.蔬菜设施栽培可持续发展中的连作障碍问题[J].沈阳农业大学学报,2000(1):124~126
    [81]朱自学,刘天学.秸秆还田的生态效应研究进展[J].安徽农业科学, 2007,(23)
    [82]王应,袁建国.秸秆还田对培肥土壤的作用与效益研究[J].山西农业科学,2007,(11)
    [83]赵勇,李武,周志华等.秸秆还田后土壤微生物群落结构变化的初步研究[J].农业环境科学学报, 2005,(06) .
    [84]李明,税军峰,马永清.化感作用在设施黄瓜连作中的应用研究[J].中国生态农业学报, 2006,(04)
    [85]张俊英,许永利,李富平,韩冬芸.植物化感作用研究进展[J].安徽农业科学, 2007,(21)
    [86]林娟,殷全玉,杨丙钊等.植物化感作用研究进展[J].中国农学通报, 2007,(01)
    [87]罗侠.化感作用的机制及化感物质的开发应用[J].滁州学院学报, 2007,(03)
    [88]张学文,刘亦学,刘万学等.植物化感物质及其释放途径[J].中国农学通报, 2007,(07)
    [89]Nishio M,Kusano S.Fungi associated with roots of continuously cropped upland rice[J].Soil Sci & Plant Nutri,1993,39:13-22
    [90]Molish H.Der Einfluss einer Pflanze auf die andere llelopathie.Jena:GustarFische,1937
    [91]Rice E.L etc. Inhibition of Nitrification by Climax Ecosystems.Amen J.Bot.1972,59:1033-1040
    [92]Qasen J R, Foy C L. Weed allelopathy, its ecological impacts and future prospects: A review [J].Journalof Crop Production,2001, 4(2): 43-119
    [93] Yu J Q and Matsui Y.ρ-thiocranate phenol as a novel allelopathic compound in exudates from root of cucunber.Chem.Express.1993,577-580
    [94]王晗光.巨按化感物质的成分分析及其化感作用的初步研究.四川农业大学硕士学位论文(D), 2006.5
    [95]LEWIS J A, LUMSDEN R D, MILLNER P D,et al. Suppression of damping-off of peas and cotton in the field with composted sewage sludge[J]. Crop Protection, 1992,11(3):260-266.
    [96]Einhellig,F.A.1987.Interaction among allelochemicals and other stress factors of the plant environment.In: Waller, G.R.(ed.).Allelochemicals: Role in agriculture and forestry. ACS Symp.Ser.330 Amer. Chem.Soc., Washington,DC. 343~357
    [97]Rice E L.Allelopathy(2ed edition)[M].New York:Academic Press.1984,1-50
    [98]阎飞,杨振明,韩丽梅.植物化感作用(Allelopathy)及其作用物的研究方法[J].生态学报,2000,20(4):69-695
    [99]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995,32-33
    [100]沈慧敏,郭鸿儒,黄高宝.不同植物对小麦、黄瓜和萝卜幼苗化感作用潜力的初步评价[J].应用生态学报,2005,16(4):740-743
    [101]胡元森,刘亚峰等.黄瓜连作土壤微生物区系变化研究[J].土壤通报,2006.37(1):126-129
    [102]Hyder P W, Fredrickson E L,Estell R E, Lucero M E. Transport of phenolic compounds from leaf tarbush to soil surface by precipitation[J]. Journal of Chemical Ecology,2002, 28, (12): 2475-2482
    [103]Williamson,G B ,Richardson D. Bioassays for allelopathy: Mer-suring treatment responses with independent controls[J].Journal of Chemical Ecology,1988,14:181-187
    [104]孔垂华,胡飞.植物化感(相生相克)作用及其应用[M].北京:中国农业出版社, 2001
    [105]Chapman H P. Chemical factors of the soil as they affect microorganisms. In: Ecology of Soil-Borae Plant Pathogens, 1965,120-141
    [106]BirkettM A, Chamberlain K, HooperAM,etal. Does allelopathy offer real promise for practicalweed management and for explaining rhizosphere interactions involving higher plants? [ J].Plantand Soil, 2001, 232: 31-39
    [107]孔垂华,徐效华,梁文举等.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性[J].生态学报, 2004, 24 (7): 1317-1322
    [108]RimandoAM, OlofsdotterM, Dayan F E,et al. Searching for rice allelochemicals: An example of bioassay-guided isolation[J].Agronomy Journal, 2001, 93: 16-20
    [109]高子勤,张淑香.连作障碍与根际微生态研究Ⅰ.根系分泌物及其生态效应[J].应用生态学报,1998, 9(5):549-554
    [110]杜英君,靳月华.连作大豆植株化感作用的模拟研究[J].应用生态学报,1999, 10(2): 209-212
    [111]韩丽梅,王树起,鞠会艳等.大豆根分泌物的鉴定及其化感作用的初步研究[J].大豆科学, 2000, 19(2): 119-125
    [112]CzarnotaM A, Rimando AM, Weston L A. Evaluation of root exudates of seven sorghum accessions [J].Journal of Chemical Ecology, 2003, 29: 2 073-2 083
    [113]OleszekW, JurzystaM. The allelopathic potential of alfalfa root medicagenic acid glycosides and their fate in soil environments[J].Plantand Soil, 1987, 98: 67-80
    [114]Jennings JA, Nelson C J. Influence of soil texture on alfalfa autotoxicity [J].Agronomy Journal, 1998, 90: 54-58
    [115]CANDOLEBL,ROTHROCKCS. Characterization of the suppressiveness of hairy vetch-amended soils toThielaviopsis basicola[J]. Phytopathology, 1997,87(2):197-202.
    [116]Hu Fe,i Kong Chuihua. Parasite plants chemical recognition to host[J].Acta Ecology Sinica, 2003, 23(5): 96
    [117]AnayaA L.Allelopathy as a tool in themanagementofbiotic resources in agroecosystems[J].Critical Reviews in Plant Sciences, 1999,18: 697-739.
    [118]WU Wen-shi. Production and effects ofTrichoderma harzianum-contained soilless potting medium[A]. Memoirs of theCollege of Agriculture[C]. Taibei:National Taiwan University, 1994,34:392-402.
    [119]柴强.化感作用对复合群体根区土壤微生物及酶的影响研究[D].甘肃农业大学博士学位论文. 2003,1-15.
    [120]陈奇涵,崔邑城,杭悦宇,等.紫花苜蓿和黄花苜蓿对黄瓜生长影响的研究[J].生物学通报.,2005,40(9):46-48
    [121]樊军,郝明德.长期轮作与施肥对土壤主要微生物类群的影响[J].水土保持究,2003,10(1): 88-114
    [122]郭瑞英,陈清,李晓林.土壤微生物抑病性与土壤健康[J].中国蔬菜,2005(增刊),78-82
    [123]胡繁荣.设施蔬菜连作障碍原因与调控措施探讨[J].金华职业技术学院学报,2005,5(2):18-22
    [124]胡亚林,汪思龙,颜绍馗.影响土壤微生物活性与群落结构因素研究进展[J],土壤通报,2006,37(1):170-176
    [125]黄进勇,李春霞.土壤微生物多样性的主要影响因子及其效应[J].河南科技大学学报(农学版),2004,24(4):10-13
    [126]焦晓丹.利用RAPD技术研究设施不同种植年限土壤微生物多样性[D].东北农业大学硕士学位论文. 2004,1-46
    [127]雷娟丽.蔬菜土壤生态系统微生物分子生态学研究[D].浙江大学博士学位论文. 2006,33-34
    [128]李骁,王迎春.土壤微生物多样性与植物多样性[J].内蒙古大学学报(自然科学版),2006,37(6):709-713
    [129]林家友,李清波,高存刚.圆葱套种白菜栽培技术[J].北方园艺,2005,(5):24-25
    [130]鲁鸿佩,孙爱华.草田轮作对粮食作物的增产效应[J].草业科学,2003,20(4):10-13
    [131]马骥.玉米大豆间作效应分析[J].西北农业大学学报,1994,(4):9-10
    [132]裘列群.姜葱轮作高效栽培技术[J].长江蔬菜,2006,8:28-29
    [133]沈程文,肖润林,徐华勤等.覆盖与间作对亚热带丘陵区茶园土壤微生物量的影响[J].水土保持学报,2006,20(3):141-144
    [140]沈禹颖,南志标,高崇岳等.黄土高原苜蓿-冬小麦轮作系统土壤水分时空动态及产量响应[J].生态学报,2004,24(3):640-647
    [141]宋同清,王克林,彭晚霞等.亚热带丘陵茶园间作白三叶草的生态效应[J].生态学报,2006,26(11):3 647-3 655
    [142]宋亚娜,M Petra,张福锁等.小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J].生态学报.,2006,26(7):2 268-2 274
    [143]唐咏,粱成华,刘志恒等.日光温室蔬菜栽培对土壤微生物和酶活性的影响[J].沈阳农业大学学报(自然科学版),1993,30(1):16-19
    [144]王光华,金剑,徐美娜等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志,2006,25(5):550-556
    [145]王继红,孟凡胜,王宇等.岗平地黑土草田轮作的生态效应[J].吉林农业科学,2002,27(4):26-28
    [146]吴风芝,王伟.大棚番茄土壤微生物区系研究[J].北方园艺,1993.,(3):1-2
    [147]夏北成.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9 (3):296-300.
    [148]谢英荷,洪坚平,李翠娥.枣麦间作对土壤微生物性状影响的研究[J].山西农业大学学报,1994,14(1):37-39
    [149]杨华才,杨清松,罗天刚.大豆与水稻轮作对土壤理化特性和水稻产量的影响[J].作物杂志,2006,6:50-51
    [150]杨靖春,张春丽,辛华等.老参地轮作不同年限的紫穗槐对人参土壤微生物区系的影响研究[J].东北师范大学学报(自然科学版),1985,2:101-109.
    [151]尹睿,张华勇.保护地菜田与稻麦轮作田土壤微生物学特征的比较[J].植物营养与肥料学报,2004,10(1):57-62.
    [152]于海林,范瑞兰.玉米草木犀间种效应研究[J].耕作与栽培,2003,(4):7-8
    [153]张为政,祝廷成,张镇媛.作物茬口对土壤活性与微生物的影响.土壤肥料[J],1993,5:12-14.
    [154]祝廷成,李志坚,张为政等.东北平原引草入田、粮草轮作的初步研究[J].草业学报,2003,12(3):34-43
    [155]Alessio M , Enrico T,etal. 2005.Francesca Decorosi Comparison of 16S rRNA and 16S rDNA T-RFLP Approaches to Study Bacterial Communities in Soil Microcosms Treated with Chromate as Perturbing Agent[J].Microbial Ecology,50:375-384
    [156]Alvey S.,Yang C.H,Buerkert A.,Crowley D.E.2003.Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soils[J]. Biology and Fertility of Soils,37:73-82.
    [157]Arshad,M.,and Frankenberger Jr, W. T. 1991.Microbial production of plant hormones[J]. Plant and Soil,133: l-8.
    [158]Atlas RM,Bartha R.1993.Microbial Ecology: Fundamentals and Applications, 3rd ed. Benjamin/ Cummings, Redwood City, CA
    [159]Bardgett R D,1999.Plant species and nitrogen effects on soil biological properties of temperate upland grasslands[J].Function Ecol,(13):650-660
    [160]Blackwood C B,Paul EA. 2003 .Eubacterial community structure and population size with in the soil light fraction, rhizosphere, and heavy fraction of several agricultural systems[J]. Soil Biology and Biochemistry.,35:1 245-1 255.
    [161]Clement B. G, Kehl L. E,Debord K.L,et al. 1998.Terminal Restriction Fragment Patterns (TRFLPs),a Rapid,PCR-Based Method for the Comparison of Complex Bacterial Communities[J]. Microbiol Methods,31(3):135-142
    [162]Cole ST, Saint Girons I. 1994.Bacterial genomics. FEMS Microbiol Rev,14:139-160.
    [163]Cook R J,Papendick R J. 1970.Soil water potential as a factor in the ecology of Fusarium roseum,sp,Ceelies Culmorum.Plant Soil,32:131-145
    [164]Di Giovanni G D,Wastrud L S,Seidler R J,et al.1999.Comparison parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive in tergenic consensus sequence PCR[J].Microbiol.Ecol.,37:129-139
    [165]Dunbar J,Ticknor L O, Kuske C R. 2000.Assessment of microbial diversity in four southwestern U. S. soils by 16S rRNA gene terminal restriction fragment analysis[J]. Appl Environ Microbiol,66(7):2 943 - 2 950
    [166]Dunbar J,Takala S,Barns S M. 1999.Levels of bacterialcommunity diversity in four arid soils compared bycultivation and 16S rRNA gene cloning[J]. Appl. Environ.Microbiol,5 (4):1 662-1 669
    [167]Emma F,Schnurer J. 1994.Chitinolytic properties of Bacillus pabull. K.J. Applied Bacteriology,76:361-367.
    [168]Engelen.B.,Meinken.K.,Wintzingerode. F,et al. 1998 .Monitoring impact of a pesticidetreatment on bacterial soil communities by metabolic and genetic fingerprinting in additiont to conventional testing procedures[J].Appliedand Environmental Microbiology,64:2 814-2 821
    [169]Fantroussi S E,Verschuere L,Verstraete W,etal.1999.Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community–level physiological profiles[J].Appl.Environ.Microbiol,65:982-988.
    [170]Fierer N, Schimel J.P, Holden P.A..2003.Influence of Drying–Rewetting Frequency on Soil Bacterial Community Structure[J]. Microb Ecol,45:63-71
    [171]Franzluebbers A J,Arshad M A. 1997.Soil microbial biomass and mineralizable carbon of water-stable aggregates affected by texture and tillage[J]. Soil Science Society of America Jouma1,61:1 090.
    [172]Garcia C.,Hemandez T,Costa F. 1994.Microbial activity in soil under Mediterranean environmental condtions[J].Soil Biology and Biochemistry.,26:1 185-1 191
    [173]Garland J L,Mills A L.1991.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-cource utilization[J]. Appl. Environ.Microbiol,57(5):2 351-2 359.
    [174]Gelsomino A,Keijzer-Wolters A C,Cacco G,et al.1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis[J]. Microbiol Methods,38:1-15.
    [175]Granston S J,Wang S,Campbell CD,et al. 1998 .Selective influence of plant species on microbial diversity in the rhizosphere[J].Soil boil biochem,30(3):369-378
    [176] SUN S K,HUANG J W. Formulated soil amendment for controlling Fusarium wilt and other soil borne diseases[J].Plant Disease, 1985, 69(11):917-920.
    [177]Hedges J J,Oades J M.1997.Review papes Comparative organic geochem istries of soils and marine sediments[J].Org Geochem.,27(7-8):319-361
    [178]Horz H P, Barbrook A, Field C B,et al. 2004.Ammonia-oxidizing bacteria respond to multifactorial global change[J]. Proc Natl Acad Sci U S A.,101 (42):15 136-15 141.
    [179]Hubbell D.H,Tien T M,Gaskin M H,et al. 1979.Physiological interaction in the Azospirillum -grass root association. In CRC associative Symbiosis. Eds.P. B. Vose and A. P Ruschel,1:1-6.
    [180]Hussain A.,Arshad M.,Hussain A.,et al. 1987.Response of maize (Zea mays) to Azoto -bacter inoculation under fertilized and unfertilized conditions[J]. Biol. Fertil. Soils,4:73-77
    [181]Jan D V E,Paolina G,Joana S. 2002.Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens[J]. Biodegradation,13:29-40.
    [182]Johnsen K,Jacobsen C.S.and Torsvik V. 2001.Pesticide effects on bacterial diversity in agricultural soils a review[J].Biology and Fertility of Soils,33:443-453
    [183]Joshua PS,Jay M G,Joy S C C,et al. 1999.Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga[J].soil Biochem,31(6):831-838
    [184]Karin Hjort, Antje Lembke, Arjen Speksnijder. 2006.Community Structure of Actively Growing Bacterial Populations in Plant Pathogen Suppressive Soil[J]. Microbial Ecology
    [185]Kaplan C.W,Kitts C.L. 2003.Variation between observed and ture Terminal Restriction Fragment length is dependent on true TRF length and purine content[J]. Microbiol. Methods, 1776:1-5
    [186]Kennedy A C,Gewin V L. 1997.Soil microbial diversity: Present and future conside -rations[J].Soil Science,162 (9):607-617.
    [187]Kennedy AC. 1995.Soil microbial diversity and the sustainabilityof agricultural soils[J]. Plant and Soil,(170):75-86.
    [188]Kennydy A.C.and Smith K.L. 1995.Soil microbiol diversity index and the sustainability of agricultural soils[J].Plant and Soil,170:75-86
    [189]Kent A D,Smith DJ,Benson B J,et al.2003.Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities[J]. Appl Environ Microbiol 69:6768–6776
    [190]Kong WD,Liu KX,Liao ZW. 2004.Effects of the species and composting level of organic matter on soil microbial community[J]. Chin. Journal of Applied Ecology,15:487- 492.
    [191]LaMontagne M G,Leifer I,Bergmann S,et al .2004. Bacterial diversity in marine hydrocarbon seep sediments[J]. Environ Microbiol,6:799
    [192]LaMontagne M.G , Holden P.A. 2003.Comparison of Free-Living and Particle-Associated Bacterial Communities in a Coastal Lagoon[J]. Microb Ecol,46:228–237
    [193]LaMontagne M.G,Schimel J.P,. Holde n P.A. 2003.Comparison of Subsurface and Surface Soil Bacterial Communities in California Grassland as Assessed by Terminal Restriction Fragment Length Polymorphisms of PCR-Amplified 16S rRNA Genes[J]. Microb Ecol,46:216-227
    [194]Larkin RP. 2003. Characterization of soi microbial communities under differet potato cropping systems by microbial population dynamics,substrate utilization,and fatty acid profiles[J]. Soil Biol Biochem 35,1 451-1 466
    [195]Lee DH,Zo Y G,Kim S J. 1996. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism[J].Appl Environ Micro -biol,62:3 112– 3 120
    [196]Liu W T, Marsh T L, Cheng H,et al. 1997.Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA[J]. Appl Environ Microbiol,63:4516-4522.
    [197]Liu,X.Y.,Lindemann W.C.,Whitford W.G, et al. 2000.Microbial diversity and activity of disturbed soil in the northern Chihuahuan desert[J].Biology and Fertility of Soils,32:243-249
    [198]Lüdemann H,Arth I, Liesack W. 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores[J]. Appl Environ Microbiol,66(2) :754 - 762.
    [199]Lupwayi N.Z,Rice W.A,Clayton G.W.1998.Soil microbial diversity and community structure under wheat as influenced by tillage and croprotation[J].Soil Biology and Biochemistry,30:1733-1741.
    [200]Marscher P,Neumann G,Kania A,et al.2002.Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin(LupinusalbusL.)Plant Soil,246:167-174.
    [201]Marschner P,Kandeler E,2003.MarschnerB.Structure and function of the soil microbial community in a long-term fertilizer experiment[J].Soil Biol.Biochem,35:453-467.
    [202]Marschner P,Yang CH,Lieberei R,et al 2001.Soil and plan Specific effects on bacterial community composition in the rhizosphere[J]. SoilBiol.Biochem,33:1437-1445.
    [203]Matamala R,Gonzalez Meler M A,Jastrow J D,et al. 2003. Impacts of Fine Root Turnover on Forest NPP and Soil C Sequestration Potential[J]. Science,302:1 385- 1 387.
    [204]Mengoni1 A. E. Grassi1 R. Barzanti. 2004.Genetic Diversity of Bacterial Communities of Serpentine Soil and of Rhizosphere of the Nickel-Hyperaccumulator Plant Alyssum bertolonii[J]. Microbial Ecology,48:209–217
    [205]Nabla Kennedy,Suzanne Edwards and Nicholas Clipson . 2005.Soil Bacterial and Fungal Community Structure Across a Range of Unimproved and Semi-Improved Upland Grasslands[J]. Microbial Ecology,50:463–473
    [206]PANDEY G, SINGHK P. Effect of organic amendments on soil micro-flora and nematode fauna with special reference toMeloidogyne incognitain chick pea[J]. New Agriculturist, 1990,1:65-70.
    [207]Nieto K. F,and Frankenberger Jr,W .T. 1989.Biosynthesis of cytokinins produced by Azotobacter chroococcum[J]. Soil Biol. Biochem,21:967-972
    [208]Nubel U. 1996.Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis[J]. Bacteriol,178:5636-5643.
    [209]Ogram A,Sayler G S,Barkay T. 1987.The extraction and purification of microbial DNA from sediments[J]. microbiol Methods,7:57-66
    [210]Oliver J S. 1997.Metabiotic interactions in plant litter system.Cadisch G and Giller K E.Driven by Nature.Plant Litter Quality and Decomposition.CABI Publishing,145-153
    [211]Olsson S,Alstrm S.2000.Characterisation of bacteria in soils under barley monoculture and crop rotation[J].Soil Biol.Biochem,32:1443-1451.
    [212]Reysenbach A L. 1992.Differential amplification of rRNA genes by polymerase chain reaction[J].Appl Environ Microbiol,58:3417-3418.
    [213]Ronn R, Gavito M, Larsen J, et al. 2002. Response of free living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza[J]. Soil Biol Biochem,34:923-932.
    [214]Shutter M, Dick R. 2001.Shifts in substrate utilization potential and structure of soilmicrobial communities in response to carbon substrates[J]. Soil Biology and Biochemistry,33:1481-1491.
    [215]Spedding TA,Hamel C,Mehugs GR,et al.2004.Soil microbial dynamics maize-growing soil under different tillage and residue management systems[J].Appl.Environ.Microbiol,6:49-52
    [216]Suzuki M T, Giovannoni S J. 1996.Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR[J]. Appl Environ Microbiol,62:625-630
    [217] Guenzi W D,Mocajja T.Phytotoxic substances extracted from soil[J].Soil Sci Soc Amer Proc,1966,30:214-216
    [218]Tiedje J M, Asuming-Brempong S, Nusslein K,et al. 1999.Opening the black box of soil microbial diversity[J].Applied Soil Ecology,13:109-122.
    [219]Van Veen JA,Van Overbeek L S,Van Elsas J D. 1997.Fate and activity of microorganisms introduced into soil microbiology[J] .Microbiol .Molecular Biology Review,61 (2) :121-135.
    [220]Waid J.S.1999.Does soil biodiversity depend upon metabiotic activity and influences? [J].Applied Soil Ecology,13:151-158.
    [221]White D,Crosbie J D,Atkinson D,et al. 1994.Effect of an introduced inoculum on soil microbial diversity[J]. EMS Microbiology Ecology,14 (2):169-178.
    [222]Wieland G,Neumann R,Backhaus H. 2001.Variation of microbial communities in soil,rhizosphere and rhizoplane in response to crop species,soil type,and crop development[J]. Appl.Environ. Microbiol,67:5849-5854.
    [223]Yan F,McBratney AB,Copeland. 2000.Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales. Geoderma,96 :321-343.
    [224]Yao HY, He Zh L,Huang CY. 2001.Phospholipid fatty acid profiles of Chinese red soil with varying fertility levels and land use histories. Pedosphere,11(2):97 -103
    [225]Zak DR,Holmes WE,White DC,et al. 2003.Plant diversity,soil microbial communities, and ecosystem function:Are there any links? [J].Ecology,84:2042-2050.
    [226]黄振文.利用土壤添加物防治作物之土壤传播性病害[J].植物保护学会会刊(台湾省),1991,33(1):113-123
    [227]李洪连,王守正.根际微生物与植物病害[J].河南农业大学学报,1989,23 (4):406-
    [228]李洪连,黄俊丽,袁红霞.有机改良剂和生防制剂对棉花黄萎病防治效果[A].云南科技出版社,1999, 85-90
    [229]鲁素芸.植物病害生物防治学[M].北京:北京农业大学出版社,1992. 212-219
    [230]黄振文.利用土壤改良剂防治作物之土壤传播性病害.植物保护学会会刊,1991,(33):113-123
    [231]俊丽.有机改良剂对棉花黄萎病的防治效果及其防病机制研究[D].郑州:河南农业大学,2000
    [232]黄高宝,柴强.植物化感作用表现形式及其开发应用研究[J].中国生态农业学报,2003(3):172~174
    [233]RAJH, KAPOORIJ. Effect of oil cake amendment of soil on tomato wilt caused by Fusarium oxysporumf. splycopersici[J]. Indian Phytopathology, 1996,49:355-361
    [224] LUKADE G M. Effect of organic soil amendments on root rot incidence of safflower[J]. Madras Agricultural Journal,1992,79(3):179-181.
    [235] MOJTAHEDI H, SANTO G S, WILSON J H,etal. ManagingMeloidogyne chitwoodion potato with rapeseed as greenmanure[J]. Plant Disease, 1993,77:42-46.
    [236]Molisch H. Der Einfluss einer Pflanxe auf die andere-Allelopathies[M]. Fischer, Jena.,1937
    [237]Wittacker R H, Ferry P D. Allelochemics: Chemical interation between species, Science[J],1971,191(3973):757~770
    [238]McCalla J M,Leyva A,Caparicon L. Phytotoxic substance from soil microorganism and crop residues.Bacteriol Rev[J], 1964, 28:181~207
    [239]RimandoAM, OlofsdotterM, Dayan F E,et al. Searching for rice allelochemicals: An example of bioassay-guided isolation[J].Agronomy Journal, 2001, 93: 16-20
    [240]OSUNLAJASO. Effect of organic soil amendments on the incidence of stalk rot of maize[J]. Plant and Soil, 1990,127:237-241
    [241]陈宏宇.不同品种和不同茬口大豆根面及根际的微生物群落结构分析.中国农业大学博士论文(D), 2005
    [242]余东.桔园生草栽培中它感效应的研究.西南农业大学硕士学位论文(D), 2005
    [245]马永清,毛仁钊,刘孟雨等.小麦秸秆的生化他感效应.生态学杂志,1993,12 (5):36-38
    [246]陈龙池,汪思龙. 2003.杉木根系分泌物化感作用研究.生态学报. 23(2): 393-398.
    [247]吴凤芝,孟立君,文景芝. 2002.黄瓜根系分泌物对枯萎病菌菌丝生长的影响.中国蔬菜. 5:26-27
    [248]杨瑞吉. 2006.油菜根系分泌物对不同作物幼苗生长的化感效应.生态环境15(5): 1062-1066
    [249]叶素芬. 2004.黄瓜根系自毒物质对其根系病害的助长作用及其缓解机制研究.浙江农业大学博士论文.
    [250]由海霞,梁银丽,吕文等.不同作物根系分泌物对黄瓜的化感作用.西北农林科技大学学报(自然科学版). 2006,34 (6): 101-105.
    [251]张志良,瞿伟菁. 2004.植物生理学实验指导.高等教育出版社. 127-129
    [252]周长林. 2004.微生物学.中国医药科技出版社. 79-88,134-139
    [253]周艳丽,程智慧,孟焕文. 2007.大蒜根系分泌物对不同受体蔬菜的化感作用.应用生态学报. 18 (1): 81-86
    [254]朱国鹏,沈宏. 2002.根系分泌物研究方法(综述).亚热带植物科学31(增刊):15-21.
    [255]Miller R. W., R. Kleiman, R. W. Powell and A. R. Putnam. 1988. Gennination and growth inhibitors of alfalfa. J. Nat. Prod..51:328-330
    [256]Mitchell,C.A. Severson,C.J.,Wott,J.A.,Hammer,P.A.. 1975. Seismomorphogenicregulation of plant growth. J.Am.Soc.Hortic.Sci., 100(2):161-165
    [257]Rovira A.D. 1965. Plant root excretions in relation to the rhizosphere effect.l. The nature of root exudates from oats and peas.Piant Soil. 7:178-194 [ ]Rovira,A.D.and Harris,J.R. 1961. Piant root excretions in relation to the rhizosphere effect.VThe exudation of B-group vitamins.Piant Soil . 14: 199-214
    [258]Tagagi S,Nomoto K and Take moto T.1984.Physiological aspect of muginetic acid,a possible phytosidexophoxe of gra minaceous plants j Plant Nutr .7 :469-477
    [259]Takagi S1.1976. Naturally occurring iroirchelating compounds in oat and rice roots washings . Plant Nutr,22 :423-433
    [260]Wu, F. Z,Han, X. and Wang, X. Z. 2006. Allelopathic effects of root exdates from ucumber cultivars on Fusarium oxysporum. Allelopathic Journal 18:163-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700