用户名: 密码: 验证码:
基于无人机采集图像的土壤湿度预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤湿度是气候、水文、生态和农业等方面研究的一个重要的基础参数,它直接控制着陆面和大气之间水、热量的输送和平衡。土壤湿度的变化会引起土壤热学特性、地表光学特性的改变,从而影响气候的变化。区域性和大尺度的陆地土壤湿度变化信息对于陆气交互作用平衡和陆面水文研究、改善区域及全球气候模式预报结果、水涝和干早的监测、农作物生长态势评估、自然和生态环境问题的研究等都是十分关键的因素。因而,研究区域或大范围的土壤水分有着特别重要的意义,这也是目前国际上研究的一个重要课题之一。
     传统的地面观测站网络不能满足大尺度土壤水分的时间、空间连续动态变化研究的需要。而现在广泛应用的微波测量方式虽然穿透力强,也存在设备过于沉重、短波范围内电测波信号受大气干扰比较大、波段难以控制等缺点,限制了其在农业自动化方面的发展。目前也有很多用可见光-近红外-热红外等光学遥感手段来获取土壤湿度时空分布信息,采用光学遥感具有体积小、成像简单、周期短、费用低等优点,利于将来的农业普及。但是这种手段在目前的应用中大多依靠高空飞行器负载,因为光学遥感的波段无法穿透云层,所以在实际应用中受到了限制。而无人机的出现解决了这些问题。
     无人机作为一种新型的信息获取方式,伴随着技术的逐渐成熟,已经在越来越多的领域得到了应用。与通常信息获取使用的飞行器以及卫星相比,无人机具有费用低、精确度高、运行周期短、易于操作等优点,非常适合将来在农业当中普及。本研究正是基于此,选用无人机作为飞行器,可见光-近红外光作为遥感测量的手段,以美国犹他州为例研究如何探测一定区域内土壤表层的湿度信息的问题。本研究的主要内容如下:
     首先,建立了图像的多空间分析模型以及分数阶植被归一化公式。用无人机采集回的可见光以及近红外光等信息都是独立的,与土壤湿度的信息的关联都不足以达到预测的标准。以往的研究都是通过各种分析公式,比如HIS、GRAY、NDVI等,将探测到的信息融合起来,达到了较为准确预测土壤湿度的标准。而本研究通过对比图像的各种空间分析特性,提出了分数阶的植被归一化公式,能够大大提高土壤湿度与图像包含信息的相关系数,保证利用建立的模型预测土壤湿度的准确性。
     其次,提出了根据无人机图像特点的的图像拼接算法。很多已有的拼接算法已经能够很好的完成图像的镶嵌任务。但是,这些算法运行需要较多的时间,达不到无人机图像拼接的实时要求。出于这个目的,本研究提出了基于局部灰度匹配的图像拼接算法,在图像拼接的过程中融合无人机的飞行特征,大大缩小了图像匹配特征点的搜索范围。并且图像灰度为快速转换的图像特性,在此条件下特征点能够准确、快速匹配,节约了运行成本,达到了无人机图像实时拼接的要求。
     第三,完成了无人机图像几何校正算法。由于无人机在飞行的过程受到航线、风速等不确定的影响,所拍摄的图像与地面会产生不确定的夹角。本研究提出了无人机图像几何校正算法,能够根据无人机即时记录下的信息,自动完成图像角度的校正,为图像拼接打下基础。
     第四,提出了基于聚类分析算法的图像分割模型。图像中确定区域的边界对土壤湿度的描述以及农业自动灌溉信息的提取至关重要。通常的分割算法都是基于着色点的分布概率或者图像的特征空间分析进行像素点归类,结果比较粗糙。本研究通过聚类分析算法,根据边界点的梯度以及分布趋势,划分区域边界,效果较好。
     最后,通过实验验证了之前提出的算法,并且对预测模型的精度进行了分析。结果表明,该模型达到了预测的要求,可以在实际中应用。
Soil moisture is one of essential Parameters in the study of climatology,hydrology,ecology and agriculture,which dominates the transportation and balance of water and heat between lands and air directly. The change of the soil moisture will lead to change of the thermotics characteristic of soil and optical properties of surface,even to the change of climate. The information of the change of land soil moisture in regional and large-scale is important to the research as follows: balance of land-atmosphere interaction,land hydrology,improving the forecast accuracy of regional and GCM,monitoring of flooding and drought,assessment of the growth condition of corps,the natural and ecology Problems. Therefore the research on change and estimation of the soil moisture in regional and large-scale is very important,which also is a key international Problem.
     The traditional surface observing network can not meet the study on soil moisture dynamic and successive variation in temporal and spatial scale. Furthermore, the widely used microwave measurement though have good penetration, there also have some existence disadvantages, such as the equipment is too heavy, Short-wave range of electromagnetic wave signal is greatly interfered by the atmosphere, and the wave band is difficult to control, which limit their automation in agriculture development. At present, there are a lot of ways to get the soil moisture information by using visual spectrum, near infrared, thermal infrared and other optical remote sensing measures. Although it has small size, easy imaging, short cycle, low cost and in favor of agriculture’s future popularization by using of optical remote sensing, this means mostly rely on high-altitude aircraft applications at the present time. Because the band of optical remote sensing can not penetrate cloud, so it has been limited in practical applications. The emergence of unmanned aerial vehicle resolved these issues.
     As a new way to obtain information, unmanned aerial vehicle along with technology maturity, has been applied in a growing number of fields. Compared with normally used information capture aircraft and satellites, unmanned aerial vehicle is very fitful to the future of agriculture popularization with the chrematistics of low-cost, high accuracy, run a short cycle, easy to operate, etc., This study is based on this, using UAV as aircraft, visual spectrum and near infrared as a means of remote sensing measurements to study how to detect a certain region of the surface soil moisture information ,using Utah, United States for example. In this study, the main contents are as follows:
     First of all, set up the image of many spatial analysis models and fractional order normalized difference vegetation index (NDVI). visual spectrum as well as near infrared and other information, collected back by unmanned aerial vehicle, are independent. The information associated with soil moisture is insufficient to achieve the prediction standard. Previous studies are analyzed through a variety of formulas, such as HIS, GRAY, NDVI, etc., which integrate this detected information so as to an accurate prediction standard of soil moisture. The purpose of this study by comparing the image characteristics of a variety of spatial analysis, is putting forward a fractional order normalized difference vegetation index, which can greatly improve contains information’s correlation coefficients between soil moisture and image, and guarantee the prediction accuracy by using the soil moisture model.
     Secondly, propose image mosaic algorithm based on local gray-scale matching. There have been a lot of Mosaics Algorithms, which can complete a very good image mosaic mission. However, these algorithms need more time to run, which can not amount to real time requiring by Unmanned Aerial Vehicle (UAV) image mosaic. For this purpose, this paper proposed image mosaic algorithm based on local gray-scale matching. In the process of image mosaic, this study integrated UAV flight characteristics, which greatly narrowed the search area of image matching feature points. And grayscale images for rapid conversion of the image features, in this condition, feature points can accurately and quickly match, saving the operating costs and meeting the requirements of UAV image real-time mosaic.
     Thirdly, complete the Calibration Algorithm for Unmanned Aerial Vehicle (UAV) image projection. Because Unmanned Aerial Vehicle (UAV) is impact by flight courses, wind speed and other uncertainty factors in the process of its flight, the images will have an uncertainty angle with the ground. This study proposed the Calibration Algorithm for Unmanned Aerial Vehicle (UAV) image projection, which can complete image angle correction automatically, based on the information recording by Unmanned Aerial Vehicle (UAV) immediately, and laid a foundation for the image mosaic.
     Fourthly, propose image segmentation model based on cluster analysis algorithm. It is very important to the soil moisture description as well as information extraction of agricultural automatic irrigation throng determining the region border of image. The usual segmentation algorithms are classified according by the distribution probability of pixels or image features and spatial analysis, which results are rough. In this study, it will be better to zoning boundaries through the cluster analysis algorithm, and according to the gradient of boundary points, as well as its distribution trends.
引文
[1] Quattrochi, D.A& Luvall, Thermal remote sensing in land surface processes [J]. CRC.,2004:67-98.
    [2] Pieri, D.,& Abrams.ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia[M].Remote Sensing of Environment,1999:84?94.
    [3] Voogt, J.A., & Oke, T.R.Thermal remote sensing of urban climates [M] .Remote Sensing of Environment, 1986:370?384.
    [4] Lanuuit H, Pollard WH.Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort sea,Yukon Territory.Geomorphology, 2008,95(1-2):84-102
    [5] Marcus WA,Fonstad MA.Optical remote mapping of rivers at sub-meter resolutions and watershed extents.Earth surface Processes and Landforms,2008,33(1):4-24.
    [6] Metternicht Gl.Categorical fuzziness:a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils using Landsat TM data and a classification based on anion ratios[M].Ecological Modeling,2003:371-389.
    [7] Curran, P.J.The estimation of surface moisture of a vegetated soil using aerial infrared photography[J].International Journal of Remote Sensing,1981:369-378.
    [8] Hardy,J.R.Survey of methods for the determination of soil moisture content by remote sensing methods[M].Remote sensing applications in agriculture and hydrology,2004:233-247
    [9] Carlson, T.N., Dodd, J.K.,Benjamin,S.G.,& Cooper, J. N.Satellite estimation of surface energy balance, moisture availability and thermal inertia[J].Journal of Applied Meteorology,1981:20, 67–87.
    [10] Goward, S.N., Waring, R.H., Dye, D.G., & Yang, J.Ecological remote sensing at OTTER:macroscale satellite observations[M].Ecological Applications, 1994,4 (2):322–343.
    [11] Heilman, J.L., Kanemasu, E.T., Rosenberg, N. J., & Blad, B. L.Thermal scanner measurement of canopy temperatures to estimate evapotranspiration[C].RemoteSensing of Environment, 1976:5, 127-145.
    [12] Norman, J.M., Divakarla, J., & Goel, N. S.Algorithms for extracting information from remote thermal-IR observations of the Earth’s surface[J]. Remote Sensing of Environment, 1995:157-169.
    [13] Price, J.C.The potential of remotely sensed data to infer surface soil moisture and evaporation[M].Water Resources Research, 1980:787-795.
    [14] Kasischke, E.S., Melack, J. M., & C., D. M. The use of imaging radars for ecological applications. Remote Sensing of Environment[C], 1997,59:141– 156.
    [15] Njoku,E.G., & Entekhabi,D.Passive microwave remote sensing of soil moisture[J]. Journal of Hydrology, 1996,184:101–129.
    [16]张俊荣,王丽巍,张德海.植被和土壤的微波介电常数[J].遥感技术与应用, 1995,10(3):40-50.
    [17] Chanzy A.Basic Soil Surface Characteristics Derived from Active Microwave Remote Sensing [J]. Remote Sensing Review, 1993, 7:303-320.
    [18]田国良.土壤水分的遥感监测方法[J].环境遥感,1991, 6(2):89-98.
    [19] Jackson T. J . Soil Moisture Mapping at Regional Scales Using Microwave Radiometry : The Southern Great Plains Hydrology Experiment [J] . IEEE Trans Geo-science Remote Sensing, 1999, 37(5):2136-2151.
    [20] Dobson MC, Ulaby F.T.Active Microwave Soil Moisture Research [J]. IEEE Trans Geo-science Remote Sensing, 1986, GE224(1):23-36.
    [21] Ulaby F.T, Batlivala P.P, Dobson MC. Microwave Back scatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture:Part Bail Soil[J].IEEE Trans Electron, 1978, GE216 (4):286-295.
    [22]Ulaby F.T, Aslam A , Dobson MC.Effect of Vegetation Cover on the Radar Sensitivity to Soil Moisture[J].IEEE Transaction Geo-science Remote Sensing, 1982, GE220 (4):476-481.
    [23]李杏朝,微波遥感监测土壤水分的研究初探[J].遥感技术与应用, 1995, 10 (4):1-8.
    [24] Weimann AM , Von Schonermark, Schumann A , etal.Soil Moisture Estimation with SAR Data in the East German Loess Soil Area[J].Remote Sensing, 1998,19(2):237-243.
    [25] Dobson MC, Ulaby F.T.Microwave Back scatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part Soil Tension[J].IEEE Trans Geo-science Remote Sensing, 1981,GE219(1):51-61.
    [26] Bonn FJ, O’Neill NT.Thermal Infrared Remote Sensing of Soils: Evolution, Trend and Perspectives[J]. Remote Sensing Reviews, 1993, 7:281-302.
    [27] Sano E E, MoranM S, Huete A R, et al.C2 and Multiage Ku - band SAR Data for Bail Soil Moisture Estimation Agricultural Areas[J]. R S Environ, 1998, 64:77-90.
    [28] RaoK S, Raju S, Wang J R.Estimation of Soil Moisture and Surface Roughness Parameters from Back scatter Coefficients [J].IEEE Trans Geo-science Remote Sensing, 1993,31(5):1094-1099.
    [29] Narayanan R M , Horner J R, St Germain K M.Simulation Study of a Robust Algorithm for Soil Moisture and Surface Roughness Estimation U sing L 2band Radar Back scatter[J].Geocarto International, 1999, 14 (1):5-13.
    [30] Price J C.On the Analysis of Thermal Infrared Imagery.The Limited Utility of Apparent Thermal Inertia[J].Remote Sens Environ, 1985, 18:59-73.
    [31] Carlsorn T N.Regional2Scale Estimates of Surface Misture Availability and Thermal Inertia Using Remote Thermal Measurements[J].Remote Sens Environ, 1986, 1:197-247.
    [32] Hall F G.Satellite Remote Sensing of Surface Energy Balance: Success, Failure, and Unsolved Issues in FIFE [J].J Geophy Res, 1992, 97:19061-19089.
    [33] Vining R G., Estimation of Sensible Heat Flux from Remotely Sensed Canopy Temperature.J Geophy Res, 1992, 97:18951-18959.
    [34] Norman J M, Algorithm for Extracting Information from Remote Sensing Thermal2 IR Observations of the Earth’s Surface[J].Remote Sensing Environment,1995, 51:157-168.
    [35] Matthews K B, Climate Soil Moisture Deficit Climate and Soil Data Integration in a GIS [J].Climate,1994,28:273-283.
    [36]隋洪智,田国良.热惯量方法监测土壤水分[C].黄河流域典型地区遥感动态研究.北京:科学出版社, 1990.
    [37]田国良,杨希华,郑柯.冬小麦旱情遥感监测模型研究[J].环境遥感, 1992, 7 (2) :83-89.
    [38]陈维英,肖乾广,盛永伟.距平植被指数在1992年特大干旱监测中的应用[J].环境遥感,1994,9(2):106-112.
    [39]肖乾广,陈维英,盛永伟等.用气象卫星监测土壤水分的试验研究[J].应用气象学报. 1994, 5(2):312-317.
    [40]余涛,田国良.热惯量法在监测土壤表层水分变化中的研究[J].遥感学报, 1997, l(1):24-31.
    [41]刘培君,张琳,艾里西尔·库尔班等.卫星遥感估测土壤水分的一种方法[J].遥感学报, 1997, l(2):135-138.
    [42]陈怀亮.麦田土壤水分NOAA/AVHRR遥感监测方法研究[J].遥感技术与应用. 1998, 13(4):27-35.
    [43]隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用[J].遥感学报. 1997, l(3): 220-224.
    [44]金一锷,刘长盛,张文忠.利用气象卫星GMS和AVHRR资料推算地面水分含量的方法[J].应用气象学报, 1998,9(2): 197-04.
    [45]申广荣,田国良.基于GIS的黄淮海平原旱情监测研究[J].自然灾害学报, 1998, 7(2): 17-21.
    [46]李杏朝.利用遥感资料进行旱情监测的研究[J].卫星应用, 1996, 4 (4): 39-43.
    [47]郑威,陈述彭.资源遥感纲要[M].北京:中国科学技术出版社, 1995:327-456.
    [48] Daoyi Chen, Engman, Brutsaert.Spatial distribution and pattern persistence of surface soil moisture and temperature over prairie from remote sensing[J], Remote sensing of environment, 1997,61(3):347-360.
    [49] Carlson, T.N., Gillies, R.R., & Perry, E.M.A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J].Remote Sensing Reviews,1994,9:161–173.
    [50] Sugiura,Noguchi,Ishii.Correction of Low-altitude Thermal Images applied to estimating soil Water Status [J].Biosystems Engineering, 2007, 96(3):301-313.
    [51] Price, J.C.Estimation of regional scale evapotranspiration through analysis of satellite thermal infrared data, IEEE Trans[J].Remote Sens, 1982,GE-20:286-292.
    [52] Carlson,TC.,Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements[J].Remote Sens.1986,Rev.1:197-247.
    [53]Jackson,Evaluating Evapotranspiration at regional and global scales, Pro[J].IEEE,1985,73: 1086-1096.
    [54] Kustas, W.P., Jackson, R.D., and Asrar, G., Estimating surface energy balance components from remotely sensed data [M].Theory and Applications of Optical Remote Sensing, 1989:604-627.
    [55] Choudhury, B.J.Multispectral satellite data in the context of land surface heat balance[J], Rev.Geophys,1991,29: 217-236.
    [56] Goward, S., Cruickshanks, G.D., and Hope, A.Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape[J].Remote Sens.Environment.1985,18:137-146.
    [57] Nemani, R., Pierce, L., Running, S., and Goward, S.Developing satellite derived estimates of surface moisture status[J], J.Appl.Meteorol.1993,32:548-557
    [58] Sellers, P.J.Canopy reflectance, photosynthesis, and transpiration [J]. Int.J.Remote Sensing, 1985, 6:1335-1372
    [59] Sellers,P.J.Canopy reflectance, Photosynthesis, and transpiration.The role of biophysics in the linearity of their interdependence [J],Remote Sensing Environment.1987,21:143-183.
    [60] Hope, A.S.,Petzold, D.E., Goward, S.N., and Ragan, R.M. Simulated Relationships between spectral reflectance, thermal emissions, and evapotranspiration of soybean canopy [J].Water Resources Bull.1986,22:1011-1019.
    [61] Hope, A.S.Estimation of wheat canopy resistance using combined remotely sensed spectral reflectance and thermal observations[J],Remote Sens.Environ.1988,24:369-383.
    [62] Nemani, R.R., and Running, S.W.Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data [J]. J.Appl.Meteorol,1989,28:276-284.
    [63] Kims,D.S. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques[J].Remote Sens.Environ.1983,13:33-55.
    [64] Huband, N.D.S., and Monteigh, J.L. Radiative surface temperatureand energy balance of a wheat canopy[M].Comparison of radiative and aerodynamic temperatures, Boundary-layer Meteorol,1986,36:106-116.
    [65] Kustas, W.P., Choudhury, b.J., Inoue,Y., et al . Ground and aircraft infrared observations over a partially-vegetated area[J], Int.J.Remote Sens,1990,11:409-427.
    [66] Nemani, R., Pierce, L., Running, S., and Goward, S.Developing satellite derived estimates of surface moisture status [J]. J. Appl.Meteorol, 1993, 32:548-557.
    [67] Carlson, T.N., Perry E.M., and Schmugge, T.J.Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields[J]. Agric.For. Meteorol, 1990, 52: 45-69.
    [68] Price, J.C. Using Spatial Context in Satellite Data to Infer Regional Scale Evapotranspiration[J]. IEEE Transactions on Geoscience and Remote Sensing 1990,28:940-948.
    [69] Carlson, T.N.,Gillies, R.R.,Schmugge, T.J.An Interpretation of Methodologies for Indirect Measurement of Soil-Water Content[J].Agricultural and Forest Meteorology 1995,77:191-205.
    [70] Bastiaanssen, W.G.M., Noordman, E.J.M.,Pelgrum, H.,Davids, G., Allen, R.G.SEBAL for spatially distributed ET under actual management and growing conditions[J].ASCE Journal of Irrigation and Drainage Engineering 2005,131:85-93.
    [71] Anderson, M.C., Neale, C.M.U., Li, F., Norman, J.M., Kustas,W.P., Jayanthi, H.,et al.Upscaling ground observations of vegetation water content,canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery[J].Remote Sensing of Environment, 2004,92:447?464.
    [72] Anderson, M.C., Norman, J.M.,Mecikalski, J.R.,Torn,R.D., Kustas,W. P., & Basara, J. B. A multi-scale remote sensing model for disaggregating regional fluxes to micrometeorological scales[J].Journal of Hydrometeorology, 2004,5:343?363.
    [73] Badeck, F.W.,Bondeau, A.,Bottcher, K.,Doktor, D.,Lucht,W., Schaber, J., et al.Responses of spring phenology to climate change[J].New Phytologist, 2004,162: 295?309.
    [74] Berk, A., Bernstein, L.S., Anderson, G.P., Acharya, P. K., Robertson, D.C., Chetwynd, J.H., et al.MODTRAN cloud and multiple scattering upgrades with application to AVIRIS[J].Remote Sensing of Environment, 1998,65: 367?375.
    [75] Chávez, J.L., Neale, C.M.U., Hipps, L.E., Prueger, J.H., & Kustas, W.P.Comparingaircraft-based remotely sensed energy balance fluxes with Eddy covariance tower data using heat flux source area functions[J].Journal of Hydrometeorology,2005,6:923?940.
    [76]Choudhury, B.J.,Ahmed, N.U.,Idso, S.B.,Reginato, R.J., & Daughtry, C.S.T. ).Relations between evaporation coefficients and vegetation indices studied by model simulations[J].Remote Sensing of Environment,1994,50:1?17.
    [77] Irani M , Peleg S.Improving resolution by image registration. Graphical Models and Image Processing,1991:53 (3):231-239.
    [78] Diak, G.R., Mecikalski, J.R.,Anderson, M.C., Norman, J. M., Kustas, W.P.,Torn, R.D., et al.Estimating land-surface energy budgets from space: Review and current efforts at the University of Wisconsin-Madison and USDA-ARS[J].Bulletin of the American Meteorological Society, 2004, 85, 65?78.
    [79] French, A.Scaling of surface energy fluxes using remotely sensed data, PhD thesis, University of Maryland.Friedl, M.A., & Davis, F. W.Sources of validation in radiometric surface temperature over a Tallgrass Prairie[J]. Remote Sensing of Environment, 1994, 48:1?17.
    [80] Friedl, M.A., Davis, F.W., Michaelsen, J., & Moritz, M.A.Scaling and uncertainty in the relationship between NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE[J].Remote Sensing of Environment, 1995: 54: 233?246.
    [81] Gillies, R.R., & Carlson, T. N.Thermal remote-sensing of surface soil-water content with partial vegetation cover for incorporation into climate models[J].Journal of Applied Meteorology, 1995,34: 745?756.
    [82] Hall, F.G.,Huemmrich,K.F., Goetz, S. J., Sellers, P. J., & Nickerson, J.E. Satellite remote sensing of surface energy balance: Success, failures and unresolved issues in FIFE[J].Journal of Geophysical Research, 1992,97: 19,061?19,089.
    [83] Hipps, L.E. The infrared emissivity of soil and Artemisia tridendata and subsequent temperature corrections in a shrub-steppe ecosystem[J].Remote Sensing of Environment, 1989, 27: 337?342.
    [84] Karnieli, A., Bayasgalan, M., Bayarjargal, Y., Agam, N., Khundulmur, S., & Tucker, C . J . Comments on the use of the Vegetation Health Index overMongolia[J].International Journal of Remote Sensing, 2006, 27: 2017?2024.
    [85] Kustas, W. P., Hatfield, J., & Prueger, J. H.The Soil Moisture Atmosphere Coupling Experiment (SMACEX): Background, hydrometeorological conditions and preliminary findings[J].Journal of Hydrometeorology, 2005, 6:791?804.
    [86] Kustas, W.P., Norman, J.M.,Anderson, M.C.,& French, A.N.Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship[J].Remote Sensing of Environment, 2003, 85: 429?440.
    [87] Li, F., Jackson, T.J., Kustas,W.P., Schmugge, T.J., French, A.N., Cosh, M.H., & Bindlish, R.Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX[J].Remote Sensing of Environment, 2004,92:521?534.
    [88] Loheide Ii,S.P., & Gorelick, S. M.A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites[J].Remote Sensing of Environment, 2005, 98: 182?200.
    [89] Moran, M.S., Clarke, T.R., Inoue, Y., & Vidal, A.Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J].Remote Sensing of Environment, 1994,49: 246?263.
    [90]陆佩忠,吴立德.视频全局运动参数的研究与进展[J].模式识别与人工智能,2002, 150: 57-65.
    [91] Norman, J.M., Kustas, W.P., & Humes, K.S.A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature[J].Agricultural and Forest Meteorology,1995:77:263?293.
    [92] Chen S, WilliamsL.View interpolation for image synthesis. In Computer Graphics(SIGGRAPH'93), 1993: 279-288.
    [93] Gortler S J, G rzeszczuk R, Szeliski R,Cohen M F.The lumigraph In Computer Graphics Proceedings, Annual Conference Series,Proc.SIGGRAPH'96,New Orleans, ACM SIGGRAPH, 1996:43-54.
    [94] Bergen J R ,et al.Hierarchical model-based motion estimation.In Proc.2nd Europe an Conference on Computer Vision, 1992:237-252.
    [95] Running, S.W., Loveland, T.R., Pierce, L., Nemani, R. R., & Hunt, E.R.A remote sensing based vegetation classification logic for global land cover analysis. RemoteSensing of Environment, 1995, 51: 39?48.
    [96]章毓晋.图像理解与计算机视觉.北京:清华大学出版社, 2000:43-78.
    [97] Tucker, C.J., Slayback, D.A., Pinzon, J.E., Los, S.O., Myeni, R.B., & Taylor, M. G.Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999[J].International Journal of Biometeorology, 2001,45:184?190.
    [98]赵锋伟,李吉成,沈振康.景象匹配技术研究.系统工程与电子技术, 2002, 24(12):110-113.
    [99] White, M.A.,Thornton, P.E., Running, S.W., & Global.A continental phenology model for monitoring vegetation responses to inter annual climatic variability[J].Biogeochemical Cycles, 1997,11:217?234.
    [100]Willmott, C.J.Some comments on the evaluation of model performance[J]. Bulletin of the American Meteorological Society, 1997,63: 1309?1313.
    [101] Willmott, C.J.,& Matsuura, K.Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[J].Climate Research, 1997,30:79?82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700