用户名: 密码: 验证码:
大鼠肌肉挫伤后组织中时间相关基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的运用差异显示技术结合硝酸银染色筛选大鼠肌肉挫伤后与正常肌肉表达差异的基因,并通过Real-time PCR方法研究差异基因与损伤时间的关系,旨在寻找一种或几种与损伤相关的敏感基因,为法医学损伤时间推断提供科学、有效的指标。
     方法1. 12只健康成年SD大鼠随机分为实验组和正常对照组。实验组大鼠建立肌肉挫伤模型,损伤后4小时处死,提取100mg损伤处肌肉组织。对照组大鼠在规定时间内处死,提取相同部位100mg肌肉组织。两组肌肉组织经SV Total RNA Isolation system提取总RNA,并经Agilent 2100 Bioanalyzer进行质量控制检测, SIN值大于8.0的样本经反转录后用于下游实验。
     2.采用4种锚定引物和3种随机引物共12种组合对实验组和对照组样本进行PCR扩增,扩增产物经聚丙烯酰胺凝胶电泳分离后硝酸银染色进行差异表达分析。采用煮沸法回收差异条带,并进行二次扩增,扩增产物纯化后与载体连接、克隆,进行序列分析,将测序所得差异序列与GenBank进行同源性比较。
     3. 4只健康成年SD大鼠随机分为正常对照组和损伤组,提取各组样本的总RNA。在差异序列两端设计特异性引物,采用SYBR?Green I染料法进行Real-time PCR扩增,通过分析扩增曲线及溶解曲线,鉴定差异表达基因的真伪。
     4. 12只健康成年SD大鼠随机分为正常对照组、损伤后6小时组和损伤后12小时组。采用Real-time PCR检测正常肌肉组织、损伤后6小时肌肉组织和损伤后12小时肌肉组织中β-Actin等九种常用内参基因的表达水平,通过Normfinder、geNorm和BestKeeper三种软件分析九种常用内参基因在肌肉组织损伤后表达的稳定性,寻找合适的内参基因。
     5. 54只健康成年SD大鼠随机分为正常对照组和损伤组,建立不同损伤时间大鼠肌肉挫伤模型,提取总RNA、反转录后采用差异基因的上下游特异性引物进行Real-time PCR扩增,分析差异基因与损伤时间的关系。
     结果1.采用Progema公司的SV Total RNA Isolation System提取的总RNA具有较高的RIN值,且没有DNA及蛋白质的污染。各样本RIN值在8.3~8.8之间,均大于8.0。每个样本都可见清晰的18s及28s峰,在18s峰之前基线平坦,没有降解的RNA片段出现。28s峰之后,基线也比较平直,说明没有基因组DNA及蛋白质的污染,可以保证后续验证实验的准确性。
     2.经过对21条感兴趣的差异条带进行回收及再扩增,共有12条差异条带得到成功回收。DNA重组、转化及蓝白斑筛选重组成功的载体,经序列分析有5条差异条带片段较长,其他条带片段较短,多数为引物二聚体序列。
     3.经过与GenBank进行同源性比较及Real-time PRC鉴定,5条差异性片段均从总RNA中得到了有效扩增,且溶解曲线均为单一峰型,说明均为阳性差异片段。其中3条为已知基因,与sTnI、Mx2及Cox6c匹配度较高,另外两条可能为新基因,有待于进一步研究。
     4.通过Real-time PCR的方法测定损伤后不同时间点肌肉组织中常用内参基因的CT值,经geNorm、Normfinder及BestKeeper软件分析,得出RPL13和RPL32在肌肉组织损伤后表达相对稳定,可以作为内参基因对目的基因进行均一化处理。而常用的β-Actin及GAPDH在不同损伤时间肌肉组织中表达不稳定。
     5、经Real-time PCR分析,sTnI mRNA在损伤后表达逐渐降低,在0.5 h、1 h、6 h sTnI mRNA表达量分别为正常组的78.17%、41.58%、32.13%,且差异具有统计学意义(P<0.05),6 h~36 h sTnI mRNA表达量与对照组相比无统计学差异(P>0.05)。Mx2 mRNA在损伤后0.5小时表达骤然升高达到正常对照组的84.3倍,随着损伤时间的延长,其表达量逐渐下降,损伤后18小时降低到正常对照组的0.65倍,在损伤后24小时又出现一个表达高峰,达正常对照组的37.1倍,随后又逐渐下降。Frag-3 mRNA在损伤早期随着时间延长表达量逐渐增高,损伤后6小时其表达量高达正常对照组的243.5倍,损伤后12小时恢复到接近正常表达量水平,损伤后18小时,又出现一个小的表达高峰,为正常对照组的11.38倍,随后又下降至正常组水平。肌肉挫伤后Cox6c mRNA表达量的变化幅度较小,在正常组表达量的0.24~1.57倍之间。损伤后0.5小时,Cox6c mRNA表达量最高,为正常对照组的1.57倍。随着损伤时间的延长,其表达量逐渐减少,在1小时和6小时分别为正常对照组的1.29倍和1.19倍。损伤后18小时,其表达量已降至正常组水平以下,30小时表达量最低,为正常对照组的0.24倍。Frag-5 mRNA在肌肉损伤后36小时内均呈现相对高表达的状态。损伤的初始阶段其表达量迅速升高, 0.5小时达到正常对照组的5.7倍,1小时达到一个高峰,为正常对照组的6.19倍。随后开始下降,12小时达到最低表达量,为正常对照组的1.2倍。在18小时达到又一个高峰,为正常对照组的8.6倍。
     结论通过DDRT-PCR技术共发现5条差异性片段,其中三条与sTnI、Mx2及Cox6c的基因序列匹配度较高,另外两条可能为新基因。经实时荧光定量分析,sTnI、Cox6c mRNA相对表达量与损伤时间有关,随肌肉挫伤后时间的延长呈现规律性变化,且其变化幅度较小,速度较平稳,可以考虑作为损伤时间推断的标记。
Objective: Differential display was used to isolate early time-related genes from the contused skeletal muscle of rats in order to find one or several sensitive gene, and the expression levels of the differential display genes mRNA in skeletal muscle were examined by real-time PCR to determine whether it can be used as a marker for wound age estimation.
     Methods: 1. A total of 12 Sprague-Dawley male rats, around 10 to 12 weeks old, weighing between 250 and 300 g, were used in this study. The rats were divided into 2 parts: control group (n=6) and contusion group (n=6). Animals were kept under a 12 h light-dark cycle with free access to food and water. After the rats were anesthetized with ethylether and the right posterior limb was shaved, a depilatory agent was applied to remove residual hair. Subsequently, the rats were placed on a foam bed, and a 250 g counterpoise was raised and allowed to fall freely 150 cm through a clear Lucite guide tube onto the right posterior limb of rats. After injury was made, the rats were reared in a cage and fed commercial rat food and tap water ad libitum. At 4 h after contusion, the rats were sacrificed with a lethal dose of pentobarbital (350 mg/kg of body weight intraperitoneal injection). Approximate 100 mg muscle sample was dissected from the right posterior limb, cut into two parts and immediately frozen in liquid nitrogen. Total RNA was isolated from muscle specimens (weighing approximately 50 mg) using the SV Total RNA Isolation System following the instructions provided with the kit. The concentration (ng/μL) and total RNA integrity was assessed using an Agilent 2100 Bioanalyser by loading samples onto the Eukaryote total RNA nano-chip. And only those RNA with a RNA Integrity Number (RIN) above 8.0 and with clearly visible 28/18s peaks was used for the following experiment.
     2. A total of 12 combinations of anchor primers and random primers were used to amplify the cDNA from the control group and contused group skeletal muscle. The PCR products were analyzed by the PAGE with silver staining. The differential display bands were purified with the vector, cloned, sequence analyzed and homologated with GenBank.
     3. The specific primers to the differential dispaly fragments were used to amplify the specific PCR products from the total RNA by the Real-time PCR, in order to indentify the authenticity of differential display fragments.
     4. In order to identify the endogenous reference genes for normalization of the gene expression in the contused skeletal muscle, a panel of nine candidate reference genes, such asβ-Actin and GAPDH, were tested in the control group, 6 h and 12 h group after contusion by the Real-time PCR. Then the potential endogenous reference genes were tested by three different software packages, Normfinder, geNorm and BestKeeper.
     5. A total of 54 Sprague-Dawley male rats, which were divided into 2 parts : control group (n=6) and 0.5, 1, 6, 12, 18, 24, 30 and 36 h (n=6) contusion group, were used to examine the expression levels of the differential display genes mRNA in skeletal muscle by real-time PCR.
     Results: 1.All samples were performed on Agilent 2100 Bioanalyzer using the RNA 6000 LabChips Kit. Approximate 0.1-0.4μg of total RNA was extracted from each milligram wet muscle using the SV Total RNA Isolation System. And only those RNA with a RNA Integrity Number (RIN) above 8.0 and with clearly visible 28/18s peaks was used for the following experiment.
     2. A total of 21 differential display bands were cut from the PAGE, and 12 of them were successfully amplified. Then the DNA was recombined to the vector, and cloned in the E.coli. The sequence was analyzed by the Takara. As a result, 5 fragments were long enough to be homologated with GenBank.
     3. Each of 5 fragments was successfully amplified from the total RNA using the special primers. And the dissociation curve of them all showed singal cusps, which suggested that there were no other PCR productions besides our target gene, and there was no primer dimmer.
     4. The results, which were analyzed by the Normfinder, geNorm and BestKeeper, showed that the RPL13 and RPL32 were more stable than other endogenous reference genes in normalizing the genes expression of skeletal muscle.
     5. The expression level of sTnI mRNA decreased gradually after contusion, at 0.5 h , 1 h and 6 h after contusion, the expression level decreased to 78.17% (P<0.05), 41.58% (P<0.05) and 32.13% of that in the control group. The expression level of Mx2 mRNA upgraded to 84.3 times (P<0.05) of that in the control group at 0.5 h after contusion, then it decreased gradually, at 18 h the expression level was 0.65 times of that in the control group. At 24 h after injury there was another peak of expression which reached 37.1 times of that in the normal control group. The expression level of Frag-3 mRNA upgraded to 243.5 times of that in the normal group at 6 h after contusion, then it decreasd to normal expression level. At 18 h after injury, there was another peak of expression which was 6.3 times of that in the normal group, and then it again decreased to normal expression level. The expression level of Cox6c mRNA had a lesser change. It varied from 0.24 to 1.57 times of that in the normal group. The highest expression level was 1.57 times of that in the control group at 0.5 h after contusion, and the minimum expression level was 0.24 times of that in the control group at 30 h after contusion. The expression level of Frag-5 mRNA was high during 36 h after contusion. At 0.5 h , 1 h and 6 h after contusion, the expression level upgraded to 5.7, 6.1 and 4.27 times of that in the control group . The highest expression level was 8.6 times to that in the control group at 18 h after contusion. At 24 h, 30 h, and 36 h after injury, the expression level decreased to 2.9, 2.6 and 1.8 times of that in the control group.
     Conclusion: Five fragments were found by DDRT-PCR. Three of them had a high homology with the gene sequence of sTnI, Mx2 and Cox6c, and the other two fragments may be new genes. sTnI mRNA and Cox6c mRNA changed regularly along with the injury time, and could be considered as new markers of wound time estimation.
引文
[1] Oehmichen M, Walter T, Meissner C, et al. Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations[J]. J Neurotrauma, 2003,20(1):87-103.
    [2]何芳,张玲莉,刘子龙,等.脑挫伤大鼠胶质细胞GFAP、S00的表达及其损伤时间的推断[J].法医学杂志, 2007,23(3):181-184.
    [3] Skold MK, von Gertten C, Sandberg-Nordqvist AC, et al. VEGF and VEGF receptor expression after experimental brain contusion in rat[J]. J Neurotrauma, 2005,22(3):353-67.
    [4] Oyesiku NM, Evans CO, Houston S, et al. Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain[J]. Brain Res, 1999,833(2):161-72.
    [5] Holmin S, Schalling M, Hojeberg B, et al. Delayed cytokine expression in rat brain following experimental contusion[J]. J Neurosurg, 1997,86(3):493-504.
    [6]李朝晖,祝家镇.不同机械性损伤皮肤创缘EGFR表达的研究[J].法医学杂志, 1996,12(3):136-138.
    [7] Ortiz-Rey JA, Suarez-Penaranda JM, Munoz-Barus JI, et al. Expression of fibronectin and tenascin as a demonstration of vital reaction in rat skin and muscle[J]. Int J Legal Med, 2003,117(6):356-60.
    [8] Li-Korotky HS, Hebda PA, Kelly LA, et al. Identification of a pre-mRNA splicing factor, arginine/serine-rich 3 (Sfrs3), and its co-expression with fibronectin in fetal and postnatal rabbit airway mucosal and skin wounds[J]. Biochim Biophys Acta, 2006,1762(1):34-45.
    [9] Liu N, Chen Y, Huang X. Fibronectin EIIIA splicing variant: a useful contribution to forensic wounding interval estimation[J]. Forensic Sci Int, 2006,162(1-3):178-82.
    [10]薛爱民,赵子琴,沈忆文,等.人体皮肤切创纤维连接蛋白EDA、EDB的表达与损伤时间关系的研究[J].法医学杂志, 2003,19(3):140-142.
    [11] Takamiya M, Fujita S, Saigusa K, et al. Simultaneous detections of 27 cytokines during cerebral wound healing by multiplexed bead-based immunoassay for wound age estimation[J]. J Neurotrauma, 2007,24(12):1833-44.
    [12]李梅,黄培军,刘敏,陈晓刚,廖志钢.大鼠皮肤钝器伤血管内皮生长因子表达变化的研究[J].法医学杂志, 2003,19(1):13-15.
    [13] Hayashi T, Ishida Y, Kimura A, et al. Forensic application of VEGF expression to skin wound age determination[J]. Int J Legal Med, 2004,118(6):320-5.
    [14]陈志明,汪德文,吴旭,等.大鼠皮肤切创愈合过程中ICAM-1及P选择素的表达[J].中国法医学杂志, 2003,18(4):199-201.
    [15] Dressler J, Bachmann L, Strejc P, et al. Expression of adhesion molecules in skin wounds: diagnostic value in legal medicine[J]. Forensic Sci Int, 2000,113(1-3):173-6.
    [16] Dressler J, Bachmann L, Kasper M, et al. Time dependence of the expression of ICAM-1 (CD 54) in human skin wounds[J]. Int J Legal Med, 1997,110(6):299-304.
    [17] Peschen M, Lahaye T, Hennig B, et al. Expression of the adhesion molecules ICAM-1, VCAM-1, LFA-1 and VLA-4 in the skin is modulated in progressing stages of chronic venous insufficiency[J]. Acta Derm Venereol, 1999,79(1):27-32.
    [18]李雷波,李梅,廖志钢,等.大鼠皮肤挫裂创细胞间粘附分子-1的表达[J].中国法医学杂志, 2003,18(2):77-80.
    [19]百茹峰,万立华,李红卫,等.兔皮肤钝器伤IL-β、COX-2和MCP- mRNA表达与法医学应用[J].中国法医学杂志, 2007,22(6):375-378.
    [20] Bai R, Wan L, Shi M. The time-dependent expressions of IL-1beta, COX-2, MCP-1 mRNA in skin wounds of rabbits[J]. Forensic Sci Int, 2008,175(2-3):193-7.
    [21] Grellner W, Georg T, Wilske J. Quantitative analysis of proinflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds[J]. Forensic Sci Int, 2000,113(1-3):251-64.
    [22] Sato Y, Ohshima T. The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II)[J]. Int J Legal Med, 2000,113(3):140-5.
    [23]王慧君,丁云川.皮肤切创组织IL-2、TNF-α时间相关性表达的ELISA分析[J].法医学杂志, 2003,19(1):10-12.
    [24]贺立文,祝家镇.细胞因子(IL-6、TNF-α)在损伤时间中原位杂交法研究[J].中国法医学杂志, 1997,12(3):133-137.
    [25]高建波,汪德文,吴旭,等.大鼠皮肤挫伤修复过程中NFκB表达的研究[J].中国法医学杂志, 2004,19(1):16-18.
    [26]颜峰平,陈忆九,黄晓华.大鼠皮肤挫伤后Beclin1和LC3的表达[J].法医学杂志, 2007,23(1):11-13.
    [27] Komi-Kuramochi A, Kawano M, Oda Y, et al. Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice[J]. J Endocrinol, 2005,186(2):273-89.
    [28] Takamiya M, Saigusa K, Kumagai R, et al. Studies on mRNA expression of tissue-type plasminogen activator in bruises for wound age estimation[J]. Int J Legal Med, 2005,119(1):16-21.
    [29] Stephenson T, Bialas Y. Estimation of the age of bruising[J]. Arch Dis Child, 1996,74(1):53-5.
    [30] Sisco M, Liu WR, Kryger ZB, et al. Reduced up-regulation of cytoprotective genes in rat cutaneous tissue during the second cycle of ischemia-reperfusion[J]. Wound Repair Regen, 2007,15(2):203-12.
    [31] Bariciak ED, Plint AC, Gaboury I, et al. Dating of bruises in children: an assessment of physician accuracy[J]. Pediatrics, 2003,112(4):804-7.
    [32] Hughes VK, Ellis PS, Burt T, et al. The practical application of reflectance spectrophotometry for the demonstration of haemoglobin and its degradation in bruises[J]. J Clin Pathol, 2004,57(4):355-9.
    [33] Ohshima T. Forensic wound examination[J]. Forensic Sci Int, 2000,113(1-3):153-64.
    [34] Ohshima T, Sato Y. Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality[J]. Int J Legal Med, 1998,111(5):251-5.
    [35] Zubakov D, Hanekamp E, Kokshoorn M, et al. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples[J]. Int J Legal Med, 2008,122(2):135-42.
    [36] Seear PJ, Sweeney GE. Stability of RNA isolated from post-mortem tissues of Atlantic salmon (Salmo salar L.)[J]. Fish Physiol Biochem, 2008,34(1):19-24.
    [37] Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J]. Science, 1992,257(5072):967-71.
    [38] Ikematsu K, Tsuda R, Nakasono I. Gene response of mouse skin to pressure injury in the neck region[J]. Leg Med (Tokyo), 2006,8(2):128-31.
    [39] Pathak RU, Kanungo MS. Subtractive differential display: a modified differential display technique for isolating differentially expressed genes[J]. Mol Biol Rep, 2007,34(1):41-6.
    [40] Zhang J, Turley RB, Stewart JM. Comparative analysis of gene expression between CMS-D8 restored plants and normal non-restoring fertile plants in cotton by differential display[J]. Plant Cell Rep, 2008,27(3):553-61.
    [41] Pasentsis K, Falara V, Pateraki I, et al. Identification and expression profiling of low oxygen regulated genes from Citrus flavedo tissues using RT-PCR differential display[J]. J Exp Bot, 2007,58(8):2203-16.
    [42] Soo C, Sayah DN, Zhang X, et al. The identification of novel wound-healing genes through differential display[J]. Plast Reconstr Surg, 2002,110(3):787-97; discussion 798-800.
    [43]王慧君,丁云川. RT-PCR检测不同时间大鼠皮肤切创TGF-β1mRNA表达[J].中国法医学杂志, 2003,18(2):67-69.
    [44]王梁燕,洪奇华,张耀洲.实时定量PCR技术及其应用[J].细胞生物学杂志, 2004,26(1):62-67.
    [45]郑敏,蔡卫民,等.探寻差异表达基因的方法进展[J].国外医学:流行病学.传染病学分册, 2002,29(1):10-13.
    [46]染雪清,刘丽.筛选大鼠心脏离心训练相关差异表达基因[J].中国病理生理杂志, 2002,18(11):1360-1364.
    [47]杨新艳,刘培欣,单文鲁,等. mRNA差异显示技术及其改进[J].动物医学进展, 2004,25(6):19-21.
    [48]周延凯,周建林,聂东宋.筛选差异表达基因方法的新进展[J].生物技术通讯, 2004,15(6):620-622.
    [49]尹学钧. DD—PCR技术及其在遗传毒理学的应用前景[J].国外医学:卫生学分册, 1999,26(3):156-160.
    [50] Jahn CE, Charkowski AO, Willis DK. Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation[J]. J Microbiol Methods, 2008,75(2):318-24.
    [51] Schroeder A, Mueller O, Stocker S, et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements[J]. BMC Mol Biol, 2006,7(:3.
    [52] Hathaway LJ, Brugger S, Martynova A, et al. Use of the Agilent 2100 bioanalyzer for rapid and reproducible molecular typing of Streptococcus pneumoniae[J]. J Clin Microbiol, 2007,45(3):803-9.
    [53] Sodowich BI, Fadl I, Burns C. Method validation of in vitro RNA transcript analysis on the Agilent 2100 Bioanalyzer[J]. Electrophoresis, 2007,28(14):2368-78.
    [54] Margaritopoulos JT, Kouretas D, Tsitsipis JA. A modified method for the detection of differentially expressed mRNAs without using radioactivity[J]. In Vivo, 2001,15(3):245-7.
    [55]杨荣华,黄其林.银染mRNA差异显示方法的改进与优化[J].第三军医大学学报, 2008,30(14):1393-1394.
    [56]张洪涛,杨秋格,等.银染mRNA差异显示方法的建立和二次扩增参数优化[J].癌症, 2001,20(3):330-331.
    [57]朱靖,杜立新.反转录差异显示技术及其方法的改进[J].动物医学进展, 2005,26(1):19-21.
    [58] Doss RP. Differential display without radioactivity--a modified procedure[J]. Biotechniques, 1996,21(3):408-10, 412.
    [59]陈亮明,张冬林,李志辉,等. PAGE银染和条带回收方法的改进[J].中南林业科技大学学报:自然科学版, 2007,27(6):163-165.
    [60]岳昌明,刘晓颖,王振英. T载体的构建及对小麦差异显示片段的克隆[J].天津师范大学学报:自然科学版, 2008,28(2):8-10.
    [61] Liang P, Meade JD, Pardee AB. A protocol for differential display of mRNA expression using either fluorescent or radioactive labeling[J]. Nat Protoc, 2007,2(3):457-70.
    [62] Liu GY, Xiong YZ. Isolation, sequence analysis and expression profile of a novel porcine gene, CXCL10, differentially expressed in the Longissimus dorsi muscle tissues from Meishan, Meishan x Large White cross and Large White pigs[J]. DNA Seq, 2007,18(6):415-22.
    [63] Tesfaye D, Ponsuksili S, Wimmers K, et al. Identification and quantification of differentially expressed transcripts in in vitro-produced bovine preimplantation stage embryos[J]. Mol Reprod Dev, 2003,66(2):105-14.
    [64] Unver T, Bozkurt O, Akkaya MS. Identification of differentially expressed transcripts from leaves of the boron tolerant plant Gypsophila perfoliata L[J]. Plant Cell Rep, 2008,27(8):1411-22.
    [65] Tanic N, Brkic G, Dimitrijevic B, et al. Identification of differentially expressed mRNA transcripts indrug-resistant versus parental human melanoma cell lines[J]. Anticancer Res, 2006,26(3A):2137-42.
    [66] Filatov VL, Katrukha AG, Bulargina TV, et al. Troponin: structure, properties, and mechanism of functioning[J]. Biochemistry (Mosc), 1999,64(9):969-85.
    [67] Poncz M, Eisman R, Heidenreich R, et al. Structure of the platelet membrane glycoprotein IIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors[J]. J Biol Chem, 1987,262(18):8476-82.
    [68] Moses MA, Wiederschain D, Wu I, et al. Troponin I is present in human cartilage and inhibits angiogenesis[J]. Proc Natl Acad Sci U S A, 1999,96(6):2645-50.
    [69] Feldman L, Rouleau C. Troponin I inhibits capillary endothelial cell proliferation by interaction with the cell's bFGF receptor[J]. Microvasc Res, 2002,63(1):41-9.
    [70] Xiong G, Yang L, Wei Y, et al. Expression of the human fast-twitch skeletal muscle troponin I cDNA in a human ovarian carcinoma suppresses tumor growth[J]. Sci China C Life Sci, 2007,50(1):93-100.
    [71]王珍祥.肌钙蛋白在增生性瘢痕中作用的研究[J].中国美容医学, 2003,12(1):5-6.
    [72] Yamada T. Further observations on MxA-positive Lewy bodies in Parkinson's disease brain tissues[J]. Neurosci Lett, 1995,195(1):41-4.
    [73] Nakade K, Handa H, Nagata K. Promoter structure of the MxA gene that confers resistance to influenza virus[J]. FEBS Lett, 1997,418(3):315-8.
    [74] Miller DM, Zhang Y, Rahill BM, et al. Human cytomegalovirus inhibits IFN-alpha-stimulated antiviral and immunoregulatory responses by blocking multiple levels of IFN-alpha signal transduction[J]. J Immunol, 1999,162(10):6107-13.
    [75] Fontanesi F, Soto IC, Barrientos A. Cytochrome c oxidase biogenesis: new levels of regulation[J]. IUBMB Life, 2008,60(9):557-68.
    [76] Stiburek L, Hansikova H, Tesarova M, et al. Biogenesis of eukaryotic cytochrome c oxidase[J]. Physiol Res, 2006,55 Suppl 2:S27-41.
    [77] Popovici V, Goldstein DR, Antonov J, et al. Selecting control genes for RT-QPCR using public microarray data[J]. BMC Bioinformatics, 2009,10:42.
    [78] Exposito-Rodriguez M, Borges AA, Borges-Perez A, et al. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process[J]. BMC Plant Biol, 2008,8:131.
    [79] Guenin S, Mauriat M, Pelloux J, et al. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references[J]. J Exp Bot, 2009,60(2):487-93.
    [80]陈凤花,王琳,胡丽华.实时荧光定量RT-PCR内参基因的选择[J].临床检验杂志, 2005,23(5):393-395.
    [81] Fu LY, Jia HL, Dong QZ, et al. Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses[J]. BMC Cancer, 2009,9:49.
    [82] Sugden K, Pariante C, McGuffin P, et al. Housekeeping gene expression is affected by antidepressant treatment in a mouse fibroblast cell line[J]. J Psychopharmacol, 2008,DOI:10.1177/0269881108099690.
    [83] Radonic A, Thulke S, Mackay IM, et al. Guideline to reference gene selection for quantitative real-time PCR[J]. Biochem Biophys Res Commun, 2004,313(4):856-62.
    [84] Jain M, Nijhawan A, Tyagi AK, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR[J]. Biochem Biophys Res Commun, 2006,345(2):646-51.
    [85] Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR[J]. J Biochem Biophys Methods, 2000,46(1-2):69-81.
    [86] Hamalainen HK, Tubman JC, Vikman S, et al. Identification and validation of endogenous referencegenes for expression profiling of T helper cell differentiation by quantitative real-time RT-PCR[J]. Anal Biochem, 2001,299(1):63-70.
    [87] Barsalobres-Cavallari CF, Severino FE, Maluf MP, et al. Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions[J]. BMC Mol Biol, 2009,10:1.
    [88] Hong SY, Seo PJ, Yang MS, et al. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR[J]. BMC Plant Biol, 2008,8:112.
    [89] Kim S, Kim T. Selection of optimal internal controls for gene expression profiling of liver disease[J]. Biotechniques, 2003,35(3):456-8, 460.
    [90] Lupberger J, Kreuzer KA, Baskaynak G, et al. Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR[J]. Mol Cell Probes, 2002,16(1):25-30.
    [91] Vijayan K, Thompson JL, Norenberg KM, et al. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles[J]. J Appl Physiol, 2001,90(3):770-6.
    [92] Shave R, Dawson E, Whyte G, et al. The cardiospecificity of the third-generation cTnT assay after exercise-induced muscle damage[J]. Med Sci Sports Exerc, 2002,34(4):651-4.
    [93] Sorichter S, Mair J, Koller A, et al. Skeletal troponin I as a marker of exercise-induced muscle damage[J]. J Appl Physiol, 1997,83(4):1076-82.
    [94] Donoghue P, Doran P, Dowling P, et al. Differential expression of the fast skeletal muscle proteome following chronic low-frequency stimulation[J]. Biochim Biophys Acta, 2005,1752(2):166-76.
    [95] Simpson JA, Labugger R, Collier C, et al. Fast and slow skeletal troponin I in serum from patients with various skeletal muscle disorders: a pilot study[J]. Clin Chem, 2005,51(6):966-72.
    [96] Simpson JA, van Eyk JE, Iscoe S. Hypoxemia-induced modification of troponin I and T in canine diaphragm[J]. J Appl Physiol, 2000,88(2):753-60.
    [97] Willoughby DS, McFarlin B, Bois C. Interleukin-6 expression after repeated bouts of eccentric exercise[J]. Int J Sports Med, 2003,24(1):15-21.
    [98] Mona Augustin M.Sc.*, Pertteli Salmenper? M.Sc.*, ?, Lahja Eurajoki*, Ari Harjula* and Esko Kankuri M.D. Ph.D. Heat Shock Enhances Troponin Expression and Decreases Differentiation-Associated Caspase-3 Dependence in Myoblasts Under Hypoxia[J]. Journal of Surgical Research, 2009,doi:10.1016/j.jss.2008.12.023.
    [99] Baeza-Raja B, Munoz-Canoves P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6[J]. Mol Biol Cell, 2004,15(4):2013-26.
    [100]Shimada I, Matsui K, Brinkmann B, et al. Novel transcript profiling of diffuse alveolar damage induced by hyperoxia exposure in mice: normalization by glyceraldehyde 3-phosphate dehydrogenase[J]. Int J Legal Med, 2008,122(5):373-83.
    [101]Sun JH, Wang YY, Zhang L, et al. Time-dependent expression of skeletal muscle troponin I mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation[J]. Int J Legal Med, 2009,DOI :10.1007/s00414-009-0323-1.
    [102]Landis H, Simon-Jodicke A, Kloti A, et al. Human MxA protein confers resistance to Semliki Forest virus and inhibits the amplification of a Semliki Forest virus-based replicon in the absence of viral structural proteins[J]. J Virol, 1998,72(2):1516-22.
    [103]Thimme R, Frese M, Kochs G, et al. Mx1 but not MxA confers resistance against tick-borne Dhori virus in mice[J]. Virology, 1995,211(1):296-301.
    [104]Pavlovic J, Zurcher T, Haller O, et al. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein[J]. J Virol, 1990,64(7):3370-5.
    [105]Mundt E. Human MxA protein confers resistance to double-stranded RNA viruses of two virus families[J]. J Gen Virol, 2007,88(Pt 4):1319-23.
    [106]Morozumi T, Naito T, Lan PD, et al. Molecular cloning and characterization of porcine Mx2 gene[J]. Mol Immunol, 2009,46(5):858-65.
    [107]Pletneva LM, Haller O, Porter DD, et al. Interferon-inducible Mx gene expression in cotton rats: cloning, characterization, and expression during influenza viral infection[J]. J Interferon Cytokine Res, 2006,26(12):914-21.
    [108]Pletneva LM, Haller O, Porter DD, et al. Induction of type I interferons and interferon-inducible Mx genes during respiratory syncytial virus infection and reinfection in cotton rats[J]. J Gen Virol, 2008,89(Pt 1):261-70.
    [109]Rothman JH, Raymond CK, Gilbert T, et al. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting[J]. Cell, 1990,61(6):1063-74.
    [110]Haller O, Frese M, Kochs G. Mx proteins: mediators of innate resistance to RNA viruses[J]. Rev Sci Tech, 1998,17(1):220-30.
    [111]Horisberger MA. Interferons, Mx genes, and resistance to influenza virus[J]. Am J Respir Crit Care Med, 1995,152(4 Pt 2):S67-71.
    [112]柏干荣,陆松敏.线粒体DNA编码细胞色素氧化酶亚基基因的进展[J].国外医学:分子生物学分册, 2003,25(6):354-357.
    [113]Abe K, Kawagoe J, Aoki M, et al. Stress protein inductions after brain ischemia[J]. Cell Mol Neurobiol, 1998,18(6):709-19.
    [114]Abe K, Kawagoe J, Itoyama Y, et al. Isolation of an ischemia-induced gene and early disturbance of mitochondrial DNA expression after transient forebrain ischemia[J]. Adv Neurol, 1996,71:485-503.
    [115]Sun X, Wang JF, Tseng M, et al. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder[J]. J Psychiatry Neurosci, 2006,31(3):189-96.
    [1]伍新尧.高级法医学(M).郑州人学出版社,2002.21-29.
    [2]闵建雄.法医损伤学(M).中国人民公安大学出版社,2001.252-272.
    [3] Bauer M. RNA in forensic science[J]. Forensic Sci Int Genet, 2007, ] (1 ):69-74.
    [4] Stephenson T, Bialas Y. Estimation of the age of bruising[J]. Arch Dis Child, 1996,74(1 ):53-5.
    [5] Kondo T, Ohshima T, Eisenmenger W. Immunohistochemical and morphometrical study on the temporal expression of interleukin-1 alpha (IL-lalpha) in human skin wounds for forensic wound age determination^]. Int JLegalMed, 1999,112(4):249-52.
    [6] Kondo T, Ohshima T, Mori R, et al. Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination[J]. Int J Legal Med, 2002,116(2):87-91.
    [7]薛爱民,赵子琴,沈忆文,等.人体皮肤切创纤维连接蛋白EDA、EDB的表达与损伤时间关系的研究[J].法医学杂志,2003,19(3):140-142.
    [8]王慧君,武忠弼,黄光照.细胞因子在皮肤创伤修复中的表达及其与损伤时间的关系[J].中国法医学杂志,1999,14(2):119-123.
    [9] Dressier J, Bachmann L, Strejc P, et al. Expression of adhesion molecules in skin wounds: diagnostic value in legal medicine[J]. Forensic Sci Int, 2000,113(l-3):173-6.
    [10] Dressier J, Bachmann L, Kasper M, et al. Time dependence of the expression of ICAM-1 (CD 54) in human skin wounds[J]. Int J Legal Med, 1997,110(6):299-304.
    [11] Betz P, Nerlich A, Wilske J, et al. Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds[J]. Int J Legal Med, 1992,105( 1 ):21 -6.
    [12] Betz P. Immunohistochemical parameters for the age estimation of human skin wounds. A review[J]. Am J Forensic Med Pathol, 1995,16(3):203-9.
    [13] Betz P, Tubel J, Eisenmenger W. Immunohistochemical analysis of markers for different macrophage phenotypes and their use for a forensic wound age estimation[J]. Int J Legal Med, 1995,107(4): 197-200.
    [14] Betz P. Histological and enzyme histochemical parameters for the age estimation of human skin wounds[J]. Int J Legal Med, 1994,107(2):60-8.
    [15] Betz P, Nerlich A, Wilske J, et al. The immunohistochemical analysis of fibronectin, collagen type III, laminin, and cytokeratin 5 in putrified skin[J]. Forensic Sci Int, 1993,61 (l):35-42.
    [16]陈志明,汪德文,吴旭,等.大鼠皮肤切创愈合过程中ICAM-1及P选择素的表达[J].中国法医学杂志,2003,18(4):199-201.
    [17]李雷波,李梅,廖志钢,等.大鼠皮肤挫裂创细胞间粘附分子-1的表达[J].中国法医学杂志,2003,18(2):77-80.
    [18]王慧君,丁云川.皮肤切创组织IL-2、TNF-α时间相关性表达的ELISA分析[J].法医学杂志,2003,19(1):10—12.
    [19]李梅,黄培军,刘敏,等.大鼠皮肤钝器伤血管内皮生长因子表达变化的研究[J].法医学杂志,2003,19(1):13-15.
    [20] Takamiya M, Saigusa K, Nakayashiki N, et al. Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination[J]. Int J Legal Med, 2003,117(l):46-50.
    [21] Grellner W, Georg T, Wilske J. Quantitative analysis of proinflammatory cytokines (IL-lbeta, 1L-6, TNF-alpha) in human skin wounds[J]. Forensic Sci Int, 2000,113(l-3):251-64.
    [22] Sato Y, Ohshima T. The expression of mRNA of proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II)[J]. Int J Legal Med, 2000,113(3): 140-5.
    [23] Ohshima T, Sato Y. Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality[J]. Int J Legal Med, 1998,111 (5):251-5.
    [24] Humphreys-Beher MG, King FK, Bunnel B, et al. Isolation of biologically active RNA from human autopsy for the study of cystic fibrosis[J]. Biotechnol Appl Biochem, 1986,8(5):392-403.
    [25] Finger JM, Mercer JF, Cotton RG, et al. Stability of protein and mRNA in human postmortem liver—analysis by two-dimensional gel electrophoresis[J]. Clin Chim Acta, 1987,170(2-3):209-l 8.
    [26] Johnson SA, Morgan DG, Finch CE. Extensive postmortem stability of RNA from rat and human brain[J].JNeurosci Res, 1986,16(l):267-80.
    [27] Johnston NL, Cervenak J, Shore AD, et al. Multivariate analysis of RNA levels from postmortem human brains as measured by three different methods of RT-PCR. Stanley Neuropathology Consortium[J]. J Neurosci Methods, 1997,77( 1 ):83-92.
    [28] Popova T, Mennerich D, Weith A, et al. Effect of RNA quality on transcript intensity levels in microarray analysis of human post-mortem brain tissues[J]. BMC Genomics, 2008,9(:91.
    [29] Schramm M, Falkai P, Tepest R, et al. Stability of RNA transcripts in post-mortem psychiatric brains[J]. J Neural Transm, 1999,106(3-4):329-35.
    [30] Cummings TJ, Strum JC, Yoon LW, et al. Recovery and expression of messenger RNA from postmortem human brain tissue[J]. Mod Pathol, 2001,14(11):1157-61.
    [31] Bauer M, Gramlich I, Polzin S, et al. Quantification of mRNA degradation as possible indicator of postmortem interval-a pilot study[J]. Leg Med (Tokyo), 2003,5(4):220-7.
    [32] De Paepe ME, Mao Q, Huang C, et al. Postmortem RNA and protein stability in perinatal human lungs[J]. Diagn Mol Pathol, 2002,11 (3): 170-6.
    [33] Kuliwaba JS, Fazzalari NL, Findlay DM. Stability of RNA isolated from human trabecular bone at post-mortem and surgery[J]. Biochim Biophys Acta, 2005,1740( 1): 1 -11.
    [34] Malik KJ, Chen CD, Olsen TW. Stability of RNA from the retina and retinal pigment epithelium in a porcine model simulating human eye bank conditions[J]. Invest Ophthalmol Vis Sci, 2003,44(6):2730-5.
    [35] Gopee NV, Howard PC. A time course study demonstrating RNA stability in postmortem skin[J]. Exp Mol Pathol, 2007,83(l):4-10.
    [36] Zhao D, Zhu BL. Ishikawa T, et al. Real-time RT-PCR quantitative assays and postmortem degradation profiles of erythropoietin. vascular endothelial growth factor and hypoxia-inducible factor 1 alpha mRNA transcripts in forensic autopsy materials[J]. Leg Med (Tokyo), 2006,8(2): 132-6.
    [37] Karlsson H, Guthenberg C, von Dobeln U, et al. Extraction of RNA from dried blood on filter papers after long-term storage[J]. din Chem, 2003,49(6 Pt I ):979-81.
    [38] Inoue H, Kirnura A, Tuji T. Degradation profile of mRNA in a dead rat body: basic semi-quantification study[J]. Forensic Sci Int, 2002,130(2-3): 127-32.
    [39] Tomita H, Vawter MP, Walsh DM, et al. Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain[J]. Biol Psychiatry, 2004,55(4):346-52.
    [40] Catts VS, Catts SV, Fernandez HR, et al. A microarray study of post-mortem mRNA degradation in mouse brain tissue[J]. Brain Res Mol Brain Res, 2005,138(2): 164-77.
    [41] Whitfield PC, Pickard JD. Expression of the immediate early genes c-Fos and c-Jun after head injury in man[J]. Neurol Res, 2000,22(2): 138-44.
    [42]张永亮[1],陈晓钢[2],等.大鼠液压冲击脑损伤脑干c-jun mRNA表达的定位观察[J].中国应用生理学杂志,2001,17(4):337-340.
    [43]王繁泷,刘华,李健,等.大鼠脑干损伤c-fos、c-jun基因的表达[J].中国法医学杂志, 2007,22(6):372-375.
    [44]姚旭,丁新生,吴婷,等.急性外周神经损伤时大鼠c—fos和c-jun mRNA表达的时序性变化[J].中国临床康复,2004,8(31):6905-6907.
    [45] Raghupathi R, Welsh FA, Lowenstein DH, et al. Regional induction of c-fos and heat shock protein-72 mRNA following fluid-percussion brain injury in the rat[J]. J Cereb Blood Flow Metab, 1995,15(3):467-73.
    [46]王晔,潘洪富,张夔鸣,等.大鼠弥散性脑损伤hsp70 mRNA表达的研究[J].四川大学学报:医学版, 2004,35(6):828-831.
    [47] Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives[J]. Oncogene,2006,25(51):6680-4.
    [48] Brasier AR. The NF-kappaB regulatory network[J]. Cardiovasc Toxicol, 2006,6(2):111-30.
    [49]孙俊红,杜秋香,王小伟,等.大鼠皮肤挫伤后NF-kB mRNA表达与损伤时间关系[J].中国法医学杂志,2008,23(6):370—373.
    [50]陶陆阳,丁梅,陈溪萍,等.大鼠脑挫伤后NF-kB表达的分子生物学研究[J].法医学杂志, 2004,20(2):73-76,80,i010.
    [51]李红梅,蔡高忠.白细胞介素研究进展[J].预防兽医学进展,2000,2(2):7-10.
    [52]王新家,孔抗美,吴珊鹏,等.大鼠急性脊髓损伤后白细胞介素-1β表达及其与神经细胞凋亡的关系[J].中华实验外科杂志,2005,22(7):839-841.
    [53] Bai R, Wan L, Shi M. The time-dependent expressions of IL-lbeta, COX-2, MCP-1 mRNA in skin wounds of rabbits[J]. Forensic Scilnt, 2008,175(2-3): 193-7.
    [54] Takeuchi F, Sterilein RD, Hall RP 3rd. Increased E-selectin, 1L-8 and IL-10 gene expression in human skin after minimal trauma[J]. Exp Dermatol, 2003,12(6):777-83.
    [55]孙俊红,杜秋香,王小伟,等.大鼠皮肤和肌肉挫伤后细胞间黏附分子-1mRNA表达变化[J].法医学杂志,2008,24(6):407-410.
    [56] McKay S, Hirst SJ, Haas MB, et al. Tumor necrosis factor-alpha enhances mRNA expression and secretion of interleukin-6 in cultured human airway smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2000,23(1):103-11.
    [57] Matusevicius D, Navikas V, Palasik W, et al. Tumor necrosis factor-alpha, lymphotoxin, interleukin (IL)-6, IL-10, IL-12 and perform mRNA expression in mononuclear cells in response to acetylcholine receptor is augmented in myasthenia gravis[J]. J Neuroimmunol, 1996,71(l-2):191-8.
    [58] Morales-Montor J, Mohamed F, Baghdadi A, et al. Expression of mRNA for interleukin-1beta, interleukin-6, tumor necrosis factor-alpha and macrophage migration inhibitory factor in HPA-axis tissues in Schistosoma mansoni-infected baboons (Papio cynocephalus)[J]. Int J Parasitol, 2003,33(13):1515-24.
    [59] Holmin S, Schalling M, Hojeberg B, et al. Delayed cytokine expression in rat brain following experimental contusion[J]. JNeurosurg, 1997,86(3):493-504.
    [60]侯立军,刘荫秋.狗颅脑爆炸伤后脑组织中TNF-amRNA表达的变化[J].第二军医大学学报, 2001,22(6):551-553,F003.
    [61]彭龙锋,雷鹏,张兴超,等.Survivin和Caspase-3在大鼠颅脑损伤中的作用[J].西北国防医学杂志,2008,29(3):192-195.
    [62]王芳,齐建国,王廷华,等.大鼠脊髓半横断损伤后脊髓神经细胞凋亡与caspase-3的表达[J].神经解剖学杂志,2008,24(3):271-276.
    [63]黄柏南,孙善全,汪克建,等.大鼠脊髓缺血再灌注损伤后caspase-12表达与细胞凋亡[J].解剖学杂志,2008,31(2):222-225,F0003.
    [64]先雄斌(综述),袁琼兰(审校).Caspase-3与脑缺血再灌注后神经元凋亡[J].海南医学, 2008,19(8):150-152.
    [65]严志康,肖端,龚梅芳.活血通脉汤及大黄对大鼠脑缺血再灌注损伤bcl-2、caspase-3表达的影响[J].湖北中医杂志,2008,30(3):8-9.
    [66]路斌,赵锐,官大威,等.小鼠皮肤切创愈合过程中caspase-3的表达及其活性[J].法医学杂志, 2007,23(3):161—163.
    [67]韩阳,官大威,侯震寰,等.小鼠皮肤切创愈合过程中caspase-8表达的研究[J].中国法医学杂志, 2007,22(4):217-220,I0003.
    [68]侯震寰,官大威,韩阳,等.小鼠皮肤切创愈合过程中caspase-9、-3表达的研究[J].中国法医学杂志, 2007,22(4):220-222,I0004.
    [69]杜宇,官大威,赵锐.皮肤切创愈合中caspase一3表达的免疫组化研究[J].法医学杂志, 2004,20(1):1—3.
    [70]杜宇,官大威,赵锐.Caspase与皮肤损伤[J].中国法医学杂志,2005,20(2):92—94.
    [71]杜宇,官大威,赵锐.小鼠皮肤切创愈合过程中caspase-6、-7表达的免疫组织化学研究[J].中国法医学杂志,2003,18(5):259-261.
    [72]张建新,崔磊,尹江涛,等.Caspase-3激活在实验性重症急性胰腺炎肺损伤中的作用[J].广东医学, 2009,30(1):39-41.
    [73]王瑞英,王倩,张挺,等.甲状腺功能减退症大鼠心肌损伤时心肌组织中Caspase-3、Bcl-2的表达及与心肌细胞凋亡的关系[J].中国老年学杂志,2007,27(17):1663-1665.
    [74]胡章乐,马礼坤.Caspase-3与心肌缺血/再灌注损伤[J].国际病理科学与临床杂志, 2007,27(3):208-210.
    [75]马学琴,张亚辉,周忠良,等.炎症Caspase与相关疾病[J].生命科学,2006,18(5):452-456.
    [76]陈凤展,徐英美.新生鼠缺氧缺血性脑损伤海马caspase-3mRNA的表达[J].中国新医药, 2003,2(12):14-16.
    [77]初桂兰,常丽.新生大鼠缺氧缺血性脑损伤Caspase-lmRNA的表达变化[J].小儿急救医学, 2004,11(1):24—26.
    [78]辛明,初桂兰.缺氧缺血新生大鼠脑组织caspase-1和白细胞介素18mRNA表达及其关系探讨[J].中华儿科杂志。2005,43(8):568-571.
    [79] Wennersten A, Holmin S, Mathiesen T. Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat[J]. Acta Neuropathol, 2003,105(3):281-8.
    [80] Akdemir Ozisik P, Oruckaptan H, Ozdemir Geyik P, et al. Effect of erythropoietin on brain tissue after experimental head trauma in rats[J]. Surg Neurol, 2007,68(5):547-55; discussion 555.
    [81] Liu N, Chen Y, Huang X. Fibronectin EIIIA splicing variant: a useful contribution to forensic wounding interval estimation[J]. Forensic Sci Int, 2006,162(1-3): 178-82.
    [82]刘宁国,陈忆九,黄晓华,等.大鼠皮肤创伤后EIIIA-FN mRNA表达与损伤时间推断研究[J].法医学杂志,2002,18(3):129-131.
    [83]刘宁国,赵子琴,陈忆九,等.大鼠皮肤损伤后纤维连接蛋白剪接异型体的表达[J].法医学杂志, 2000,16(2):70-71.
    [84] Vijayan K, Thompson JL, Norenberg KM, et al. Fiber-type susceptibility to eccentric contraction-induced damage of hindlimb-unloaded rat AL muscles[J]. J Appl Physiol, 2001,90(3):770-6.
    [85] Shave R, Dawson E, Whyte G, et al. The cardiospecificity of the third-generation cTnT assay after exercise-induced muscle damage[J]. Med Sci Sports Exerc, 2002,34(4):651-4.
    [86] Sorichter S, Mair J, Koller A, et al. Skeletal troponin 1 as a marker of exercise-induced muscle damage[J]. JAppl Physiol, 1997,83(4): 1076-82.
    [87] Sun JH. Wang YY, Zhang L, et al. Time-dependent expression of skeletal muscle troponin 1 mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation[J]. Int J Legal Med,2009,DOI : 10.1007/s00414-009-0323-1.
    [88] Exposito-Rodriguez M, Borges AA, Borges-Perez A, et al. Selection of internal control genesfor quantitative real-time RT-PCR studies during tomato development process[J]. BMC Plant Biol, 2008,8(:131.
    [89] Guenin S, Mauriat M, Pelloux J, et al. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references[J]. J Exp Bot, 2009,60(2):487-93.
    [90] Popovici V, Goldstein DR, Antonov J, et al. Selecting control genes for RT-QPCR using public microarray data[J]. BMC Bioinformatics, 2009,10:42.
    [91] Fu LY, Jia HL, Dong QZ, et al. Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses[J]. BMC Cancer, 2009,9:49.
    [92] Sugden K, Pariante C, McGuffin P, et al. Housekeeping gene expression is affected by antidepressant treatment in a mouse fibroblast cell line[J]. J Psychopharmacol, 2008,DOI: 10.1177/0269881108099690.
    [93] Hong SY, Seo PJ, Yang MS, et al. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR[J]. BMC Plant Biol, 2008,8:112.
    [94] Barsalobres-Cavallari CF, Severino FE, Maluf MP, et al. Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions[J]. BMC Mol Biol,2009,10:1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700