用户名: 密码: 验证码:
Egf17的新作用:通过EGFR活化FAK促进肝细胞癌侵袭转移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(HCC)是当前严重威胁我国人民生命健康的重大恶性肿瘤,而其复发转移是导致死亡率居高不下的最主要原因。究其发生的机制虽有大量研究,但目前仍未完全阐明。因此,深入研究HCC复发转移的分子机制并以此为基础探索防治复发转移的有效措施,对进一步提高HCC的总体治疗水平具有重要意义。
     表皮生长因子样结构域7(Egfl7)是近年来新发现的一种分泌型蛋白,已有的研究证明其在胚胎血管发育的成管过程中发挥了重要作用。近来的研究发现Egfl7能够显著增强内皮细胞及成纤维细胞的运动迁移能力,提示Egfl7具有调控细胞运动迁移的生物学功能。更重要的是,Egfl7在胚胎组织中高水平表达,在成熟组织中几乎不表达,而在肿瘤等增殖性组织中呈高度上调,提示Egfl7可能在肿瘤发生、发展中发挥了重要作用。我们前期的研究也发现,Egfl7 mRNA在HCC组织中的表达水平明显上调并与HCC包膜形成密切相关,提示Egfl7可能参与HCC侵袭转移过程,但其作用机制目前尚不清楚。因此,本研究在进一步分析Egfl7在HCC中表达情况的基础上,通过慢病毒介导的小RNA干扰技术抑制Egfl7的表达,通过一系列体外、体内方法研究Egfl7调控HCC侵袭转移的分子机制,同时探讨阻断Egfl7表达对HCC侵袭转移的影响。我们获得了以下研究结果:
     1.我们采用半定量RT-PCR、荧光实时定量PCR和Western blot等方法检测了Egfl7 mRNA和蛋白在31例新鲜HCC组织及相应邻近非瘤肝组织(ANLT)中的表达水平,结果发现Egfl7 mRNA和蛋白在HCC组织中均明显高表达,且Egfl7在孤立性大肝癌(SLHCC)中的表达明显低于结节性肝癌(NHCC)。免疫组化法检测112例HCC组织的结果显示Egfl7在90.2%(101/112)的HCC组织中表达,且其表达水平与HCC的肿瘤结节数目、有无静脉浸润及有无包膜形成等临床病理特征密切相关。Egfl7高表达组HCC患者的无瘤生存时间及总体生存时间均明显短于Egfl7低表达组的患者,且单因素与多因素Cox回归模型均显示Egfl7高表达是HCC预后的独立危险因素。同时,夹心ELISA法发现HCC病人血清中Egfl7水平相对于慢性肝病病人、胃肠道恶性肿瘤病人、肝良性肿瘤病人和正常人亦明显上升(详见颜鹏等其他研究生毕业论文)。这些结果提示Egfl7的高表达与HCC的侵袭转移密切相关,并可能因此而影响了HCC患者的预后。
     2.双标间接组织免疫荧光法检测Egfl7在HCC组织中的分布情况,结果显示Egfl7绝大多数定位于HCC组织中的肿瘤细胞胞质内。Western blot方法检测Egfl7蛋白在HepG2、MHCC97-L及HCCLM3这三种侵袭转移能力依次升高的肝癌细胞系中的表达并以常氏肝细胞系CCL13作为对照,结果显示Egfl7蛋白在三种肝癌细胞系中的表达水平较之CCL13细胞系均明显升高,且以HCCLM3细胞系的表达水平最高,在MHCC97-L细胞系中的表达水平次之,HepG2最低,提示Egfl7的表达水平与与肝癌细胞的侵袭转移潜能密切相关。
     3.我们构建了pLKO.1~(Egfl7RNAi+)siRNA质粒,并建立了稳定表达Egfl7 siRNA片断和对照片断的HCCLM3细胞(HCCLM3~(Egfl7RNAi+)和HCCLM3~(Egfl7RNAi-))。Western blot结果发现HCCLM3~(Egfl7RNAi+)细胞中Egfl7蛋白的表达被明显抑制,干预效率超过70%。划痕实验和Transwell侵袭小室实验结果均显示HCCLM3~(Egfl7RNAi+)细胞较HCCLM3~(Egfl7RNAi-)细胞迁移运动能力明显下降;MTT法结果显示HCCLM3~(Egfl7RNAi+)和HCCLM3~(Egfl7RNAi-)细胞的增殖能力无显著性差异(P>0.05);Annexin V和PI双染法结合流式细胞仪检测结果显示HCCLM3~(Egfl7RNAi+)与HCCLM3~(Egfl7RNAi-)细胞的凋亡的差异无统计学差异(P>0.05)。且Bcl-x_L和BAX在HCCLM3~(Egfl7RNAi+)与HCCLM3~(Egfl7RNAi-)细胞中的表达无明显差异性(P>0.05)。这些研究结果均提示:体外抑制Egfl7的表达可以显著抑制肝癌细胞的迁移运动,而不影响其增殖和凋亡。
     4.已有研究发现Egfl7敲除的小鼠中,血管内皮细胞中局部粘着斑激酶(FAK)的磷酸化水平明显下降,同时血管内皮细胞的迁移能力明显减弱。我们因而推测,Egfl7可能通过促进FAK磷酸化激活从而调控肝癌细胞的迁移运动能力。因此,我们用Western blot法证明HCCLM3~(Egfl7RNAi+)细胞中总FAK水平没有明显改变,但磷酸化FAK水平明显下降。当我们用全长重组Egfl7蛋白(50ng/ml)刺激HCCLM3~(Egfl7RNAi+)细胞后,Western blot检测结果显示其磷酸化FAK水平明显上调;细胞免疫荧光结果显示其肌动蛋白(F-actin)细胞骨架发生明显的形变;划痕实验和Transwell侵袭小室实验证明其迁移运动能力明显增强。这些结果提示Egfl7可通过调控FAK磷酸化激活从而促进肝癌细胞的迁移运动。
     5.鉴于Egfl7拥有两个表皮生长因子样结构域(EGF-likedomain),我们推测其可能通过表皮生长因子受体(EGFR)介导FAK的磷酸化激活。因此,我们利用EGFR的特异性抑制剂(15μM)先行处理HCCLM3~(Egfl7RNAi+)细胞,再施以Egfl7蛋白(50ng/ml)刺激,观察HCCLM3~(Egfl7RNAi+)细胞中FAK磷酸化水平、细胞骨架及迁移运动能力的变化。结果显示,HCCLM3~(Egfl7RNAi+)细胞中FAK磷酸化水平无明显变化,F-actin细胞骨架无明显形变,细胞迁移运动能力亦无明显增强,即EGFR抑制剂可阻断Egfl7蛋白刺激HCCLM3~(Egfl7RNAi+)细胞所产生的后续效应,提示Egfl7通过EGFR介导FAK磷酸化而促进肝癌细胞迁移运动,证明Egfl7/EGFR/FAK这一信号传导通路在肝癌细胞迁移运动的调控中发挥了重要作用。
     6.为在体内观察抑制Egfl7对肝癌侵袭转移的影响,我们在HCCLM3转移性人肝癌细胞裸鼠模型的基础上,建立了裸鼠原位肝癌转移模型。免疫组化结果显示,siRNA抑制Egfl7表达后,裸鼠肝脏原位HCCLM3种植瘤中Egfl7及磷酸化FAK的表达水平明显下调;测量肝脏原位种植瘤的大小及周围结节数目,结果显示体内抑制Egfl7的表达能够抑制HCCLM3原发瘤的生长并减少其肝内转移;裸鼠肺组织连续切片计数肺转移的数目,结果显示体内抑制Egfl7能够抑制HCCLM3细胞的肺转移。我们的结果证明体内抑制Egfl7表达可抑制FAK磷酸化并显著抑制了HCC的生长和肝内外转移。
     我们的上述研究结果首次证明Egfl7在HCC组织及病人血清中高表达,且其表达水平与HCC肿瘤结节数目、包膜形成及静脉浸润等临床病理特征密切相关,并显著影响了HCC患者的预后。同时,我们首次发现Egfl7主要表达于HCC组织中的肿瘤细胞,且Egfl7可通过EGFR介导FAK磷酸化促进肝癌细胞迁移运动,从而在HCC侵袭转移中发挥重要作用,抑制Egfl7表达可在体内外显著抑制肝癌细胞的侵袭转移。本研究首次揭示了Egfl7在HCC侵袭转移中的新的生物学作用并初步阐明其作用机制,提示Egfl7可作为HCC诊断、复发转移监测和预后评估的新型血清/分子标志物及HCC复发转移治疗的潜在干预靶点,有望为HCC的诊断及复发转移的防治提供新的理论依据和研究思路。
Hepatocellular carcinoma (HCC) is one of the most common malignancies in China. Though the hepatic resection for HCC has evolved into a safe procedure with low operative mortality, the long-term survival remains unsatisfactory because of a high incidence of recurrence and metastasis after the hepatic resection. Thus, the inhibition of invasion and metastasis is of great importance in the HCC therapies.
     Epidermal growth factor-like domain 7 (Egfl7) is a recently identified secreted protein and once believed to be specifically expressed in endothelial cells (ECs) and essential in the process of vascular development. Recent studies have demonstrated that Egfl7 can act as a chemoattractant for cell migration and regulate collective migration of ECs, indicating that Egfl7 may be important in cell motility. Interestingly, Egfl7 expression is high during embryonic development, down-regulated in almost all mature tissues, and increases again during tumorigenesis. Moreover, our previous results have shown the overexpression of Egfl7 in HCC tissues, implicating its potential role in HCC. However, its role in HCC remains unknown. Therefore, we carried out the present study to determine the expression of Egfl7 in human HCC tissues as well as cell lines and tried to elucidate the function of Egfl7 in the metastasis of HCC by characterizing its role in cell migration through both in vitro and in vivo models.
     1. Semi-quantitative PCR, real-time quantitative PCR and Western blot were employed to detect Egfl7 mRNA and protein in 31 cases of HCC tissues and corresponding adjacent nontumorous liver tissues (ANLTs). Our results showed that both of Egfl7 mRNA and protein expression levels increased significantly in HCC tissues. Meanwhile, Egfl7 mRNA and protein expression levels were significantly higher in nodular hepatocellular carcinoma than those in solitary large hepatocellular carcinoma. Immunohistochemistry was used to detect Egfl7 in 112 cases of HCC tissues and the results showed that Egfl7 expressed in 90.2% of HCC tissues (101/112) and its expression correlates significantly with multiple nodules, without capsular and vein invasion. ELISA determination also showed that serum Egfl7 level in HCC patients increased significantly compared with chronic liver disease patients, gastroenterological cancer patients, benigh liver tumor patients and normal people. Moreover, HCC patients within the high Egfl7 expression group had either poorer disease free survival or poorer overall survival than those within the low expression group. By univariable and multivariable Cox regression analysis, high Egfl7 expression was found to be independent prognostic factors for overall survival.
     2. Double-labeled indirect histoimmunofluorescence was performed to detect the distribution of Egfl7 in HCC tissue. HCC cells in tissues, identified by anti-AFP antibody labeling, were positively stained by a special anti-Egfl7 antibody, suggesting that the Egfl7 protein in HCC tissues were mainly expressed in plasma of HCC carcinoma cells, but not ECs. We further confirm the Egfl7 expression in three HCC cell lines: HepG_2, MHCC97-L and HCCLM3, with a liver cell line CCL13 as a control. The results showed a significantly higher expression of Egfl7 in HCC cells than in normal live cells. Among the three cell lines analyzed, HCCLM3 cells have the highest Egfl7 expression, followed by MHCC97-L and HepG2. Of note is that the different expression levels of Egfl7 correlate with the metastatic potential of these HCC cell lines, suggesting a potential role for Egfl7 in HCC metastasis.
     3. To define the correlation of Egfl7 expression and HCC metastasis, we employed siRNA approach to inhibit expression of Egfl7 in HCCLM3 cells. We identified three putative candidate sequences and one control sequence and cloned them into the pLKO.1.puro lentiviral expression vector. After selection with puromycin, HCCLM3 cell lines stably expressed siRNA-expressing sequence and control sequences, were obtained and named as HCCLM3~( Egfl7RNAi+) and HCCLM3 ~( Egfl7RNAi-) respectively. The expression of Egfl7 protein was decreased dramatically in HCCLM3~( Egfl7RNAi+) compared with HCCLM3~( Egfl7RNAi-), which showed a more than 70% inhibitory efficiency. Wound-healing assay and Transwell invasion assay were employed to determine the migration of HCCLM3 cells and the results showed the decreased migration of HCCLM3~( Egfl7RNAi+) cells compared with HCCLM3~( Egfl7RNAi-) cells. Proliferation rates of HCCLM3~( Egfl7RNAi+) and HCCLM3~( Egfl7RNAi-) cells were compared by MTT method and the results showed no significant deference between these two cells. At the same time, apoptosis in HCCLM3~( Egfl7RNAi+) and HCCLM3~( Egfl7RNAi-) cells, as determined using FASC, showed no significant difference (P>0.05). Bcl-x_L and BAX were also detected by Western blot and their expression levels were not significantly changed between HCCLM3~( Egfl7RNAi+) and HCCLM3~( Egfl7RNAi-) cells. These results suggest that Egfl7 contributes to metastasis without significantly effecting proliferation and apoptosis of HCCLM3 cell.
     4. In Egfl7 deficient mice, the focal adhesion kinase (FAK) phosphrylation of EC was significantly reduced, implicating the potential property of Egfl7 in regulation of cell motility. Based on this, we presumed that Egfl7 might enhance cell motility by activating FAK. Therefore, we documented the decreased phosphrylated FAK in HCCLM3~( Egfl7RNAi+) cells without significant change of total FAK level by Western blot. Then we treated HCCLM3~( Egfl7RNAi+) cells with recombinant Egfl7 protein and found the phosphorylated FAK level significantly elevated after this stimulation. Meantime, F-actin was reorganized in HCCLM3~( Egfl7RNAi+) cells and the enhanced migration also was evidenced by wound healing assay and Transwell assay, implicating an important role of Egfl7 in controlling cell motility through mediating FAK phosphrylation.
     5. Based on two EGF-like domains included in the structure of Egfl7, we presumed Egfl7 may mediate FAK phosphrylation through EGFR just like EGF. Then we treated HCCLM3~( Egfl7RNAi+)cells with EGFR inhibitor (15μM) before recombinant Egfl7 protein (50ng/ml) stimulation and found that the FAK phosphrylation, F-actin reorganization level, and cell migration did not change siginificantly. The effects of Egfl7 protein on HCCLM3~( Egfl7RNAi+)cells were all blocked by EGFR inhibitor, which implicated that FAK activation by Egfl7 was EGFR-dependent and the Egfl7/EGFR/FAK pathway may be critical in controlling HCC cell motility.
     6. We examined the in vivo relevance of the potential role for Egfl7 in HCC tumorigenesis by using a mouse implantation model. The expression of Egfl7 and phosphorylated FAK in HCCLM3 tumor was determined by immunohistochemistry and the results showed that the expression of Egfl7 and phosphorylated FAK was all significantly decreased in HCCLM3~( Egfl7RNAi+) tumor than that in HCCLM3~( Egfl7RNAi-) tumor. At the 35th day after implantation, we found that the average size of liver tumors in HCCLM3~( Egfl7RNAi+) group was dramatically smaller than that of HCCLM3~( Egfl7RNAi-) group. Two of eight mice in the HCCLM3~( Egfl7RNAi+) group showed intrahepatic metastasis (25%), which is significantly lower than that in the HCCLM3~( Egfl7RNAi-) group (seven of eight, 88%). The pulmonary metastasis was observed in the lung tissue sections of only one mouse in HCCLM3~( Egfl7RNAi+) group (one of eight, 13%), much less than the ratio of pulmonary metastasis in HCCLM3~( Egfl7RNAi-) group (four of eight, 50%). Together, these data support an important role for Egfl7 in HCC metastasis.
     In conclusion, our study has shown for the first time that Egfl7 expresses in HCC carcinoma cells and its overexpression in HCC tissues and serum significantly correlates to poor prognosis of HCC. Furthermore, we have demonstrated the novel role of Egfl7 in metastasis of HCC by enhancing cell motility through EGFR- dependent FAK phosphorylation, implicating Egfl7 as a novel serum/ molecular marker for diagnosis, monitoring after hepatectomy and prognosis of HCC and a potential therapeutic target for metastasis of HCC.
引文
[1] Roberts LR. Sorafenib in liver cancer-just the beginning. N Engl J Med. 2008;359:420-422.
    [2] Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in Advanced Hepatocellular Carcinoma. N Engl J Med. 2008; 359:378-390.
    [3] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics. 2002; CA Cancer J Clin. 2005;55:74-108.
    [4] 张思维,李连弟,鲁凤珠,等.中国1990-1992年原发性肝癌死亡调查分析.中华肿瘤杂志.1999:21:245-249.
    [5] Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology.2005;42:1208-1236.
    [6] 杨连粤,黄耿文,黄建华,等.114例大肝癌的手术切除.中国实用外科杂志.2002:22:353-355.
    [7] Yang LY, Fang F, Ou DP, et al. Solitary large hepatocellular carcinoma: a specific subtype of hepatocellular carcinoma with good outcome after hepatic resection. Ann Surg. 2009;249:118-123.
    [8] Fan ST, Lo CM, Liu CL, et al. Hepatectomyfor hepatocellular carcinoma: toward zero hospital deaths. Ann Surg. 1999;229:322-330.
    [9] Song TJ, Ip EW, Fong Y. Hepatocellular carcinoma: current surgical management. Gastroenterology. 2004;127:S248-260.
    [10] El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557-2576.
    [11] Vel(?)zquez RF, Rodr(?)guez M, Navascu(?)s CA, et al. Prospective analysis of risk factors for hepatocellular carcinoma in patients with liver cirrhosis. Hepatology.2003;37:520-527.
    [12] Ou DP, Yang LY, Huang GW, et al. Clinical analysis of the risk factors for recurrenceof HCC and its relationship with HBV. World J Gastroenterol. 2005;11:2061-2066.
    [13] Poon RT, Fan ST, Wong J, et al. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg.2000;232:10-24.
    [14] Pang RW, Joh JW, Johnson PJ, et al. Biology of hepatocellular carcinoma. Ann Surg Oncol. 2008; 15:962-971.
    [15] Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006; 6: 674-687.
    [16] Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563-572.
    [17] Ye QH, Qin LX, Forgues M, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med. 2003;9:416-423.
    [18] Li J, Zhou J, Chen G, et al. Inhibition of ovarian cancer metastasis by adeno-associated virus-mediated gene transfer of nm23H1 in an orthotopic implantation model. Cancer Gene Ther. 2006; 13:266-272.
    [19] Yang JM, Peng ZH, Si SH, et al. KAI1 gene suppresses invasion and metastasis of hepatocellular carcinoma MHCC97-H cells in vitro and in animal models. Liver Int. 2008;28:132-139.
    [20] Ching YP, Leong VY, Lee MF, et al. P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res. 2007;67:3601-3608.
    [21] Li WC, Ye SL, Sun RX, et al. Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3. Clin Cancer Res. 2006;12:7140-7148.
    [22] Li Y, Tian B, Yang J, et al. Stepwise metastatic human hepatocellular carcinom a cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J Cancer Res Clin Oncol. 2004; 130:460-468.
    [23] Yang LY, Wang W, Peng JX, et al. Differentially expressed genes between solitary large hepatocellular carcinoma and nodular hepatocellular carcinoma. World J Gastroenterol. 2004;10:3569-3573.
    [24] Yang LY, Tao YM, Ou DP, et al. Increased expression of Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 correlated with poor prognosis of hepatocellular carcinoma. Clin Cancer Res. 2006; 12:5673-5679.
    [25] Wang W, Yang LY, Huang GW, et al. Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis. Br J Cancer. 2004;90:2349-2355.
    [26] Chang ZG, Yang LY,Wang W, et al. Determination of high mobility group Al (HMGA1) expression in hepatocellular carcinoma: a potential prognostic marker. Dig Dis Sci. 2005;50:1764-1770.
    [27] Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology. 2008;48:2047-2063.
    [28] Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48:1312-132.
    [29] Soncin F, Mattot V, Lionneton F, et al. VE-statin, an endothelial repressor of smooth muscle cell migration. EMBO J. 2003;22:5700-5011.
    [30] Caetano B, Drobecq H, Soncin F. Expression and purification of recombinant vascular endothelial-statin. Protein Expr Purif. 2006;46:136-142.
    [31] Parker LH, Schmidt M, Jin SW, et al. The endothelial cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428:754-758.
    [32] Campagnolo L, Leahy A, Chitnis S, et al. EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am J Pathol.2005; 167:275-284.
    [33] Schmidt M, Paes K, De Maziere A, et al. EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. Development. 2007;134:2913-2923.
    [34] Ruoslahti E, Sepp(?)l(?) M. alpha-Fetoprotein in cancer and fetal development. Adv Cancer Res. 1979;29:275-346.
    [35] Edmondson HA, Steiner PE. Primery caricinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer. 1954;7:462-504.
    [36] Shimizu M, Saitoh Y, Itoh H. Immunohistochemical staining of Ha-ras oncogeneproduct in normal, benign, and malignant human pancreatic tissues. Hum Pathol.1990;21:607-612.
    [37] Sato K, Miki S, Tachibana H, et al. A synthetic peptide corresponding to residues 137 to 157 of p60v-src inhibits tyrosine-specific protein kinases. Biochem Biophys Res Commun. 1990;171:1152-1159.
    [38] Wang W, Wu F, Fang F, et al. Inhibition of invasion and metastasis of hepatocellular carcinoma cells via targeting RhoC in vitro and in vivo. Clin Cancer Res. 2008;14:6804-6812.
    [39] Ou DP, Tao YM, Tang FQ, et al. The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer. 2007;120:1208-1214.
    [40] Ou DP, Tao YM, Chang ZG, et al. Hepatocellular carcinoma cells containing hepatitis B virus X protein have enhanced invasive potential conditionally. Dig Liver Dis. 2006;38:262-267.
    [41] Wang W, Yang LY, Yang ZL, et al. Elevated expression of autocrine motility factor receptor correlates with overexpression of RhoC and indicates poor prognosis in hepatocellular carcinoma. Dig Dis Sci. 2007;52:770-775.
    [42] Xu D, Perez RE, Ekekezie Ⅱ, et al. Epidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death. Am J Physiol Lung Cell Mol Physiol. 2008;294:Ll7-23.
    [43] Makuuchi M, Imamura H, Sugawara Y, Takayama T. Progress in surgical treatment of hepatocellular carcinoma. Oncology. 2002;62:74-81.
    [44] 杨连粤,杨建青,黄建华,等.大肝癌的外科治疗体会.临床外科杂志.2001;9:11-13
    [45] 杨连粤,黄耿文.大肝癌的外科治疗策略.临床外科杂志.2001;9:4-5.
    [46] Marrero JA. Hepatocellular carcinoma. Curr Opin Gastroenterol. 2005;21:308-312.
    [47] Ou DP, Yang LY, Huang GW, et al. Clinical analysis of the risk factors for recurrence of HCC and its relationship with HBV. World J Gastroenterol 2005;11:2061-2066.
    [48] Varghese HJ, Mackenzie LT, Groom AC, et al. In vivo videomicroscopy reveals differential effects of the vascular-targeting agent ZD6126 and the anti-angiogenic agent ZD6474 on vascular function in a liver metastasis model. Angiogenesis. 2004;7:157-164.
    [49] Yamazaki D, Suetsugu S, Miki H, et al. WAVE2 is required for directed cell migration and cardiovascular development. Nature. 2003;424:452-456.
    [50] Wang W, Wu F, Fang F, et al. RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cellorganization.Cancer Sci. 2008;99:2012-2018.
    [51] Kuhnert F, Mancuso MR, Hampton J, Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008;135:3989-3993.
    [52] Musiyenko A, Bitko V, Barik S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J Mol Med. 2008; 86:313-322.
    [53] Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008; 15:272-284.
    [54] Gandemer V, Rio AG, de Tayrac M, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;23:385.
    [55] D(?)az R, Silva J, Garc(?)a JM, et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer. 2008;47: 794-802.
    [56] Saito Y, Friedman JM, Chihara Y, et al. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun. 2009;379:726-731.
    [57] Patra SK, Patra A, Rizzi F, et al. Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev. 2008;27:315-334.
    [58] Shimada K, Sano T, Sakamoto Y, et al. A long-term follow-up and management study of hepatocellular carcinoma patients surviving for 10 years or longer after curative hepatectomy. Cancer. 2005; 104:1939-1947.
    [59] Poon RT, Fan ST, Ng IO, et al. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer. 2000;89:500-507.
    [60] Fitch MJ, Campagnolo L, Kuhnert F, et al. Egfl7, a Novel Epidermal Growth Factor-Domain Gene Expressed in Endothelial Cells. Dev Dyn. 2004;230:316-324.
    [61] Campagnolo L, Moscatelli I, Pellegrini M, et al. Expression of EGFL7 in primordial germ cells and in adult ovaries and testes. Gene Expr Patterns. 2008; 8:389-396.
    [62] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411: 494-498.
    [63] Rana TM. Illuminating the silence: understanding the structure and function ofsmall RNAs. Nat Rev Mol Cell Biol. 2007;8:23-36.
    [64] Fuchs U, Borkhardt A. The application of siRNA technology to cancer biology discovery. Adv Cancer Res. 2007;96:75-102.
    [65] Putral LN, Gu W, McMillan NA. RNA interference for the treatment of cancer. Drug News Perspect. 2006; 19:317-324.
    [66] Putnam D, Doody A. RNA-interference effectors and their delivery. Crit Rev Ther Drug Carrier Syst. 2006;23:137-164.
    [67] Herold MJ, van den Brandt J, Seibler J, et al. Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats.ProcNatlAcad Sci U S A. 2008;105:18507-18512.
    [68] Zamule SM, Strom SC, Omiecinski CJ. Preservation of hepatic phenotype in lentiviral-transduced primary human hepatocytes. Chem Biol Interact. 2008; 173:179-186.
    [69] Sumimoto H, Kawakami Y. Lentiviral vector-mediated RNAi and its use for cancer research. Future Oncol. 2007;3:655-664.
    [70] Simpson CD, Anyiwe K, Schimmer AD. Anoikis resistance and tumor metastasis. Cancer Lett. 2008;272:177-185.
    [71] Douma S, Van Laar T, Zevenhoven J, et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004; 430: 1034-1039.
    [72] Li S, Hua ZC. FAK expression regulation and therapeutic potential. Adv Cancer Res. 2008;101:45-61.
    [73] Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006;18:516-523.
    [74] Cox BD, Natarajan M, Stettner MR, et al. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem. 2006;99: 35-52.
    [75] Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003; 116:1409-1416.
    [76] Fujii T, Koshikawa K, Nomoto S, et al. Focal adhesion kinase is overexpressed in hepatocellular carcinoma and can be served as an independent prognostic factor. J Hepatol. 2004;41:104-111.
    [77] Itoh S, Maeda T, Shimada M, et al. Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clin Cancer Res. 2004;10:2812-2817.
    [78] Niwa Y, Kanda H, Shikauchi Y, et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene. 2005;24:6406-6417.
    [79] Dai HY, Hong CC, Liang SC, et al. Carbonic anhydrase Ⅲ promotes transformation and invasion capability in hepatoma cells through FAK signaling pathway. Mol Carcinog. 2008;47:956-963.
    [80] Sieg DJ, Hauck CR, Ilic D, et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2:249-256.
    [81] Tian J, Tang ZY, Ye SL, et al. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer. 1999;81:814-821.
    [82] Li Y, Tang ZY, Ye SL, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol. 2001;7:630-636.
    [83] Li Y, Tang Y, Ye L, et al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol. 2003;129:43-51.
    [84] Tomimaru Y, Sasaki Y, Yamada T, et al. The significance of surgical resection for pulmonary metastasis from hepatocellular carcinoma. Am J Surg. 2006; 192:46-51.
    [85] Lu XD, Qin WX, Li JJ, et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res. 2005;65:6843-6849.
    [1] Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006; 6: 674-687.
    [2] Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563-572.
    [3] Soncin F, Mattot V, Lionneton F, et al. VE-statin, an endothelial repressor of smooth muscle cell migration. EMBO J. 2003;22:5700-5011.
    [4] Parker LH, Schmidt M, Jin SW, et al. The endothelial cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428:754-758.
    [5] Campagnolo L, Leahy A, Chitnis S, et al. EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am J Pathol. 2005;167:275-284.
    [6] Schmidt M, Paes K, De Mazi(?)re A, et al. EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. Development. 2007;134:2913-2923.
    [7] Gandemer V, Rio AG, de Tayrac M, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;23:385.
    [8] D(?)az R, Silva J, Garc(?)a JM, et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer. 2008;47: 794-802.
    [9] Xiong JW, Leahy A, Lee HH, et al. Vezfl: a Zn finger transcription factor restricted to endothelial cells and their precursors. Dev Biol. 1999;206:123-141.
    [10] Ma X, Zhang K, Li X. Evolution of Drosophila ribosomal protein gene core promoters. Gene. 2009;432:54-59.
    [11] Doliana R, Bot S, Bonaldo P, et al. EMI, a novel cysteine-rich domain of EMILINs and other extracellular proteins, interacts with the gC1q domains and participates in multimerization. FEBS Lett. 2000;484:164-168.
    [12] Callebaut I, Mignotte V, Souchet M, et al. EMI domains are widespread and reveal the probable orthologs of the Caenorhabditis elegans CED-1 protein. Biochem Biophys Res Commun. 2003;300:619-623.
    [13] Steno J, Stenberg Y, Muranyi A. Calcium-binding EGF like modules in coagulation proteinases: function of the calcium ion in module interactions. Biochim. Biophys Acta 2000;1477:51-63.
    [14] Lawrence N, Klein T, Brennan K, et al. Structural requirements for notch signalling with delta and serrate during the development and patterning of the wing disc of Drosophila. Development. 2000; 127:3185-3195.
    [15] Fitch MJ, Campagnolo L, Kuhnert F, et al. Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn. 2004;230:316-324.
    [16] Campagnolo L, Leahy A, Chitnis S, et al. EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am J Pathol.2005;167:275-284.
    [17] Drake CJ, Fleming PA. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood.2000;95:1671-1679.
    [18] Ruoslahti E, Sepp(?)l(?) M. alpha-Fetoprotein in cancer and fetal development. Adv Cancer Res. 1979;29:275-346.
    [19] Collins JJ, Black PH. Specificity of the carcinoembryonic antigen (CEA). N Engl J Med. 1971 ;285:175-176.
    [20] Campagnolo L, Moscatelli I, Pellegrini M, et al. Expression of EGFL7 in primordial germ cells and in adult ovaries and testes. Gene Expr Patterns. 2008;8:389-396.
    [21] Brown LA. et al. Insights into early vasculogenesis revealed byexpression of the ETS-domain transcription factor Fli-1 in wild-type andmutant zebrafish embryos. Mech.Dev. 2000;90:237-252.
    [22] Lawson ND, Weinstein BM. Arteries and veins: making a difference with zebrafish. Nature Rev Genet. 2002;3:674-682.
    [23] Zhong TP, Rosenberg M, Mohideen M-ApnK, et al. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science. 2000;287:1820-1824.
    [24] Gandemer V, Rio AG, de Tayrac M, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1 -positive leukemia. BMC Genomics. 2007;23:385.
    [25] Diaz R, Silva J, Garcia JM, et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer. 2008;47: 794-802.
    [26] Saito Y, Friedman JM, Chihara Y, et al. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun. 2009;379:726-731.
    [27] Patra SK, Patra A, Rizzi F, et al. Demethylation of (Cytosine-5-C-methyl) DNA and regulation of transcription in the epigenetic pathways of cancer development. Cancer Metastasis Rev. 2008;27:315-334.
    [28] Oppenheimer SB. Cellular basis of cancer metastasis: A review of fundamentals and new advances. Acta Histochem. 2006;108:327-334.
    [29] Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997;80:1529-1537.
    [30] Nussbaum T, Samarin J, Ehemann V, et al. Autocrine insulin-like growth factor-Ⅱ stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis.Hepatology. 2008;48:146-156.
    [31] Jeng YM, Chang CC, Hu FC, et al. RNA-binding protein insulin-like growth factor Ⅱ mRNA-binding protein 3 expression promotes tumor invasion and predicts early recurrence and poor prognosis in hepatocellular carcinoma. Hepatology. 2008;48:1118-1127.
    [32] Saunders LP, Ouellette A, Bandle R, et al. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion.Mol Cancer Ther. 2008;7:3352-3362.
    [33] Saxena NK, Taliaferro-Smith L, Knight BB, et al. Bidirectional crosstalk between leptin and insulin-like growth factor-Ⅰ signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res. 2008;68:9712-9722.
    [34] Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14:6735-6741.
    [35] Rudolph MI, Boza Y, Yefi R, et al. The influence of mast cell mediators on migration of SW756 cervical carcinoma cells. J Pharmacol Sci. 2008;106:208-218.
    [36] Hollier BG, Kricker JA, Van Lonkhuyzen DR, et al. Substrate-bound insulin-like growth factor (IGF)-I-IGF binding protein-vitronectin-stimulated breast cell migration is enhanced by coactivation of the phosphatidylinositide 3-Kinase/AKT pathway by alphav-integrins and the IGF-I receptor. Endocrinology. 2008; 149:1075-1090.
    [37] Zhao Y, Min C, Vora SR, et al. The lysyl oxidase pro-peptide attenuates fibronectin-mediated activation of focal adhesion kinase and pl30Cas in breast cancer cells. J Biol Chem. 2009;284:1385-1393.
    [38] Carpenter PM, Dao AV, Arain ZS, et al. Motility induction in breast carcinoma by mammary epithelial laminin 332 (laminin 5). Mol Cancer Res. 2009;7:462-475.
    [39] Mundy GR, DeMartino S, Rowe DW. Collagen and collagen-derived fragments are chemotactic for tumor cells. J Clin Invest. 1981;68:1102-1105.
    [40] Waas JA, Varani J, Piontek GE, et al. Responses of normal and malignant cells to collagen, collagen-derived peptides and the C5-related tumor cell chemotactic peptide. Cell Differ 1981;10:329-332.
    [41] Vicente-Manzanares M, Sanchez-Madrid F. Role of the cytoskeleton during leukocy- te responses. Nat Rev Immunol. 2004;4:110-122.
    [42] Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Imm- unol. 2000;18:217-242.
    [43] Li S, Hua ZC. FAK expression regulation and therapeutic potential. Adv Cancer Res. 2008;101:45-61.
    [44] Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol. 2006; 18:516-523.
    [45] Cox BD, Natarajan M, Stettner MR, et al. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem. 2006;99:35-52.
    [46] Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003;116: 1409-1416.
    [47] Fujii T, Koshikawa K, Nomoto S, et al. Focal adhesion kinase is overexpressed in hepatocellular carcinoma and can be served as an independent prognostic factor. J Hepatol. 2004;41:104-111.
    [48] Itoh S, Maeda T, Shimada M, et al. Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clin Cancer Res. 2004;10:2812-2817.
    [49] Niwa Y, Kanda H, Shikauchi Y, et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene. 2005;24:6406-6417.
    [50] Dai HY, Hong CC, Liang SC, et al. Carbonic anhydrase Ⅲ promotes transformation and invasion capability in hepatoma cells through FAK signaling pathway. Mol Carcinog. 2008;47:956-963.
    [51] Sieg DJ, Hauck CR, Ilic D, et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2:249-256.
    [52] Douma S, Van Laar T, Zevenhoven J, et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004; 430:1034-1039.
    [53] Simpson CD, Anyiwe K, Schimmer AD. Anoikis resistance and tumor metastasis. Cancer Lett. 2008;272:177-185.
    [54] Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998;281:1322-1326.
    [55] Xu D, Perez RE, Ekekezie Ⅱ, et al. Epidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death. Am J Physiol Lung Cell Mol Physiol. 2008;294:L17-23.
    [56] Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness.Am J Pathol. 2000; 156:1363-80.
    [57] Sood AK, Fletcher MS, Hendrix Mary JC. The embryonic-like properties of aggressive human tumor cells. J Soc Gynecol Investig. 2002;9:2-9.
    [58] Tomimaru Y, Sasaki Y, Yamada T, et al. The significance of surgical resection for pulmonary metastasis from hepatocellular carcinoma. Am J Surg. 2006; 192: 46-51.
    [59] Pauli BU, Augustin-Voss HG, el-Sabban ME, et al. Organ- preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 1990; 9:175-189.
    [60] Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50-56.
    [61] Ambros V. MicroRNA pathways in flies and worms: Growth, death, fat, stress and timing. Cell. 2003; 113:673-676.
    [62] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.2004; 116:281-297.
    [63] Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc Natl Acad Sci U S A. 2004; 101:2999-3004.
    [64] Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682-688.
    [65] Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008; 10: 202-210.
    [66] Yu F, Yao H, Zhu P, Zhang X, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109-1123.
    [67] Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNas and host genes. RNA. 2005; 11:241-247.
    [68] Musiyenko A, Bitko V, Barik S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J Mol Med. 2008; 86:313-322.
    [69] Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008; 15:261-271.
    [70] Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008; 15:272-284.
    [71] Kuhnert F, Mancuso MR, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008; 135:3989-3993.
    [72] Musiyenko A, Bitko V, Barik S.Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J Mol Med. 2008; 86:313-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700