用户名: 密码: 验证码:
星载干涉合成孔径雷达信号处理若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1974年Graham提出了InSAR的概念之后,随着SAR硬件技术的不断进步和发展,机载和星载InSAR实验数据不断增多,已有许多学者在InSAR理论和信号处理领域进行了大量的研究。但是由于缺乏观测地区精确的DEM数据,大多数工作集中在如何依据相干系数和残差点来进行定性和定量的信号处理分析,较少针对干涉信号处理的各个步骤对均方根测高精度的影响进行研究。本论文的目的是通过建立星载交轨InSAR仿真模型,以最终高程均方差为判断依据,分析InSAR信号处理各步骤中相关算法和参数对最终高程精度的影响,并针对在InSAR仿真模型的建立和InSAR信号处理过程中遇到的问题,提出一些新的思想和解决方法。
     本文首先建立地球-卫星轨道模型,并基于此模型建立了星载SAR和InSAR仿真模型,针对星载和机载SAR的不同点,估计了星载SAR的有效速度参数并对仿真回波数据进行了Chirp-Scaling (CS)算法成像,获得了正确的InSAR干涉条纹图。随后主要研究了InSAR信号处理关键步骤中的图像配准、相位滤波、相位解缠中各种不同算法和相关参数在不同信噪比下对最终高程精度的影响。针对在图像配准步骤遇到的传统配准方法精度不高和无法计算图像对间微小旋角的问题,提出了改进的相干系数法和Fourier-Mellin变换与相干系数法相结合的InSAR图像配准新方法。在干涉相位滤波方法研究中,比较了不同信噪比下,不同滤波算法、不同滤波窗口大小的效果,得到了各信噪比下的最佳滤波窗口长度,提出应对干涉相位图分块并按各区域平均相干系数使用不同长度的滤波窗口进行滤波的算法,与此同时还研究了将不同滤波算法组合进行多次滤波的效果,得出二次滤波通常可以取得比单次滤波更好效果的结论。在相位解缠研究中,分析了各解缠算法在不同信噪比和不同滤波窗口长度下的效果,得到了不同信噪比下应优先考虑的相位解缠方法。最后对分布式卫星多基线数据融合方法进行了研究,针对最大似然多基线数据融合方法和迭代多基线数据融合方法出现的问题,提出了最大似然法与迭代法相结合的新的多基线数据融合方法,并通过仿真试验,证明该方法可以取得更好效果。
Up to now since L. C. Graham proposed the concept of interferometric synthetic aperture radar (InSAR) in 1974, numerous scientists, researchers and engineers have done a lot of works on InSAR theory and signal processing, and have made significant progresses with the advancement of InSAR hardware and increase of experimental data taken by both spaceborne and airborne systems. However many of them focuses on how to process the data and analyze the results qualitatively and quantitatively with correlation coefficients and residues, less of them focus on the accuracy issues, i.e. root-mean-square (rms) of height measurment involved in different processing steps because of lack of accurate (Digital Elevation Model) DEM data in experimental areas. The purpose of the dissertation is to build a spaceborne InSAR simulation model and analyze algorithms and parameters in key steps of InSAR signal processing in view of rms of height measurement based on our simulation model, some new algorithms and ideas have been proposed.
     The main work of dissertation is to firstly build a spaceborne SAR and InSAR simulation model based on orbital dynamics. According to the difference between airborne and spaceborne SAR imaging, the effective velocity must be estimated in the spaceborne SAR because the spaceborne Chirp Scaling algorithm need the parameter to take place of the satellite track velocity. After the spaceborne InSAR simulation model is correctly established and the right interferograms are obtained, analysis and discussions on height accuracy of algorithms and parameters involved in InSAR signal processing are conducted, such as InSAR image-pair registration, phase filtering and phase unwrapping. Detailed works and conclusions are summarized as follows,
     (1) In the issue of complex images registration, regarding to the problems of conventional InSAR images registration methods, such as inaccuracy and inability of calculation of small rotation angles between images pair, we put forward modified correlation coefficient algorithm and a new registration algorithm based on Fourier-Mellin transformation and correlation coefficient algorithm to solve the problems. We also analyze the influence of the multiple interpolations and the size of matching window on final height accuracy under different signal noise ratio (SNR).
     (2) In issue of noise filtering of interferogram, we firstly compare the effects of six common filtering algorithms with different window size of filter and then obtain the best filtering algorithm and the best window size of filter under different SNR. Moreover, we study the performance of multi-stage filtering method and the effect of combination of different filtering algorithms. The results show that two-stage filtering always has better effect than single-stage filtering and higher-stage filtering (three stages or more) is unnecessary.
     (3) In issue of phase unwrapping, we discuss the typical phase unwrapping algorithms in detail, and make a comprehensive comparison among them under different SNR and window size of filter, and draw conclusion on the most appropriate phase unwrapping algorithm under different SNR.
     (4) Finally, we investigate the interferometric baseline combination issue of longer length with shorter length formed by distributed satellites InSAR system. In view of the problems of maximum likehood multi-baseline data fusion method and iterative multi-baseline data fusion method, we propose a new multi-baseline data fusion algorithm by combining the advantages of maximum likehood and iterative methods. Our simulation show that the new algorithm performs much well than the above two methods do.
引文
[1] John C Curlander, Robert N McDonough. Synthetic Aperture Radar: System and Signal Processing [M]. John Wiley & Sons, Inc, 1991.
    [2] Giorgio Franceschetti, Riccardo Lanari. Synthetic Aperture Radar Signal Processing [M]. CRC Press, 1999.
    [3] Charles V Jakowatz, Daniel E Wahl, etc. Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach [M]. Kluwer Academic Publishers, 1996.
    [4] Mehrdad Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithm [M]. John Wiley &Sons,Inc, 1999.
    [5]张澄波.综合孔径雷达原理、系统分析与应用[M].科学出版社, 1989.
    [6]刘永坦.雷达成像技术[M].哈尔滨工业大学出版社, 1999.
    [7]魏钟铨等.合成孔径雷达卫星[M].科学出版社, 2001.
    [8]张直中.机载和星载合成孔径雷达导论[M].电子工业出版社, 2004.
    [9]袁孝康.星载合成孔径雷达导论[M].国防工业出版社, 2003.
    [10]保铮等.雷达成像技术[M].电子工业出版社, 2006.
    [11]王超等.星载合成孔径雷达干涉测量[M].科学出版社, 2002.
    [12]李平湘等.雷达干涉测量原理与应用[M].测绘出版社, 2006.
    [13]姚世超,王岩飞,张冰尘,廖蜀燕.合成孔径雷达原始数据幅相压缩算法[J].电子与信息学报,2002,24(11):1628-1633.
    [14]张文超,王岩飞,潘志刚.合成孔径雷达原始数据幅相压缩算法[J].电子与信息学报,2008,30(4):1008-1010.
    [15] Paul Rosen, Scott Hensley, Ian R Joughin, Fuk K Li, S?ren Madsen, Ernesto Rodriguez, Richard Goldstein. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382.
    [16] Massonnet D, Feigl K, et al. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 1994, 369:227-230.
    [17] Massonnet D, Rabaute T. Radar interferometry:limits and potential[J]. Geoscience and Remote Sensing, IEEE Trans. 1993, 31(3):455-464.
    [18] Zebker H A, Werner C L, et al. Accuracy of topographic maps derived from ERS-1 interferometric radar[J]. Geoscience and Remote Sensing, IEEE Trans. 1994, 32(4):823-836.
    [19]刘国林,郝晓光,薛怀平. InSAR技术的理论与应用研究现状及其展望[J].山东科技大学学报(自然科学版),2004,23(3):1-6.
    [20]王超.利用航天飞机成象雷达干涉数据提取数字高程模型[J].遥感学报,1997,1(1):46-49.
    [21]单新建,刘浩.利用干涉合成孔径雷达技术提取数字地面模型[J].国土资源遥感,2001,(2):43-47.
    [22]乔学军,李澍荪,王琪,游新兆,杜瑞林.利用InSAR技术获取三峡地区的数字高程模型[J].大地测量与地球动力学,2003,23(2):122-127.
    [23] Goldstein R M, Engelhardt H, Kamb B, et al. Satellite radar interferometry for monitoring ice sheet m otion: Application to an Antarctic ice stream[J]. Science, 1993, 262(5139):1525-1530.
    [24] Joughin I. Tulaczyk S, Fahnestock M, et al. A Mini-Surge on the Ryder Glacier, Greenland, Observed by Satellite Radar Interferometry [J]. Science, 1996, 274(5285):228-230.
    [25] Jezek K C, H G Sohn, K F Noltimier. The RADARSAT Antarctic Mapping Project[C], Geoscience and Remote Sensing Symposium Proceedings, IGARSS'98. 1998:2462-2464.
    [26]周春霞,鄂栋臣. InSAR技术在南极地区的应用[J].测绘与空间地理信息,2005,28(5):5-7.
    [27] Massormet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by Radar Interferometry[J]. Nature, 1993, 364:138-142.
    [28]王超,刘智,张红.张北-尚义地震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2550-2554.
    [29]张栓宏,纪占胜.合成孔径雷达干涉测量(InSAR)在地面形变监测中的应用[J].中国地质灾害与防治学报,2004,15(1):113-117.
    [30]薛怀平,刘根友,郝晓光,曾琪明,张景发,夏耶,易庆林,涂国宝.三峡库区秭归GPS-CR滑坡监测网的建立[J].大地测量与地球动力学,2006,26(增刊):178-180.
    [31] Goldstein R M,Zebker H A. Interferometric radar measurements of ocean surface currents[J]. Nature, 1987, 328:707-709.
    [32] Orwig L P, Held D N. Interferometric ocean surface mapping and moving object relocation with a Norden systems Ku-Band SAR[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'92. 1992:1598-1600.
    [33]张彪,何宜军.干涉合成孔径雷达海浪遥感研究[J].遥感技术与应用,2006,21(1):12-17.
    [34] L C Graham. Synthetic Interferometer Radar for Topographic Mapping[J]. Proceedings of the IEEE, 1974, 62(6): 763-768.
    [35] Rufino G, Moccia A, Esposito S. DEM generation by means of ERS tandem data[J], Geoscience and Remote Sensing, IEEE Trans. 1998, 36(6):1905-1912.
    [36] Moreira J, Schwabisch M, Fornaro G, Lanari R, Bamler R, Just D, Steinbrecher U, Breit H, Eineder M, Franceschetti G, Geudtner D, Rinkel H. X-SAR interferometry: first results[J]. Geoscience and Remote Sensing, IEEE Trans. 1995, 33(4):950-956.
    [37] Y Shen, S J Shaffer, R L Jordan. Shuttle Radar Topography Mission(SRTM) Flight System Design and Operations Overview[C]. Proc. of SPIE. 2000:167-178.
    [38]陈尔学,李增元. ALOS PALSAR影像地球椭球地理编码方法[J].遥感信息,2008,01期:37-42.
    [39] Josef M, Richard L, Elke B.Sliding Spotlight SAR Processing for TerraSAR-X using a New Formulation of the Extended Chirp Scaling Algorithm[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'03. 2003:1462-1464.
    [40] Boni G, Castelli F, et al. High resolution COSMO/SkyMed SAR data analysis for civil protection from flooding events[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'07. 2007:6-9.
    [41] H Cantalloube, E Colin. ONERA RAMSES合成孔径雷达:最新重大成果及其未来发展[J].空载雷达,2007,01期:43-48.
    [42] C Wimmer, R Siegmund, et al. Generation of High Precision DEMs of the Wadden Sea with Airborne Interferometric SAR[J]. Geoscience and Remote Sensing, IEEE Trans. 2000, 38(5):2234-2245.
    [43]张云华,成像高度计校飞试验报告[R].北京:中国科学院空间科学与应用研究中心,2002.
    [44]张云华,姜景山,张祥坤等.三维成像雷达高度计机载原理样机及机载试验[J].电子学报, 2004,32(6):899-902.
    [45]韦立登,向茂生,吴一戎. POS数据在机载干涉SAR运动补偿中的应用[J].遥感技术与应用,2007,22(2):189-294.
    [46] Andrew K Gabriel, Richard M Goldstein. Crossed orbit interferometry: theory and experimental results from SIR-B[J]. International Journal of Remote Sensing, 1988, 9(5):857-872.
    [47] Dvornychenko V N. Bounds on (deterministic) correlation functions with application to registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983, 5(2):206-213.
    [48] Li F K, Goldstein R M. Studies of multibaseline spaceborne interferometric synthetic aperture radars[J]. Geoscience and Remote Sensing, IEEE Trans. 1990, 28(1):88-97.
    [49] Lin Q, Vesecky J F, Zebker H A. New Approaches in Interferometric SAR Data Processing[J]. Geoscience and Remote Sensing, IEEE Trans. 1992, 30(3):560-567.
    [50] Moreira A, Scheiber R. A new method for accurate co-registration of interferometric SAR images[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'98. 1998:1091-1093.
    [51]唐智,周荫清,李景文. InSAR数据处理中基于相关系数的配准方法[J].雷达科学与技术,2004,2(2):108-114.
    [52] Lijun LU, Mingsheng LIAO, Teng WANG. Registration of INSAR Complex Images Based on Integrating Correlation-Registration and Least Square-Registration[C]. Proc. of SPIE. 2005:604330.1-4.
    [53] Abdelfattah R, Nicolas J M, Tupin F. Interferometric SAR image coregistration based on the Fourier-Mellin invariant descriptor[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'02. 2002:1334-1336.
    [54]石晓进,张云华,基于Fourier-Mellin变换和相干系数法的重复轨道干涉SAR图像配准新方法(电子与信息学报,已录用).
    [55] Bezerra Candeias, Mura J C, Dutra L V, Moreira J.R. Interferogram phase noise reduction using morphological and modified median filters[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'95. 1995:166-168.
    [56] Lee J S, Papathanassiou K P, et al. A New Technique for Noise Filtering of SAR Interfermetric Phase Images[J]. Geoscience and Remote Sensing, IEEE Trans. 1998, 36(5):1456-1465.
    [57] Goldstein R M. Radar Ice Motion Interferometry[EB/OL]. http://earth.esa.int/workshops/ers97/papers/goldstein/.
    [58] Baran I, Stewart M P, Kampes B M, Perski Z, Lilly P. A modification to the Goldstein radar interferogram filter[J]. Geoscience and Remote Sensing, IEEE Trans. 2003, 41(9):2114-2118.
    [59]唐智,周荫清,李景文.干涉SAR图像的降噪方法分析[J].宇航学报,2004,25(4):416-421.
    [60]索志勇,李真芳,保铮,吴建新.机载干涉合成孔径雷达数据处理方法研究[J].系统工程与电子技术,2008,30(9):1660-1663.
    [61] Lopez C, Fabregas X, Mallorqui J, Mora O, Chandra M. Noise filtering of SAR interferometric phase based on wavelettransform[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'01. 2001:2928-2930.
    [62]汪鲁才,王耀南,毛六平.基于小波变换和中值滤波的InSAR干涉图像滤波方法[J].测绘学报, 2005,34(2):108-112.
    [63]刘实,毛建旭.基于小波变换和圆周期均值算法的InSAR干涉纹图噪声抑制[J].测控技术,2007,26(10):13-15.
    [64] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4):713-720.
    [65] J A Quiroga, A Gonzalez-Cano, E Bernabeu. Phase-unwrapping algorithm based on an adaptive criterion[J]. Applied Optics, 1995, 34(14):2560-2563.
    [66] Hock Lim, Wei Xu, Xiaojing Huang. Two new practical methods for phase unwrapping[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'95. 1995:196-198.
    [67] Wei Xu, Cumming I. A region-growing algorithm for InSAR phase unwrapping[J], Geoscience and Remote Sensing, IEEE Trans. 1999, 37(1):124-134.
    [68] Flynn T J. Two-dimensional phase unwrapping with minimum weighted discontinuity[J]. Journal of the Optical Society of America A, 1997, 14(10):2692-2701.
    [69] Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J]. Journal of the Optical Society of America A, 1994,11(1):107-117.
    [70] Ghiglia D C, Romero L A. Minimum Lp-norm two-dimensional phase unwrapping[J]. Journal of the Optical Society of America A, 1994, 13(10):706-708.
    [71]杨夏,于起峰,伏思华.由新质量图引导的InSAR快速解缠方法[J].电子与信息学报,2007,29(10):2367-2370.
    [72]魏志强金亚秋.基于蚁群算法的InSAR相位解缠算法[J].电子与信息学报,2008,30(3):518-523.
    [73] Bums R, McLaughlin C A, et al. TechSat 21:Formation design, control and simulation[C]. IEEE Aerospace Conference Proceedings. 2000:19-25.
    [74] Zetocha P, et al. Commanding and controlling satellite clusters[J]. IEEE Transactions on Intelligent system, 2000, 15(6):8-13.
    [75] Massonnet D. The interferometric cartwheel: a constellation of passive satellites to produce radar images to be coherently combined[J]. International Journal of Remote Sensing, 2001, 22(12):2413-2430.
    [76] Massonnet D. Capabilities and limitation of the interferometric cartwheel[J]. Geoscience And Remote Sensing, IEEE Trans. 2001, 39(3):506-520.
    [77] CzKrieger, Fiedler H, Mittennayer J, Papathanassiou K, Moreira A. Analysis of Multistatic Configurations for Spaceborne SAR Interferometry[J]. IEE Proc. Radar Sonar Navig, 2003, 150(3):87-96.
    [78] Moreira A, Krieger G, et al. TanDEM-X: A terraSAR-X add-on satellite for single-pass SAR interferometry[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'04. 2004:1000-1003.
    [79] Lombardo P, Lombardini F. Optimum dual-baseline SAR cross-track interferometry[C]. Proc. SPIE. 1996:311-320.
    [80] Thompson D G, Robertson A E, Arnold D V, Long D G. Multi-baseline interferometric SAR for iterative height estimation[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'99. 1999:251-253.
    [81] Vinogradov M V, Elizavetin I V. Phase Unwrapping Method for the Multifrequency and Multibaseline Interferometry[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'98. 1998:1103-1105.
    [82] Ferretti A, Prati C, Rocca F. Multibaseline InSAR DEM reconstruction: the wavelet approach[J]. Geoscience and Remote Sensing, IEEE Trans. 1999, 37(2):705-715.
    [83] Lei Ying, Munson D C, Koetter R, Frey B J. Multibaseline InSAR terrain elevation estimation: a dynamic programming approach[C], IEEE International Conference on Image Processing Proceedings. 2003:157-160.
    [84] Meglio F, Schirinzi G. DEM estimation from multi-Baseline ENVISAT-ASAR interferometric data through maximum likelihood techniques[C]. Geoscience and Remote Sensing Symposium Proceedings, IGARSS'07. 2007:4517-4520.
    [85]谷德峰,姚静,易东云.分布式InSAR测高的基线测量精度指标分析[J].现代雷达,2007,29(3):19-22.
    [86]张永胜,黄海风,梁甸农,朱炬波.星载分布式InSAR测高性能的理论及系统仿真评价方法[J].电子学报,2008,36(7):1273-1278.
    [87]徐华平,周荫清,李春升.分布式星载干涉SAR中空间基线的分析和设计[J].电子与信息学报,2003,25(9):1194-1199.
    [88]张秋玲,王岩飞.利用多基线数据融合提高分布式卫星InSAR系统的干涉相位精度[J].电子与信息学报,2006,28(11):2011-2014.
    [89]毛志杰,廖桂生,李海.自适应图像配准多基线InSAR干涉相位展开方法[J].电波科学学报,2008,23(5):877-882.
    [90] Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry[J]. Geoscience and Remote Sensing, IEEE Trans. 1998, 36(5):1551-1565.
    [91]荆燕,王建军,张景发,张红,蒋林根. D-InSAR技术在地震同震形变研究中的应用[J].测绘科学,2004,29(2):65-68.
    [92]张光明,张晓玲,黄顺吉.分布式卫星INSAR中姿态变化对测高的影响[J].电子科技大学学报,2003,32(4):375-379.
    [93] Martin Vetterli, Pina Marziliano, Thierry Blu. SamPling signals with finite rate of innovation[J]. IEEE Transactions of Signal Processing, 2002, 50(6).1417-1428.
    [94] Michael Unser. Sampling-50 years after Shannon[J]. Proceedings of the IEEE, 2003, 88(4):569-587.
    [95] Richard Bamler, Philipp Hartl. Synthetic aperture radar interferometry[R], German Aerospace Center, 1998.
    [96] H A Zebker, J Villasenor. Decorrelation in Interferometric Radar Echoes[J]. Geoscience and Remote Sensing, IEEE Trans. 1992, 30(5):950-959.
    [97]张守信,外弹道测量与卫星轨道测量基础[M],北京:国防工业出版社,1992.
    [98]陈芳允,卫星测控手册[M],科学出版社,1992.
    [99] R K Raney, H Runge, R Bamler, I G Cumming, F H Wong. Precision SAR processing using chirp scaling[J]. Geoscience And Remote Sensing, IEEE Trans. 1994, 32(4):786-799.
    [100] Moreira, Alberto, Josef Mittermayer, Rolf Scheiber. Extended Chirp Scaling Algorithm for Air-and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes[J]. Geoscience And Remote Sensing, IEEE Trans. 1996, 34(5):1123-1136.
    [101] Ian G Cumming, Frank H Wong. Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation[M]. ARTECH HOUSE,INC, 2005.
    [102] Shi Xiaojin, Zhang Yunhua, ZhaiWenshuai. Effective velocity estimation for space-borne SAR based on chirp scaling algorithm[C]. APSAR 2007, 1st Asian and Pacific Conference on Synthetic Aperture Radar Proceedings. 2007:427-430.
    [103]云日升,彭海良,王彦平.干涉合成孔径雷达复图像配准精度分析和方法[J].测试技术学报,2003,17(1):10-14.
    [104]赵志伟,杨汝良,祁海明.一种改进的星载干涉SAR复图像最大频谱配准算法.测绘学报,2008,37(1):64-69.
    [105] Shi Xiaojin, Zhang Yunhua, Jiang Jingshan. InSAR image registration using modified correlation coefficient algorithm[C]. 7th International Symposium on Antennas, Propagation and EM Theory Proceedings. 2006:533-536.
    [106] Abdelfattah R, Nicolas J M. InSAR image co-registration using Fourier-Mellin transform[J]. International Journal of Remote Sensing, 2005, 26(13):2865-2876.
    [107] Reddy B S, Chatterji B N. An FFT-based technique for translation, rotation, and scale-invariant image registration[J]. Image Processing, IEEE Trans. 1996, 5(8):1266-1271.
    [108] Qin-Sheng Chen, Defrise M, Deconinck F. Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition[J]. Pattern Analysis and Machine Intelligence, IEEE Trans. 1994, 16(12):1156-1168.
    [109]王晓军,孙洪,黄培荣,管鲍.基于直方图形态的SAR图像灰度变换性能评估[J].系统工程与电子技术,2004,26(10):1332-1335.
    [110]汪鲁才,王耀南,毛建旭.基于相关匹配和最大谱图像配准相结合的InSAR复图像配准方法[J].测绘学报,2003,32(4):321-324.
    [111] Eichel P H, Ghiglia D C, et al. Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection[R]. Sandia National Labs.Tech.Repot, 1993.
    [112] R Lanari, G Fornaro, et al. Generation of Digital Elevation Models by Using SIR-C/X-SAR Multifrequency Two-Pass Interferometry: The Etna Case Study[J]. Geoscience and Remote Sensing, IEEE Trans. 1996, 34(5):1097-1114.
    [113]孙龙,胡茂林,张长耀. InSAR相位解缠最小二乘算法的研究[J].雷达科学与技术,2005,3(4):216-220.
    [114]陈恒新. Jacobi,Gauss—Seidel迭代法收敛准则的改进[J].应用数学与计算数学学报,1991, 5(2):92-96.
    [115] Ghiglia D C, Pritt M D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software[M]. John Wiley & Sons, Inc, 1998.
    [116] M D Pritt, J S Shipman. Least-Squares Two-Dimensional Phase Unwrapping Using FFT's[J]. Geoscience and Remote Sensing, IEEE Trans, 1994, 32(3):706-708.
    [117] Shi Xiaojin, Zhang Yunhua. Quantitative Comparison of phase unwrapping algorithms for SAR interferometry[C]. Asia Pacific Microwave Conference Proceedings. 2008:(E5-02).
    [118]靳国旺,徐青,朱彩英,韩晓林.利用平地干涉相位进行InSAR初始基线估计[J].测绘科学技术学报,2006,23(4):279-283.
    [119]谭磊,张桦,薛彦斌.一种基于特征点的图像匹配算法[J].天津理工大学学报,2006,22(6):67-69
    [120] Tmuhaf R N, Siqueira P R. Vertical structure of vegetated land surface from interferometric and polarimetric radar[J].Radio Science, 2000, 35(1):141-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700