用户名: 密码: 验证码:
电阻型存储器器件与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
存储器在半导体市场中占有重要的地位,随着便携式电子设备的不断普及,不挥发存储器在整个存储器市场中的份额也越来越大。目前,Flash占据了不挥发存储器市场90%的份额,但随着半导体工艺节点的不断推进,Flash遇到了越来越多的瓶颈问题,比如浮栅厚度不能随器件尺寸的减小而无限制减薄,有报道预测Flash技术的极限在32nm左右,此外,Flash的其他技术缺点也限制了它的应用,如写入速度慢,操作电压高等。这就迫使人们寻找性能更为优越的下一代不挥发存储器。最近电阻存储器因其高密度、低成本等特点受到了高度关注,所使用的材料有相变材料、掺杂的SrZrO_3、铁电材料PbZrTiO_3、铁磁材料Pr_(1-x)Ca_xMnO_3、二元金属氧化物材料、有机材料等,受电或热等能量的作用下,在高阻和低阻态之间转换。以相变材料为存储介质的阻性存储器亦被称作为相变存储器(Phase Change Memroy,简称PCM),在读写速度、读写次数、数据保持时间、单元面积、多值实现等诸多方面都具有极大的优越性,成为未来不挥发存储技术市场主流产品最有力的竞争者之一。目前应用最广泛的是GeSbTe(简称GST)合金材料,在电的作用下使其在晶态和非晶态之间转换,对应为器件的低阻态和高阻态。当前,在相变存储器研究领域中,写操作电流(RESET电流)过大是阻碍其商业化的一个关键问题,降低RESET电流主要从两方面考虑,对常用的GST材料进行掺杂改性或者开发新型相变材料;另一方面,减小器件尺寸和相变薄膜厚度,减小相变区域,从而降低发生转变时需要的能量,然而,传统器件的尺寸依赖于光刻技术。本论文第一部分主要围绕3D相变存储器器件设计展开,利用边墙定位技术,构建3D纳米相变存储器,其电极横截面积取决于电极材料的厚度和台阶高度,使器件尺寸完全突破光刻限制,不需要先进的光刻技术,极大的降低了生产成本,在大尺寸工艺下,依然可以获得纳米级器件尺寸。在5μm实验室工艺条件下成功获得了100nm以下纳米相变存储器阵列。
     以金属氧化物为介质的电阻型存储器通常被称为阻性存储器(ResistiveRandom Access Memory,简称RRAM)。其中,二元金属氧化物(如Nb_2O_5,Al_2O_3,Ta_2O_5,TixO,NixO,Cu_xO等),因为其器件结构简单、成分精确可控而受到格外关注。Cu_xO(x<2)作为两元金属氧化物中的一种,其优势更为明显,因为Cu在现在的半导体后端互联工艺中广泛应用,以Cu_xO为基的阻性存储器件可与互联工艺完美兼容而不需要引入新元素。本论文第二部分主要围绕Cu_xO基阻性存储器展开,用反应离子(RIE)氧化进行Cu_xO制备,对器件的forming电压、疲劳特性、保持特性进行了研究,提出了上电极界面处的局部导电通道的形成与关断的电阻转换模型,基于双大马士革工艺,提出相应的与铜互连后端工艺集成的解决方案,为生产低成本、高密度、高可靠性的Cu_xO电阻存储器奠定了基础。
Memories play important roles in semiconductor market.With the population of mobile electrical device,the non-volatile memory is getting more and more important in the total memory market.Currently, Flash is dominant in memory area,with 90%market share.As the scaling of semiconductor technology,Flash memory encounters more and more bottlenecks,e.g.,the thickness of floating gate can not be decreased infinitely.According to some reports,the limitation of Flash technology would be at 32 nm node or so.Moreover,other shortcoming such as low programming speed,high operating voltage etc,also limit the application of Flash,which forces people to search more excellent technology for next generation non-volatile memory.Recently,resistance type memories are attracted great attention for their high density and low cost.Many materials with switching characteristics were discovered,e.g. chalcogenides,doped SrZrO_3,PbZrTiO_3,Pr_(1-x)Ca_xMnO_3,binary metal oxide and organic materials.The resistance type memories based on chalcogenides are also called phase change memory(PCM),which has great advantages on speed,endurance,retention,cell size and multi-level storage.It is one of the most promising candidates for next generation non-volatile memory. The most commonly used material in PCM is GeSbTe,which can transit between amorphous state and crystalline state,corresponding to high and low resistance state.Currently,the main problem preventing PCM from application is the large RESET current.There are mainly two ways to reduce the RESET current.One approach is doping in commonly used GST material or searching new phase change materials.The other one is reducing cell size.The first part of this thesis is mainly focused on design and fabrication of 3D nano device of phase change memory.By using spacer pattern technology,the cross-section area of electrode is defined by the height of step and film thickness,which is totally independent of lithographic technology.By using this method,sub-100 nm sized memory array are successfully fabricated with no need of advanced lithographic equipment.The manufacturing cost is greatly reduced.
     Metal oxides based resistance type memories are also called resistive switching memory(Resistive Random Access Memory,RRAM).Binary metal oxide(such as Nb_2O_5,A1_2O_3,Ta_2O_5,Ti_xO,Ni_xO,Cu_xO,etc.)are attracted great attention,because of their simple structure and composition.Among them, Cu_xO has more advantages,because Cu is widely used in modern semiconductor manufacturing and the fabrication of a Cu_xO memory cell is perfectly compatible with standard Cu interconnect processes.The second part of this thesis is mainly focused on Cu_xO resistive switching memory.Take RIE method for Cu_xO preparation and investigate the critical characteristics of devices,such as forming voltage,endurance and retention,etc.And then raise a switching model of local conductive formation and rupture near the interface between Cu_xO and top electrode based on experiment data.Finally,the integration solution based on damascene Cu interconnect process is put forwards,which further lays foundation for producing high density,low cost and high reliable Cu_xO based RRAM.
引文
[1]漱全孝,〈集成电路〉,北京,科学出版社,60-66,2003.
    [2]S.Y.Lee,Kinam Kim,Prospects of emerging new memory technologies,IEEE International Conference on integrated Circuit Design and Technology,45-5,2004.
    [3]Y.T.Kim,K.Lee,W.Y.Chung,etc,“Study on Cell Characteristics of PRAM Using the Phase Change Simulation”,International Conference on Simulation of Semiconductor Processes and Devices,SISPAD,211-214,2003.
    [4]R.Bez,A.Pirovano,“Non-volatile memory technologies:emerging concepts and new materials”,Materials Science in Semiconductor Processing,349-355,2004.
    [5]R.Bez,“Innovative technolgies for high density non-volatile semiconductor memories”,Microelectronic Engineering,80,249-253,2005.
    [6]R E.Jones,P D.Maniar,R Moazzami,etc,“Ferroelectric non-volatile memory for low-voltage,low-power applications”,Thin Solid Films,270,584-588,1995.
    [7]王耘波,李东,郭冬云,The New Nonvolatile Memories,IC与元器件,72-75,2004.
    [8],Evans.J.T,Womack.R,“An Experimental 512-bit Nonvolatile Memory with Ferro electric Storage Cell”,IEEE Journal of Solid-state Circuits,23(5),1171-1175,1988.
    [9]宛德福、马兴隆,磁性物理学,成都,电子科技大学出版社,1994,537-538
    [10]田民波,磁性材料,北京,清华大学出版社,337,2001.
    [11]M.N.Baibich,J.M.Broto,A.Fert,etc,“Giant Magnetoresistance of (001) Fe/(001)Cr Magnetic Superlatices”,Physical Review Letters,61,2472-2475,1988.
    [12]Samsung Inc.[Online],http://www.samsung.com /products /semiconductor /support /labelcodeinfo/4chip.pdf.
    [13]Linda Geppert,“The New Indelible Memories”,IEEE Spectrum,40(3),48-54,2003.
    [14]D.Adler,M.S.Shur,M.Silver,and S.R.Ovshinsky,“Threshold switching in chalcogenide-glass thin films,” J.Appl.Phys.,vol.51,pp.3289,Dec.1980.
    [15].Y.Watanabe,J.G.Bednorz,A.Bietsch,Ch.Gerber,D.Widmer,A.Beck,and S.J.Wind,“Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO_3 single crystals,” Appl.Phys.Lett.78,3738,Apr.2001.
    [16].S.Srivastava,N.K.Pandey,P.Padhan,and R.C.Budhani,“Current switching effects induced by electric and magnetic fields in Sr-substituted Pr0.7Ca0.3Mn03 films,” Phys.Rev B.,vol.62,pp.21,Dec.2000.
    [17]. T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, and C. Adachi,"Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition, " Appl. Phys. Lett. , vol. 83, pp. 1252, 2003.
    [18]. C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J. S. Zhao, and C. S. Hwang, "Identification of a determining parameter for resistive switching of Ti02 thin films, " Appl. Phys. Lett., vol. 86, pp. 262907,2005.
    [19]. A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, "Reproducible switching effect in thin oxide films for memory applications," Appl. Phys. Lett., vol.77, pp. 139, 2000.
    [20] S. Ovshinsky, "Reversible Electrical Switching Phenomena in Disordered Structures" , P hysical Review Leters, 1968, 21(20), 1450-1453.
    [21] J. Feinleib, J. Neufville, S. C. Moss, etc, "Rapid Reversible Light-Induced Crystallization of Amorphous Semiconductors", Applied Physics Letters, 18. (6), 254-257, 1971.
    [22] Stefan Lai, Tyler Lowrey, "OUM-A 180nm Non-volatile Memory Cell Element Technology for Stand Alone and Embedded Applications,IEEE IEDM Technical Digest, 803-806, 2001.
    [23] A. Pirovano, A. L. Lacaita, A. Benvenuti, etc., "Scaling Analysis of Phase Change Memory Technology", IEEE IEDM Technical Digest, 699-702,2003.
    [24] D. Kang, D. Ahn, M. Won, etc.,"Lower Voltage Operation of a Phase Change Memory Device with a Highly Resistive TiON Layer", Japanese Journal of Applied Physics,43(8A), 5243-5244, 2004.
    [25] S. Tsui, Y. Q. Wang, etc, "Mechanism and scalability in resistive switching of metal-Pr0. 7Ca0. 3Mn03 Interface" , APPLIED PHYSICS LETTERS 89, 123502, 2006.
    [26] A. Sawa, T. Fuji i, etc, "Interface transport properties and resistance switching in perovskite-oxide heterojunctions" , Strongly Correlated Electron Materials: Physics and Nanoengineering, Proceedings of SPIE Vol. 5932, 2005.
    [27] A. Beck, J. G. Bednorz, etc, "Reproducible switching effect in thin oxide films for memory applications" , APPLIED PHYSICS LETTERS, 77, 13,2000.
    [28] A. Chen, S. Haddad, Y. C. Wu, etc, "Non-Volatile Resistive Switching for Advanced Memory Applications" IEDM. 31. 3, 2005.
    [29] H. Hwang, D. Choi,etc, "Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications" , APPLIED PHYSICS LETTERS,88, 082904. 2006.
    [30] C. B. Lee, B. S. Kang, etc, "Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films" , APPLIED PHYSICS LETTERS, 91, 082104 ,2007.
    [31] X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, "Direct resistance profile for an electrical pulse induced resistance change device" , APPLIED PHYSICS LETTERS, 87, 233506 ,2005.
    [32]Stefan Lai, "Future Perspective of Non-volatile Memory", 2003 International Meeting for Future Electron Devices, 16, 2003.
    [33] M. Lankhorst, B. Ketelaars, etc, "Low-cost and nanoscale non-volatile memory concept for future silicon chips" , Nature Materials 4, 347-352, 2005.
    [34] H. Lee, D. H. Kang, L. Tran, "Indium selenide (In2Se3) thin film for phase-change memory" , MaterialsScience and Engineering B , 119, 196-201,2005.
    [35] H. L ee, Y. K. Kim, D. Kim, etc, "Switching behavior of indium selenide-based phase-change memory cell" , IEEE Transactions on Magnetics, 41(2 ), 10 4-1036, 2005.
    [36] D. P. Gosain, M. Nakamura, T. Shimizu, etc., Nonvolatile memory based on reversible phase transition phenomena in telluride glasses, Jpn. J. App. Phys., 28(6), 1013-1018, 1989.
    [37] D. Kang, D. Ahn, M. Won, etc., "Lower Voltage Operation of a Phase Change Memory Device with a Highly Resistive TiON Layer", Japanese Journal of Applied Physics, 43(8A), 5243-5244, 2004.
    [38] B. W Q, Y. F Lai , J. Feng, etc., "Study of Ge_2Sb_2Te_5 film for nonvolatile memory medium" , J. Mater. Sci. Technol., 21(1), 95-99, 2005.
    [39] N. Yamada, E. Ohno, K. Nishiuchi, etc., "Rapid-phase transitions of GeTe-Sb_2Te_3 pseudo binary amorphous thin films for an optical disk memory, J. A ppl. Phys, 69 (5), 2849-2856, 1991.
    [40] E . M. Sanchez, E. F. Prokhorov, J. Gonzale, etc., "Structural, electric and kinetic parameters of ternary alloys of GeSbTe" , Thin Solid Films, 471, 243-247, 2004.
    [41] K. Walter . N. Joroge, etc., "Density changes upon crystallization of Ge2Sb4Te4 films" , J. Vac. Sc i.Technol A , 20(1), 230-233, 2002.
    [42] A. Mendoza-Galvan, J. Gonzalez-Hernandez, "Drude-like behavior of Ge:Sb:Te alloys in the infrared" , J. Appl. Phys., 87(2). 760-765, 2000.
    [43] K. Nakayama, K. Kojima, Y. Imai, etc., "Nonvolatile memory based on phase changein Se-Sb-Te glass" , Jpn. J. Appl. Phys., 42 (2A), 404-408, 2003.
    [44] M. A Abdel, "A study of the crystallization kinetics of some Se-Te-Sb glasses" , J. Noncryst. Solids, 241, 121-127, 1998.
    [45] K. D Tsendin, E. A Lebedev, H. Kim, etc., "Characteristics of information recording on chalcogenide glassy semiconductors" ,Semi.Sci.Technol., 16(5), 394-396, 2001.
    [46] K. Nakayama,T. Kitagawa, etc., "Nonvolatile memory based on phase transition in chalcogenide thin film" , Jpn. J. Appl. Phys., 32 (IB),564-569, 1993.
    [47] B. Liu, Z. T Song, T. Zhang, etc., "Novel material for nonvolatile ovonic unified memory(OUM )" , Chinese Physics, 13 (7), 1167-1170, 2004.
    [48] D. H Kim, F. Merget, M. Laurenzis, etc., "Electrical percolation characteristics of GeSbTe thin films during the amorphous to crystalline phase transition" , Appl. Phys., 97, 083538, 2005.
    [49] G. V Bunton, "Switching and memory efects in amorphous chalcogenide thin films" , IEEE Transaction Electron Devices, 20 (2), 140-144, 1973.
    [50] R. Kojima, S. Okabayashi, T. Kashihara, etc., "Nitrogen doping effect on phase change optical disks" , Jpn. J. Appl. Phys. 37,2098-2103,1998.
    [51] T. H Jeong, H. Seo, K. L Lee, etc., "Study of oxygen-doped GeSbTe films and its effect as an interface layer on the recording properties in the blue wavelength" , Jpn. J. App. Phys., 40(313), 1609-1612, 2001.
    [52] N. Yamada, E. Ohno, K. Nishiuchi, etc., "Rapid-phase transitions of GeTe-Sb_2Te_3 pseudo binary amorphous thin films for an optical disk memory", J. Appl. Phys, 69(5), 2849-2856, 1991.
    [53] Y. C. Chen, C. T. Rettner, etc, "Ultra-Thin Phase-Change Bridge Memory Device Using GeSb" , IEEE IEDM Technical Digest, 2006, 30_3.
    [54] A. Redaelli, D. Ielmini, etc, "Impact of crystallization statistics on data retention for phase change memories" , IEEE IEDM Technical Digest , 31_2, 2006.
    [55] Y. H Ha, J. H. Yi, H. Hoe, etc, "An Edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption" , Symposium on VLSI Technology Digest of Technical Papers, p. 175-176,2003.
    [56] F. Pellizzer, A. Pirovano, etc, "Novel μ Trench Phase-Change Memory Cell for Embedded and Stand-Alone Non-Volatile Memory Applications" ,Symposium on VLSI Technology Digest of Technical Papers, 18-19, 2004.
    [57] M. Lankhorst, B. Ketelaars, etc, "Low-cost and nanoscale non-volatile memory concept for future silicon chips" , Nature Materials,4, 347-352, 2005.
    [58] J. H. Oh, J. H. Park, etc, "Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology" , IEEE IEDM Technical Digest, 2006,2_6.
    [59] N. Matsuzaki, K. Kurotsuchi, etc, "Oxygen-doped GeSbTe Phase-change Memory Cells Featuring 1. 5-V/100-μ A Standard 0. 13-μ m CMOS Operations" ,IEEE IEDM Technical Digest, 2005, 31_1.
    [60] Y. Matsui, K. Kurotsuchi, etc, "Ta_2O_5 Interfacial Layer between GST and W Plug enabling Low Power Operation of Phase Change Memories" , IEEEIEDM Technical Digest, 2006, 30_1.
    [61] W. W. Zhuang, W. Pan, etc, "Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM) " , IEEE IEDM Technical Digest, 2002, 193 - 196.
    [62] S. Kaeriyama, etc, "A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch" , IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO.1, JANUARY 2005.
    [63] T.Sakamoto, K. Lister, N. Banno, etc, "Electronic transport in Ta205 resistive switch" , APPLIED PHYSICS LETTERS, 91, 092110, 2007.
    [64] D. Lee, D. Seong, H. Choi, etc, "Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications" , IEEE IEDM Technical Digest, 30_7, 2006.
    [65] E. L. Cook, "Model for the Resistive-Conductive Transition in Reversible resistance-Switching Solids, " J. Appl. Phys. , vol. 41, pp. 2, Oct. 1970.
    [66] K. Tsunoda, K. Kinoshita, H. Noshiro,etc, Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V" , IEEE IEDM Technical Digest, 30_1, 2007.
    [67] T. N. Fang, S. Kaza, S. Haddad, A. Chen, etc, "Erase Mechanism for Copper Oxide Resistive Switching Memory Cells with Nickel Electrode" , IEEE IEDM Technical Digest, 30_7, 2006.
    [1]刘新福,孙以材,刘东升,四探针技术测最薄层电阻的原理及应用,半导体技术,2004,29(7),48-52.
    [2]H.B.Lv,M.Yin,X.F.Fu,Y.L.Song,L.Tang,P.Zhou,C.H.Zhao,T.A.Tang,B.A.Chen,Y.Y.Lin,‘Resistive Memory Switching of Cu_xO Films for Nonvolatile Memory Application',IEEE ELECTRON DEVICE LETTERS,29(4) 309-311 2008.
    [3]M.Yin,P.Zhou,H.B.Lv,J.Xu,Y.L.Song,X.F.Fu,C.H.Zhao,T.A.Tang,B.A.Chen and Y.Y.Lin,‘Improvement of resistive switching in Cu_xO using new RESET mode',IEEE ELECTRON DEVICE LETTERS,29(7),681-683 2008.
    [1] B.Hyot. etc., Proc. EPCOS 002, 2001.
    [2] N. Yamada, E. Ohno, K. Nishiuchi, etc., Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory" , J. Appl. Phys., 69(5), 2849-2856, 1990.
    [3] S. Ovshinsky, "Reversible Electrical Switching Phenomena in Disordered Structures" , P hysical Review Leters, 1968, 21(20), 1450-1453.
    [4] H. B Lv, P. Zhou, Y. Y Lin, etc., "Electronic Properties of GST for non-volatile memory" , 37,982-984, 2006,
    [5] T. Hurst, Horie. M, Khulbe. P. K' Crystallization of Growth-Dominant Eutectic Phase-Change Materials' , Optical Data Storage Conference Digest, 77-79, 2000.
    [6] Y. Lin, Y. Y Lin, L. Z Lai, etc. , "The Performance of Ge2Sb2Te5 material for PCRAM device" , Integrated Ferroelectrics, 78:1-10, March30, 2006.
    [7] R. Kojima, S. Okabayashi, T. Kashihara, etc., "Nitrogen doping effect on phase change optical disks" , Jpn. J. Appl. Phys. 37,2098-2103, 1998.
    [8] Study of oxygen-doped GeSbTe films and its effect as an interface layer on the recording properties in the blue wavelength" , Jpn. J. App. Phys.,40(313), 1609-1612, 2001.
    [1]F.Pellizzer,A.Pirovano,etc,“Novel μ Trench Phase-Change Memory Cell for Embedded and Stand-Alone Non-Volatile Memory Applications”,Symposium on VLSI Technology Digest of Technical Papers,18-19,2004.
    [2]Y.H.Ha,J.H.Yi,H.Hoe,etc,“An Edge Contact Type Cell for Phase Change RAMFeaturing Very Low Power Consumption”,Symposium on VLS1 Technology Digest of Technical Papers,p.175-176,2003.
    [3]吕杭炳,林殷茵,汤庭鳌,陈邦明,“一种纳米相变存储器的制备方法”,专利号,ZL200510028247.5
    [4]S.Ovshinsky,“Reversible Electrical Switching Phenomena in Disordered Structures”,Physical Review Leters,1968,21(20),1450-1453.
    [5]A.Pirovano,L.Lacaita,“:Electronic Switching in Phase-Change Memories”,IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.51,NO.3,2004.
    [6]H.B.Lv,Y.Y.Lin,P.Zhou,T.A.Tang,B.W Qiao,Y.F Lai,J.Feng and B.Chen,“A nano-scale-sized 3D element for phase change memories”Semiconductor Science and Technology,21 1013-1017,2006.
    [1]M.S Kwon,J.Y Lee,“O plasma oxidation of sputter-deposited Cu thin film during photo resist ashing”,Applied Surface Science,135,101-106,1998.
    [2]B.C.Gibson,J.R.Williams,etc.,“The interaction of atomic oxygen with thin copper films”,J.Chem.Phys.96(3),1 February 1992
    [3]J.Li,R.Blewer,J.W.Mayer,MRS Bulletinr,June,p.18(1993).
    [4]T.Fukada,Y.Toyoda,M.Hasegawa,H.Kurokawa,K.Sato,M.Nunoshita,Conference Proceedings ULSI-Ⅸ,MRS,p.109(1994).
    [5]E.L.Cook,“Model for the Resistive-Conductive Transition in Reversible resistance-Switching Solids,” J.Appl.Phys.,vol.41,pp.2,Oct.1970.
    [6]A.Chen,S.Haddad,Y.C.Wu,etc,“Non-Volatile Resistive Switching for Advanced Memory Applications”,IEEE IEDM.31.3,(2005).
    [7]H.B.Lv,P.Zhou,Y.L.Song,etc.,“Polarity-Free Resistive Switching Characteristics of CuxO Films for Non-volatile Memory Applications'.CHIN.PHYS.LETT.Vol.25,No.31087(2008).
    [8]H.B.Lv,M.Yin,Y.L.Song,etc.,‘Forming Process Investigation of CuxO Memory Films',IEEE ELECTRON DEVICE LETTERS,VOL.29,NO.1,JANUARY(2008).
    [9]H.B.Lv,M.Yin,X.F.Fu,etc.,‘Resistive Memory Switching of Cu_xO Films for Nonvolatile Memory Application',IEEE ELECTRON DEVICE LETTERS,29(4),309-311(2008).
    [10]M.Yin,P.Zhou,H.B.Lv,etc.,‘Improvement of resistive switching in CuxO using new RESET mode',IEEE ELECTRON DEVICE LETTERS,29(7) 681-683,2008.
    [11]A.Redaelli,D.Ielmini,etc,“Impact of crystallization statistics on data retention for phase change memories”,IEEE IEDM Technical Digest,2006,31_2.
    [12]Y.Sato,K.Tsunoda,K.Kinoshita,etc.,“Sub-100-μ A Reset Current of Nikel Oxide Resistive Memory Through Control of Filamentary Conductance by Current Limit of MOSFET”,IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.55,NO.5,2008.
    [13]S.M.Sze,1981,Physics of Semiconductor Devices,2nd ed.(Wiley,New York),p.403.
    [1]萧宏,〈半导体制程技术导论〉,p.427,2001
    [2]E.Korczynski,‘Interconnect:the new frontier',Solid State Technology,41,09,P 83,1998.
    [3]林殷茵,唐立等,中国专利“一种Cu_xO电阻存储器与二极管集成的制造方法”;专利申请号:200810032763.
    [4]林殷茵,陈邦明,吕杭炳,唐立;中国专利“以上电极作为保护层的Cu_xO 电阻存储器及其制造方法”,专利申请号:200710045407.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700