用户名: 密码: 验证码:
对光肩星天牛幼虫高致病力绿僵菌菌株筛选及其致病机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用绿僵菌防治光肩星天牛成虫及幼虫是光肩星天牛综合治理的一条重要途径。为了揭示绿僵菌对光肩星天牛幼虫的致病机理及控制潜能,明确绿僵菌与光肩星天牛幼虫的互作关系,本文以黄粉虫诱集法从土壤中诱集并筛选到对光肩星天牛幼虫具有较高致病力的绿僵菌MS01菌株,并系统研究了其生物学特性、对光肩星天牛的致病性及其影响因子(温度、湿度、传代方式及传代次数)、绿僵菌对光肩星天牛幼虫的入侵和致病过程、光肩星天牛幼虫对绿僵菌侵染的防御反应、光肩星天牛感染绿僵菌后的病理学变化。研究结果如下:
     以黄粉虫为饵虫从采集的不同土壤样品中诱集分离到8株绿僵菌,并对光肩星天牛幼虫进行生物测定。结果表明,不同菌株对50 d龄光肩星天牛幼虫的致病力存在差异,其中以MS01菌株的致病力最高,校正死亡率和感染率分别为100%和83.33%,致死中时LT50为2.69 d。MS01菌株与市售菌粉经虫体复壮后对95 d龄光肩星天牛幼虫的生物测定结果表明,相对于市售菌株,MS01的复壮菌株致病力更高,至第8天校正死亡率达100%,感染率为90.4%,LT50为5.25 d。MS01菌株对95 d龄光肩星天牛幼虫的致死中浓度LC50为1.68×106孢子·mL-1。因此确认绿僵菌MS01菌株对光肩星天牛幼虫具有较高致病力。
     通过生物学研究确定了MS01菌株营养生长和产孢的最适培养基为PPDA。该菌株在26℃下营养生长最好,28℃下产孢量最高、孢子萌发速度最快、萌发率最高。该菌株营养生长和产孢的最适相对湿度范围为95%~100%,相对湿度与孢子萌发速度、萌发率呈正相关,相对湿度100%时达到最高。
     光肩星天牛成虫接种低、中、高三种浓度的绿僵菌MS01菌株后,其产卵量,卵的孵化率和孵化幼虫存活率均明显降低,且接种浓度与产卵量和孵化幼虫存活率呈负相关。MS01菌株对光肩星天牛幼虫产生致病作用的最适温度为26℃,最适湿度为100%。通过PPDA培养基传代2次后对菌株致病力无明显影响,传代4次后会导致菌株致病力的降低;而通过光肩星天牛幼虫传代培养会不同程度提高菌株的致病力。
     扫描电镜和透射电镜观察表明,绿僵菌侵染光肩星天牛幼虫的主要部位是腹部节间膜,附着分生孢子数量较多、萌发较快、萌发率和侵入率较高;其次是气门附近区域。这两处是利于绿僵菌侵入的薄弱环节。接菌后12 h,分生孢子在光肩星天牛幼虫体表开始萌发并出现芽状突起,随后产生芽管和各种附着结构,接菌后16 h,寄主表皮层中观察到少量菌丝段,至24 h菌丝已普遍侵入,在入侵过程中芽管依靠机械压力和酶的共同作用进行穿透。36 h~48 h分生孢子即可穿透体壁进入血腔。菌丝和菌丝段经血淋巴循环侵入各器官组织。48 h~72 h,随着菌丝和菌丝段在肠壁细胞中迅速大量增殖,肠壁组织逐渐被破坏,中肠微绒毛脱落,肠壁细胞形成空泡,围食膜被分解消失,最终中肠组织崩溃、解体。
     当幼虫被绿僵菌不同传代菌株接种后,其血淋巴酚氧化酶活性虽起伏变化但全部出现一个高峰值,表明寄主因受到绿僵菌入侵的刺激,其免疫互作使酚氧化酶活性上升至峰值,但随着菌株适应性的逐渐增强而使酚氧化酶活性呈现波动式下降。对接种不同菌株的幼虫血淋巴中酚氧化酶活性的差异显著性分析表明,相对于寄主传代的菌株,经培养基传代的菌株接种光肩星天牛幼虫后引起的血淋巴酚氧化酶活性较高。
     光肩星天牛幼虫的血细胞对绿僵菌的侵入具有一定的防御能力,参与防御反应的血细胞主要是粒血细胞和浆血细胞,在防卫反应高峰期(48 h~72 h),血细胞总数急剧上升,粒血细胞和浆血细胞比例发生改变,同时血细胞出现粘附、聚集、吞噬、包被、形成结节或囊块等一系列的防御反应。但由于菌丝段在血液中的迅速增殖,血细胞防御机制对绿僵菌只起暂时的阻碍和抑制作用,最终反被其瓦解。
     光肩星天牛成虫接种低、中、高三种浓度的绿僵菌MS01菌株后,其取食量明显降低,接种浓度与取食量呈负相关。光肩星天牛幼虫感染绿僵菌后,其取食量和体重均低于对照组;其血淋巴蛋白浓度虽波动较剧烈但总体呈不断下降趋势;光肩星天牛幼虫血淋巴中共检测出17种游离氨基酸,感染绿僵菌后不同时段,游离氨基酸总量呈现先下降后上升的变化趋势,不同种类的氨基酸含量变化情况不一致。
     绿僵菌的侵染引发了光肩星天牛幼虫体内主要保护酶和解毒酶的活力发生了不同程度的改变。在染菌初期超氧化物歧化酶(SOD),过氧化物酶(POD)和过氧化氢酶(CAT)活力迅速提高,在染菌后期SOD和POD活力有不同程度的下降,而CAT活力却上升到较高的水平。羧酸酯酶(CarE)活性变化表现为先上升而后又逐渐下降;谷胱甘肽-S-转移酶(GSTs)活性变化总体表现为激活→抑制→激活→抑制;对乙酰胆碱酯酶(AchE)活力的影响,可归纳为抑制→激活→抑制→激活→抑制。
     明确了光肩星天牛幼虫感染后组织病理变化及绿僵菌在寄主体内的发展过程。绿僵菌侵入后,首先使寄主表皮层和皮细胞层分离,进入寄主血腔后,随着菌丝在体腔内大量繁殖,受侵染的各器官和组织均发生明显的病变,如脂肪体松散、肌肉组织出现裂缝、气管组织解体破坏、马氏管变形、消化道解体等。
Using Metarhizium anisopliae offers an important approach in the integrated management of Anoplophora glabripennis adults and larvae. In order to reveal the pathogenic mechanism of M. anisopliae on A. glabripennis and its application potentials, and also to clarify the interaction between M. anisopliae and A. glabripennis larvae, a M. anisopliae isolate MS01 highly virulent to A. glabripennis larvae was screened from the isolates baited from the soil using“Tenebrio molitor Bait Method”. The biological characteristics, the pathogenicity against A. glabripennis and impact factors to the pathogenicity (temperature, humidity, passage manners and passage times), as well as infection and pathogenicity process of M. anisopliae on A. glabripennis larvae, defense response of the host against M. anisopliae and the pathological changes of A. glabripennis infected by M. anisopliae were studied. The results of this study indicated that:
     Eight isolates of M. anisopliae were baited and isolated from different soil samples using Tenebrio molitor as bait. Bioassays of the isolates were conducted on A. glabripennis larvae. The results showed that the pathogenicity of the isolates to 50 d A. glabripennis larvae differed from each other and the isolate MS01 was the most virulent one. The corrected mortality, the infection rate and LT50 were 100%, 83.33% and 2.69 d respectively. Furthermore, bioassays of MS01 and commercially available fungus powder were conducted on 95 d Anoplophora glabripennis larvae after insect rejuvenation. The results indicated that the pathogenicity of the rejuvenated strain of MS01 was higher than that of the commercially available strain. Up to the 8th day the corrected mortality, the infection rate and LT50 were 100%, 90.4% and 5.25 d respectively. The LC50 of the MS01 isolate to 95 d Anoplophora glabripennis larvae was defined to be 1.68×106conidia·mL-1. Therefore, M. anisopliae isolate MS01 was confirmed to be more pathogenical to A. glabripennis larvae.
     The most proper culture media for the mycelia growth and conidia production of isolate MS01 was determined to be PPDA. The strain presented the best nutritional growth at 26℃. Furthermore, the strain showed highest conidia production, fastest conidia germination and highest germination rate at 28℃. The optimal relative humidity for the nutritional growth and conidia production of the isolate was ranged from 95% to 100%. The conidia germinating speed and germination rate were positively correlated to the relative humidity, and reached maximum when relative humidity was 100%.
     The oviposition amount, the incubation rate and the survival rate of incubated larvae were significantly reduced after A. glabripennis adults had been inoculated by M. anisopliae isolate MS01 in low, medium and high concentrations. The oviposition amount and the survival rate of incubated larvae were negatively correlated to inoculation concentration. The optimal temperature and humidity for the MS01 isolate to be pathogenical to A. glabripennis larvae were 26℃and 100% respectively. There was no significant impact to the pothogenicity of the strain after 2 times passage on PPDA culture media, however, 4 times passage resulted in lower pothogenicity. On the other hand, the pathogenicity of the strains was enhanced at different degrees when the passage had been performed via A. glabripennis larvae.
     Examination of the invasion process by using scanning and transmission electron microscope showed that M. anisopliae attacked A. glabripennis larvae mainly through abdominal intersegmental membrane, at where more attached conidia, faster germination, higher germination and penetration rates were observed. The next actively intruded area was the area around the valves. The two places were vulnerable to M. anisopliae invasion. Conidia germinated and grew gemmiform protuberance on the cuticle of A. glabripennis larvae within 12 h post-inoculation, then germ tube and various attaching structure were produced. The host cuticle was invaded by a few hyphal bodies 16 h post-inoculation. Up to 24 h hyphae have widely penetrated into host cuticle. The penetration was successful as a result of joint efforts by mechanical pressure and enzymatic activity produced by the germ tube. Conidia penetrated the integument into the haemocoele of A. glabripennis larvae from 36 h to 48 h post-inoculation. The hyphae and hyphal bodies invaded all organs and tissues via hemolymph circulation. Along with the quick and vast reproduction of the hyphae and hyphal bodies in the midgut epithelium, the midgut tissues were gradually destroyed, the midgut microvilli exfoliated, vacuole formed in the midgut epithelium, the peritrophic membrane was decomposed and disappeared, eventually the midgut tissues collapsed and disintegrated from 48 h to 72 h.
     When the larvae had been inoculated by M. anisopliae strains descended with different passage manners, though the phenoloxidase activity in the haemolymph fluctuated, all tested samples showed a maximum value. It indicated that, when the host was stimulated by M. anisopliae invasion, the immune interaction pushed the phenoloxidase activity to the maximum. However, the phenoloxidase activity decreased in a fluctuated manner along with the gradual enhancement of the adaptability of the invading strains. The analysis of significance of difference was performed on the phenoloxidase activity in the haemolymph of larvae inoculated with different strains. The result showed that, compared to those strains descended through hosts, the strains descended through culture media would trigger higher phenoloxidase activity after inoculated on A. glabripennis larvae.
     The hemocytes of A. glabripennis larvae were able to resist the invasion of M. anisopliae to some extent. Granulocytes and plasmatocytes were the main hemocytes involved in the defense. During peak defense period (48 h~72 h), the total amount of hemocytes increased sharply, while the ratio of granulocytes and plasmatocytes changed. The defense activities of the hemocytes mainly included adhesion, aggregation, phagocytosis, encapsulation and nodule formation. Due to fast reproduction of the hyphal bodies in the blood, the defense mechanism of the hemocytes inhibited and suppressed the invasion only temporarily, and was eventually overrun by M. anisopliae.
     The food consumption of A. glabripennis adults remarkably decreased after inoculation with M. anisopliae strain MS01 of low, medium and high concentrations. The food consumption was negatively correlated with inoculation concentration. The food consumption and weight of A. glabripennis larvae were all lower than those of the control after infected by M. anisopliae. The content of the proteins in the hemolymph showed a generally decreasing trend although fluctuated significantly. Total 17 free amino acids were found in the hemolymph of A. glabripennis larvae. During different post-infection periods, the total contents of free amino acids fell first and rose later. The contents of different amino acids fluctuated differently.
     The activities of the main protective enzymes and detoxifying enzymes changed at different degrees due to invasion of M. anisopliae. During the initial infection stage, the activities of SOD, POD and CAT increased quickly, while during the later stage, the activities of SOD and POD decreased at different degrees but that of CAT rose to a high level. The CarE activity rose first and then gradually decreased. The trend of changes of GSTs activity could be summarized as activated→suppressed→activated→suppressed. The impact on AchE activity could be summarized as suppressed→activated→suppressed→activated→suppressed.
     The histopathological changes of A. glabripennis larvae after infection and the development process of M. anisopliae in the host body were clarified. The invading M. anisopliae first separated the host cuticle and the epithelium. Along with the vast proliferation of hyphal bodies in the host haemocoel, apparent pathological changes occured at all infected organs and tissues, e.g. fat bodies loosened, cracks appeared in musles, trachea tissue disintegrated, malpighian tubes deformed and digestive tract disintegrated.
引文
[1]王志刚.中国光肩星天牛发生动态及治理对策研究[D].哈尔滨:东北林业大学, 2004.
    [2]范迪,李必华,等.山东林木昆虫志[M].北京:中国林业出版社, 1993.
    [3]李文华,张永军,王中康.虫生真菌穿透昆虫表皮相关理化因子的研究[A].昆虫与环境-中国昆虫学会2001年学术年会论文集[C].北京:科学技术出版社, 2001, 473-479.
    [4]王音.绿僵菌LD65和LF68菌株生物学特性及对小菜蛾的致病机理[D].北京:中国农业大学, 2005.
    [5]蒲蛰龙.应用昆虫的病原真菌防治害虫[J].生物防治通报, 1985, 1(l): 27-31.
    [6]樊美珍,郭超,燕新华.从青杨天牛分离的几种致病真菌[J].真菌学报, 1987, 6(2): 97-102.
    [7]童森林,宫建,苟英杰.应用绿僵菌防治青杨天牛试验研究[A].武觐文.中国虫生真菌研究与应用Ⅲ[C].北京:中国农业出版社, 1991, 155-157.
    [8]徐金柱.应用虫生真菌防治天牛的研究[D].合肥:安徽农业大学, 2002.
    [9]王四宝,黄勇平,张心团,等.松褐天牛成虫高毒力病原菌筛选及林间感染试验[J].中国森林病虫, 2004, 23(6): 13-16.
    [10]夏成润,丁德贵,刘云鹏,等.金龟子绿僵菌无纺布菌剂与引诱剂结合使用防治短角幽天牛的试验[J].安徽农业大学学报, 2005, 32(4): 19-22.
    [11]何学友,陈顺立,黄金水.感染松墨天牛的金龟子绿僵菌菌株的初步筛选[J].昆虫学报, 2005, 48(6): 975-981.
    [12]何学友,陈顺立,杨希,等.金龟子绿僵菌在森林土壤中的分布及对松墨天牛致病性测定[J].菌物学报, 2007, 26(2): 289-294.
    [13]何学友,蔡守平,余培旺,等.金龟子绿僵菌MaYTTR-04菌株对松墨天牛成虫的致病力[J].昆虫学报, 2008, 51(1): 102-107.
    [14] Shimazu M, Zhang B, Liu Y N. Fungal Pathogens of Anoplophora glabripennis (Coleoptera: Cerambycidae) and Their Virulence [J]. Bulletin of the Forestry and Forest Products Research Institute, 2002, 1(1): 123-130.
    [15] Dubois T A, Hajek A E, Hu J F, et al. Evaluating the efficiency of entomopathogenic fungi against the Asian longhorned beetle, Anoplophora glabripennis, by using cages in the field[J]. Environmental Entomology, 2004, 33(1): 62-74.
    [16] Dubois T A, Li Z Z, Hu J F, et al. Efficacy of fiber bands impregnated With Beauveria brongniartii cultures against the Asian longhorned beetle, Anoplophora glabripennis[J]. Biological Control, 2004, 31: 320-328.
    [17] Hajek A E, Huang B, Dubois T, et al. Field Studies of Control of Anoplophora glabripennis(Coleoptera: Cerambycidae)Using Fiber Bands Containing the Entomopathogenic Fungi Metarhizium anisopliae and Beauveria brongniartii[J]. Biocontrol Science and Technology, 2006, 16(4): 329-343.
    [18] Ann Hajek, Thomas Dubois, Jennifer Lund, et al. Developing fungal bands for control of Asian longhorned beetle, Anoplophora glabripennis, in the US[J]. Journal of Anhui Agricultural University, 2007, 34(2): 149-156.
    [19] Ann Hajek, Jennifer Lund, Michael T Smith. Reduction in fitness of female Asian longhorned beetle (Anoplophora glabripennis) infected with Metarhizium anisopliae[J]. Journal of Invertebrate Pathology, 2008, 98(2): 198-205.
    [20] Thomas Dubois, Jennifer Lund, Leah S Bauer, et al. Virulence of entomopathogenic hypocrealean fungi infecting Anoplophora glabripennis[J]. Biological Control, 2008, 53(3): 517-528.
    [21] Shanley R P, Hajek A E. Environmental contamination with Metarhizium anisopliae from fungal bands for control of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae) [J]. Biocontrol Science and Technology, 2008, 18(2): 109-120.
    [22]张波,刘益宁,白杨.宁夏天牛病原真菌的种类和致病力研究[J].北京林业大学学报, 1999, 21(4): 67-72.
    [23]黄勃,樊美珍,李增智.绿僵菌系统分类的研究进展[J].安徽农业大学报, 2002, 29(2): 169-172.
    [24]蒲蛰龙,李增智.昆虫真菌学[M].合肥:安徽科学技术出版社, 1996.
    [25] Driver F, Milner R J, Trueman J W. A taxonomic revision of Metarhizuim based on a phylogenetic analysis of rDNA sequence data[J]. Mycol. Res., 2000, 104(2): 134-150.
    [26]蒲蛰龙.昆虫病理学[M].广州:广东科技出版社, 1992.
    [27]宋漳.液体深层培养绿僵菌分生孢子的研究[J].林业科学, 2001, 37(5): 134-139.
    [28]江英成.绿僵菌和白僵菌侵染马尾松毛虫试验比较[J].浙江林学院学报, 2000, 17(4): 410-413.
    [29]宋漳,卢凤美,陈辉.绿僵菌和白僵菌对刚竹毒蛾的毒力比较[J].西北林学院学报, 2003, 18 (3): 43-46.
    [30] Glare T R, Miliner R J, Chilvers G A. The effect of environmental factors on the production. discharge and germination of primary conidia of Zoophthora phalloides Batko[J]. J. lnvertebr Pathol., 1986, 48: 275-280.
    [31] Hajek A E, Carruthers R J, Soper R S. Temperature and moisture relations of sporulation and germination by Entomophageof maimaiga (Zygomycetes:Entomophthiotaceae), a fungal pathogen of lymanira dispar (Lepidoptera Lymantriidae) [J]. Environ. Entomol., 1990, 19: 85-90.
    [32] Newman G G, Carner G R. Environment factors affecting conidial sporulation and germination of Entomophthra gammae [J]. Environ. Entomol, 1975, 4: 615-618.
    [33] Daoust R A, Roberts D W. Studies on the prolonged storage of Metarhizium anisopliae conidia: Effect of temperature and relative humidity on conidial viability and virulence against mosquitoes [J]. Journal of Invertebrate Pathology, 1983, 41(2): 143-150.
    [34] By D, Moore P D, Bridge P M, et al. Prior Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens[J]. Annals of Applied Biology, 1993, 122: 605-616.
    [35] Alves R T, Bateman R P, Prior C, et al. Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations [J]. Crop Protection, 1998, 17(8): 675-679.
    [36] Hunt T R, Moore D, Higgins PM, et al. Effect of sunscreens irradiance and resting periods on the germination of Metarhizium anisopliae flavoviride conidia[J]. Entomophaga, 1994, 39 (3/4): 313- 322.
    [37]高松.绿僵菌研究的新进展[J].中国生物防治, 1996, 12(1): 182-187.
    [38]刘爱英,梁宗琦,陈月碧,等.绿僵菌等致病性菌株的筛选[J].生物防治通报, 1987, (3): 23-26.
    [39]樊美珍,郭超,等.绿僵菌防治青杨天牛试验[J].陕西农业科学, 1987, (1): 31-32.
    [40]樊美珍,郭超,王姝清,等.不同菌株绿僵菌酯酶型与其致病力的关系[J].西北林学院学报, 1990, 5(3): 1-6.
    [41] Kucera M. proteases from the fungus Metarhizium anisopliae toxic for Galleria mellonella Larvae [J]. Journal of Invertebrate Pathology, 1980, 35: 304-310.
    [42] St Leger R J. Integument as a barrier to microbial infections [A]. Retnakaran A. The physiology of insect epidermis [C]. Australia: CSIRO., 1991, 94-112.
    [43] Gillespie J P, Bateman R, Charnley A K. Role of cuticle-degrading proteases in the virulence of Metarhizium spp. for the desert locust, Schistocerca gregaria [J]. Journal of Invertebrate Pathology, 1998, 71(2): 128-137.
    [44]樊美珍,黄勃,王建林,等.几种虫生真菌附着孢的莹光显微及扫描电镜观察[J].菌物系统, 1999, 18(3): 249-253.
    [45]翟锦彬,黄秀梨,许萍.杀虫真菌-球孢白僵菌的昆虫致病机理研究近况[J].微生物学通报, 1995, 22(1): 145-148.
    [46] Jeffs L B, Khachatourians G G. Estimation of spore hydrophobicity for member of the genera Beauveria Metarhizium and Tolypochladium by salt mediated aggregation and sedimentation [J]. Canadian Journal of Microbiology, 1997, 43: 23-28.
    [47] Rath A C, Guy P L, Webb W R. Matarhizium spore surface antigens are correlated with pathogenicity[J]. Mycol.Res., 1996, 100(1): 57-62.
    [48] Boucias D G, Pendland J P. The fungal cell wall and its involvement in the pathogenic process ininsect hosts[A]. Latge J P. Fungal cell wall and immune response[C]. Berlin: Springer-Verlag, 1991, 121-137.
    [49]王海川,尤民生.绿僵菌分生孢子对寄主附着孢形成机制的研究进展[J].昆虫知识, 1999, 36(3): 189-192.
    [50]裘辉,吴振强,梁世中.金龟子绿僵菌及其杀虫机理[J].农药, 2004, 43(8): 342-345.
    [51]李会平.桑天牛幼虫高致病性白僵菌菌株筛选及其致病机理研究[D].保定:河北农业大学, 2006.
    [52]樊美珍,李增智.营养物和培养条件对虫生真菌附着胞形成的影响[J].安徽农业大学学报, 1994, 21(2): 123-130.
    [53] St Leger R J, Roberts D W, Staples R C. A model to explain differentiation of appressoria by germlings of Metarhizium anisopliae. Journal of Invertebrate Pathology, 1991, 57: 299-310.
    [54] St Leger R J, Laccetti L B, Staples R C, et al. Protein kinases in the entomopathogenic fungus Metarhizium anisopliae[J]. Journal General Microbiology, 1990, 136: 1401-1411.
    [55] St Leger R J, Butt T M, Staples R C, et al. Second messenger involvement in differentiation of the entomopathogenic fungus Metarhizium anisopliae[J]. Journal General Microbiology, 1990, 136: 1779-1789.
    [56] St Leger R J, Butt T M, Staples R C, et al. Synthesis of proteins including a cuticle-degrading protease during differentiation of the entomopathogenic fungus Metarhizium anisopliae[J]. Experimental Mycology, 1989, 13: 253-262.
    [57] St Leger R J, Butt T M, Groettet M S, et al. Production in vitro of appressoria by the entomopathogenic fungus Metarhizium anisopliae[J]. Experimental Mycology, 1989, 13: 274-288.
    [58] St Leger R J, Roberts D W, Staples R C, et al. Calcium-and calmodulin-mediated protein synthesis and protein phosphorylation during germination growth and protease production by Metarhizium anisopliae[J]. Journal General Microbiology, 1989, 135: 2141-2154.
    [59] Butt T M, Ibrahim L, Clark S J, et al. The germination behavior of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles[J]. Mycology Research, 1995, 99(8): 945-950.
    [60] Charnley A K, St Leger R J. The role of cuticle-degrading enzymes in fungal pathogenesis in insects[A]. Cole G T. In the fungal spore in disease initiation in plans and animal[C]. New York and London: Plenum Press, 1998, 267-287.
    [61] Vilcinskas A, Matha V, GStz P. Effects of the entomopathogenic fungus Metahizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth,Galleria mellonella[J]. Journal of Insect Physiology, 1997, 43(12): 1149-1159.
    [62]王九辉.绿僵菌MA3对椰心叶甲的致病性研究[D].儋州:华南热带农业大学, 2007.
    [63]宋入梅,王云滨,李瑞军,等.甜菜夜蛾感染白僵菌、绿僵菌后的病症及组织病理学变化[J].华北农学报, 2006, 21(增刊): 171-174.
    [64]王音,雷仲仁,张青文,等.小菜蛾感染绿僵菌后的病症及组织病理变化[J].中国生物防治, 2004, 20(3): 156-160.
    [65]黄冬如,雷仲仁,王国平,等.东亚飞蝗感染绿僵菌后的组织病理变化[J].昆虫知识, 2005, 42(2): 183-185.
    [66]郭艳琼,李友莲.马铃薯瓢虫幼虫感染绿僵菌后的组织病理变化[J].山西农业大学学报, 2007, 27(1): 39-41.
    [67]顾勇,张舒.绿僵菌对菜青虫的毒力及其引起的虫体组织病变[J].湖北农业科学, 2007, 46(3): 399-400.
    [68]张世清,王九辉,黄俊生.椰心叶甲感染绿僵菌后的组织病理变化[J].热带作物学报, 2007, 28(3): 97-100.
    [69] Mohamed A K A, Brewer F W. Effect of Nomuraea rileyi on Consumption and Utilization by Helithis zea Larvae[J]. J.Geergia Entomol Soc, 1982, 17: 356-363.
    [70]李增智,刘令峰,刘玉珍.虫生真菌的侵染与马尾松毛虫营养生理及生殖的关系的研究[J].安徽农业大学学报, 1996, 23(3): 381-391.
    [71]宋漳,冯丽贞,景云.马尾松毛虫感染绿僵菌后某些生化指标的变化[J].昆虫知识, 2002, 39(4): 297-300.
    [72]李毅平,龚和.昆虫体内抗氧化系统研究进展[J].生命科学, 1998, 10(5): 240-243.
    [73]李会平,黄大庄,苏筱雨,等.桑天牛幼虫感染白僵菌后体内主要保护酶活性的变化[J].蚕业科学, 2007, 33(4): 634-636.
    [74]张军,宋敦伦,陈建新.家蚕感染蛹虫草后的生理生化变化[J].昆虫学报, 2003, 46(6): 674-678.
    [75]张仙红.玫烟色拟青霉生物学特性及感病菜青虫病理变化的研究[D].太原:山西农业大学, 2005.
    [76]牛宇,薛皎亮,谢映平,等.油松毛虫感染白僵菌后超氧化物歧化酶和过氧化氢酶的变化[J].应用与环境生物学报, 2005, 11(2): 182-186.
    [77]郭艳琼.绿僵菌对马铃薯瓢虫幼虫防效及杀虫机理的初步研究[D].太原:山西农业大学, 2003.
    [78]傅丽君.小菜蛾感染球孢白僵菌后病理反应研究[D].福州:福建农业大学, 2000.
    [79]王海川,尤民生.绿僵菌对昆虫的入侵机理[J].微生物学通报, 1999, 26(1): 71-73.
    [80] St Leger R J, Cooper R M, Charnley A K. The effect of melanization of Manduca sexta cuticle on growth and infection by Metarhizium anisopliae [J]. Journal of Invertebrate Pathology, 1988, 52: 459-470.
    [81] Glinski Z, Buczek K. Response of the Apoidea to fungal infections [J]. Apiacta, 2003, 38: 183-189.
    [82] Wang C S, St Leger R J. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses [J]. Proc Natl Acad Sci, 2006, 103: 6647-6652.
    [83] Gotz P, Matha V, Vilcinskas A. Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella [J]. Journal of Insect Physiology, 1997, 43(12): 1149-1159.
    [84] Vilcinskas A, Matha V, Gotz P. Inhibition of phagocytic activity of plasmatocytes isolated from Galleria mellonella by entomogenous fungi and their secondary metabolites[J]. Journal of Insect Physiology [J]. 1997, 43(5): 475-483.
    [85] Cerenius L, Thornqvist P O, Vey A, et al. The effect of the fungal toxin destruxin E on isolated crayfish haemocyte [J]. Journal of Insect Physiology, 1990, 36(1): 785-789.
    [86] Vey A, Matha V, Dumas C. Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction [J]. Journal of Invertebrate Pathology, 2002, 80(3): 177-187.
    [87]蔡峻,叶恭银,胡萃.昆虫血细胞包囊作用的研究进展[A].张广学.走向21世纪的中国昆虫学-中国昆虫学会2000年学术年会[C].北京:科学技术出版社, 2000, 263-269.
    [88] Lee H S, Cho M Y, Lee K M, et al. The pro-phenoloxidase of coleopteran insect. Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions [J]. FEBS Lett., 1999, 444: 255-259.
    [89]黄自然,陈劲伟.昆虫防御机制研究的一些进展[J].生物学通报, 1990, 10: 9-10.
    [90]张礼生,张泽华,高松,等.绿僵菌生物农药的研制与应用[J].中国生物防治, 2006, 22(增刊): 141-146.
    [91]裘辉,吴振强,梁世中.金龟子绿僵菌及其杀虫机理[J].农药, 2004, 43(8): 342-345.
    [92]李宝玉,张泽华,农向群,等.真菌杀虫剂产品标准化研究进展[J].中国生物防治, 2004, 20(增刊): 32-38.
    [93]丁福章,张泽华,张礼生,等.绿僵菌对椰心叶甲的控制作用研究[J].西南大学学报(自然科学版), 2006, 28(3): 454-456.
    [94] Tsutsumi T, Yamanaka M. Effects of nonwoven fabric sheet containing entomogenous fungus, Beauvria brongniartii (Sacc). Petch GSES, on adults yellow spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae) on fig tree[J]. Jap J Appl Entomol Zool, 1996, 40(2): 145-151.
    [95] Yonezawa A. Pest control effect of Beauveria fungus non-woven fabric medicine for mulberry white-spotted longicorn [J]. Hojo, 1997, 35: 48-49.
    [96] Okitsu M, Kishi Y, Takagi Y. Control of adults of Monochamus alternates Hope (Coleptera: Cerambycidae) by application of non-woven fabric strips containing Beauveria bassiana (Deutyeromycotina: Hyphomycetes) on infested tree trunks[J]. J. Jap Forest Soc, 2000, 82(3):276-280.
    [97]张波,白杨,岛津光明,等.无纺布防治光肩星天牛成虫的初步研究.西北林学院学报, 1999, 14(l): 68-72.
    [98]王滨,樊美珍,李增智.白僵菌无纺布结合引诱剂防治鞘翅目林业害虫研究初报.中国生物防治, 2003, 19(2): 91-92.
    [99]刘云鹏,夏成润,王四宝,等.球抱白僵菌无纺布菌剂与引诱剂联合防治松褐天牛初报.安徽农业大学学报, 2005, 32(4): 415-418.
    [100] Pierdomenico Marannino, Cándido Santiago-álvarez, Enrico de Lillo, et al. Evaluation of Metarhizium anisopliae to target larvae and adults of Capnodis tenebrionis (L.) (Coleoptera: Buprestidae) in soil and fiber band applications [J]. Journal of Invertebrate Pathology, 2008, 97(3): 237-244.
    [101]林文清.防治云南松毛虫绿僵菌毒力菌株的筛选与培养[D].福州:福建农林大学, 2006.
    [102] Zimmermann G. The‘Galleria bait method’for detection of entomopathogenic fungi in soil [J]. Zeitschrift Angewandte Entomologie, 1986, 102: 213-215.
    [103]高松,农向群,邓春生.利用大蜡螟诱集法从土壤中分离昆虫病原真菌[J].中国生物防治, 1996, 12(3): 142-143.
    [104] Bruck D J. Natural occurrence of entomopathogens in Pacific Northwest nursery soils and their virulence to the black vine weevil, Otiorhynchus sulcatus(F.) (Coleoptera: Curculionidae)[J]. Environmental Entomology, 2004, 33 (5): 1335-1343.
    [105]李会平,黄大庄,王晓红,等.用黄粉虫诱集法分离球孢白僵菌及对桑天牛幼虫高毒力菌株的筛选[J].蚕业科学, 2006, 32(3): 320-323.
    [106]徐祥彬.玫烟色拟青霉生物学特性及致病机理研究[D].太原:山西农业大学, 2004.
    [107]汪章勋,黄勃,周权,等.粉拟青霉不同菌株生物学特性的研究[J].安徽农业大学学报, 2005, 32(1): 8-11.
    [108] Amritha J N, De Croos, Michael J Bidochka. Effects of low temperature on growth parameters in the entomopathogenic fungus Metarhizium anisopliae[J]. Canadian Journal of Microbiology, 1999, 45(12): 1055-1061.
    [109] Houping Liu, Margaret Skinner, Michael Brown bridge, et al. Characterization of Beauveria bassiana and Metarhizium anisopliae isolates for management of tarnished plant bug, Lygus lineolaris(Hemiptera:Miridae)[J]. Journal of Invertebrate Pathology, 2003, 82: 139-147.
    [110]詹儒林,覃伟权,宋妍,等.海南椰心叶甲病原菌金龟子绿僵菌的分离、鉴定及其生防潜力[J].生态学报, 2007, 27(4): 1558-1562.
    [111]陈巍巍,冯明光.玫烟色拟青霉的研究与应用现状[J].昆虫天敌, 1999, 21(3): 140-144.
    [112]赵杰宏,刘爱英,梁宗琦.虫生真菌的毒力稳定性研究[J].西南农业学报, 2004, 17(4):790-793.
    [113]陈祝安,张玉琢,谢佩华,等.绿僵菌对暗黑金龟蛴螬的室内致病力测定[J].中国生物防治, 1995, 11(2): 54-55.
    [114] Vidal C, Lacey L A, Fargues J. Pathogenicity of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) against Bemisia argentifolii (Homoptera: Aleyrodidae) with a description of a bioassay method[J]. Econ. Entomol, 1997, 90: 765-772.
    [115] Quesada-Moraga E, Santos-Quiros R, Valverde-Garcia P, et al. Virulence horizontal transmission and sublethal reproductive effects of Metarhizium anisopliae (Anamorphic fungi) on the German cockroach (Blattodea: Blatellidae) [J]. Journal of Invertebrate Pathology, 2004, 87: 51-58.
    [116] Quesada-Moraga E, Vey A. Intra-specific Variation in Virulence and In Vitro Production of Macromolecular Toxins Active Against Locust Among Beauveria bassiana Strains and Effects of InVivo and InVitro Passage on These factors [J]. Biocontrol Science and Technology, 2003, 13: 323-340.
    [117]李娟.根虫瘟霉转寄主菌株侵染力增强的免疫及生化机制[D].杭州:浙江大学, 2004.
    [118]李季生,夏爱华,高绘菊,等.蝇蛆寄生对家蚕血细胞和酚氧化酶活性的影响[J].蚕业科学, 2006, 32(2): 268-271.
    [119]李娟,徐均焕,冯明光.大菜粉蝶根虫瘟霉菌株转染小菜蛾后侵染力变化及其与寄主血淋巴酚氧化酶活性的关系[J].昆虫学报, 2004, 47(5): 567-572.
    [120] Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254.
    [121] Bidochka M J, Khachatourians G G. Protein hydrolysis in grasshopper cuticles by entomopathogenic fungal extracellular proteases[J]. Journal of Invertebrate Pathology, 1994, 63: 7-13.
    [122] Gillespie J P, Burnett C, Charnley A K. The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum [J]. Journal of Insect Physiology, 2000, 46: 429-437.
    [123] Butt T M, Goettel M S. Bioassays of entomogenous fungi[A]. Navon A. Bioassays of entomogenous microbes and nematodes [C]. Wallingford, UK: CABI, 2000, 141-191.
    [124] Wraight SP, Butt TM, Galaini-WraightS, et al. Germination and infection processes of the entomophthoralean fungus Erynia radicans on the potato leafhopper, Empoasca fabae[J]. Journal of Invertebrate Pathology, 1990, 56: 157-174.
    [125]张福仁,苏红田,马蓓.光肩星天牛部分器官的扫描电镜观察[J].内蒙古农牧学院学报, 1997, 18(2): 55-59.
    [126] Hassan A E M, Charnley A K. Ultrastructural study of the penetration by Metarhizuim anisopliaethrough dimilin-affected cuticle of Manduca sexta[J]. Journal of Invertebrate Pathology, 1989, 54: 117-124.
    [127]王音,雷仲仁,张青文,等.绿僵菌侵染小菜蛾幼虫过程的透射电镜观察[J].昆虫学报, 2006, 49(6): 1042-1045.
    [128]傅丽君.小菜蛾感染球抱白僵菌后病理反应研究[D].福建:福建农业大学, 2000.
    [129] Hajek A E, St Leger R J. Interactions between fungal pathogenesis and insect hosts [J]. Annu Rev Entomol, 1994, 39: 293-322.
    [130] Yu X Q, Zhu Y F, Ma C, et al. Pattern recognition proteins in: Vanduca serta plasma[J]. Insect Biochem Mol Riol, 2002, 32: 1287-1293.
    [131]翟锦彬,黄秀梨.球孢白僵菌对棉铃虫细胞防御反应的影响[J].北京师范大学学报(自然科学版), 1996, 32(4): 541-545.
    [132]黄冬如.绿僵菌对东亚飞蝗致病机理的初步研究[D].长沙:湖南农业大学, 2004.
    [133]时连根,钟伯雄,徐俊良.家蚕血淋巴对病原白僵菌的防御机理[J].农业生物技术学报, 2001, 9(4): 383-386.
    [134]陆龙喜,时连根.家蚕血细胞对病原白僵菌的防御反应研究[J].浙江农业学报, 2001, 13(4): 201-204.
    [135]梁子才,程振衡.亚洲玉米螟幼虫血淋巴的免疫反应[J].昆虫学报, 1991, 34(2): 141-145.
    [136] Hung S Y, Boucias D G, Vey A J. Effect of Beauveria bassiana and candida albicans on the cellular defense response of Spodoptera exigua[J]. Journal of Invertebrate Pathology, 1993, 61: 179-187.
    [137] Hung S Y, Boucias D G. Influence of Beauveria bassiana on the cellular defense response of the beet armyworm, Spodoptera exigua[J]. Journal of Invertebrate Pathology, 1992, 60: 152-158.
    [138]胡琼波,任顺祥.绿僵菌素的研究进展[J].中国生物防治, 2004, 20(4): 234-242.
    [139]孙云霄.印楝素对桑天牛的生物活性和作用机制[D].南京:南京林业大学, 2002.
    [140]汪家政,范明.蛋白质技术手册.北京:科学出版社, 2001, 42-47.
    [141] Dwyer J, Perry C A, Gouris R R, et al. Health effects of salicylates in foods and drugs [J]. Nutrition Reviews, 1996, 54(8): 225-240.
    [142]张志良.植物生理学实验指导[M].高等教育出版社. (第二版).
    [143]潘勇军,谢洪泉,谭晓明,等.碘量滴定法测定过氧化氢溶液浓度的改进[J].理化检验:化学分册, 2003, 39(7): 404-405.
    [144]张彦广,王志刚,黄大庄.桑天牛羧酸酯酶和谷胱甘肽-S-转移酶与杨树次生代谢物质相关性研究[J].林业科学, 2001, 37(3): 106-111.
    [145]张彦广,黄大庄,王志刚,等.杨树次生代谢物质对光肩星天牛羧酸酯酶和谷胱甘肽-S-转移酶的影响[J].林业科学, 2001, 37(6): 123-128.
    [146]慕立义.植物化学保护研究方法[M].北京:农业出版社, 1994, 160-161.
    [147]慕立义.植物化学保护研究方法[M].北京:农业出版社, 1994, 148-149.
    [148]李周直,沈惠娟,蒋巧根,等.几种昆虫体内保护酶系统活力的研究[J].昆虫学报, 1994, 37(4): 399-403.
    [149]张仙红,王宏民,李文英,等.菜青虫感染玫烟色拟青霉后血淋巴蛋白质含量及几种保护酶活力的变化[J].昆虫学报, 2006, 49(2): 230-234.
    [150] Vestergaard S, Butt T M. Light and electron microscopy studies of the infection of the western flower thrips Frankliniella Occidentalis (Thysanoptera: Thripidae) by the entomopathogenic fungus Metarhizium anisopliae[J]. Journal of Invertebrate Pathology, 1999, 73: 25-33.
    [151]王晓红,纪惠芳,黄大庄,等.桑天牛幼虫感染白僵菌后的组织病理研究[J].蚕业科学, 2008, 34(1): 18-23.
    [152]王楚桃.绿僵菌侵染蝗虫差异糖蛋白及其酪氨酸蛋白磷酸酶在寄主血淋巴中的靶标蛋白分析[D].重庆:重庆大学, 2007.
    [153]王茂先,王国秀,李志强,等.棉铃虫感染中华卵索线虫后血淋巴游离氨基酸含量的变化[J].昆虫学报, 2004, 47(2): 277-280.
    [154]苏筱雨,黄大庄,贝蓓,等.球孢白僵菌对桑天牛幼虫血淋巴游离氨基酸含量的影响[J].蚕业科学, 2008, 34(3): 518-520.
    [155]傅丽君,尤民生,戴小华.小菜蛾感染球孢白僵菌后血淋巴游离氨基酸的测定[J].华东昆虫学报, 2001, 10(1): 34-38.
    [156]傅丽君.小菜蛾血淋巴游离氨基酸含量测定[J].微量元素与健康研究, 2006, 23(2): 28-29.
    [157]李会平,黄大庄,高洁,等.保护酶在桑天牛与不同抗性杨树之间的互作过程[J].蚕业科学, 2006, 32(4): 578-581.
    [158]韩冰,从斌,刘亚臣.不同品系昆虫病原线虫对大蜡螟羧酸酯酶活性的影响[J].安徽农业科学, 2006, 34(7): 1393-1396.
    [159]杨君,王勤英,宋萍,等.嗜线虫致病杆菌血腔毒素Tp40对大蜡螟幼虫体内酶活性和中肠组织的影响[J].昆虫学报, 2008, 51(6): 601-608.
    [160]豆威.嗜卷书虱谷胱甘肽S-转移酶生化毒理学特性及其cDNA片段克隆初探[D].重庆:西南大学, 2006.
    [161]侯成香,桂仲争.家蚕谷胱甘肽硫-转移酶的组织分布及发育期变化规律[J].蚕业科学, 2007, 33(3): 409-413.
    [162]张常忠,高希武,郑炳宗.棉铃虫谷胱甘肽S-转移酶的活性分布和发育期变化及植物次生物质的诱导作用[J].农药学学报, 2001, 3(1): 30-35.
    [163]丁中.不同种群甘薯茎线虫对乙酰胆碱酯酶抑制剂的敏感性差异及机理[D].长沙:湖南农业大学, 2007.
    [164] Devorshak C, Reo R M. The role of esterases in insecticide resistance [J]. Rev.Toxicology, 1998, 2: 501-537.
    [165]郭艳琼,李友莲.黄绿绿僵菌对马铃薯瓢虫体内几种酶活性的影响[J].植物保护, 2007, 33(3): 33-42.
    [166] Sloman I S, Reynolds S E. Inhibition of ecdysteroid secretion from Manduca prothoracic glands in vitro by destruxins-byclic depsipeptide toxins from the insect pathogenic fungus Metarhizium anisopliae[J]. Insect Biochem.Molec.Biol., 1993, 23(1): 43-46.
    [167] Chen J W, Liu B L, Tzeng Y M. Purification and quantification of destruxins A and destruxins B from Metarhizium anisopliae[J]. Journal of Chromatography A, 1999, 830(1): 115-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700