用户名: 密码: 验证码:
基于数据挖掘的供应链分销网络优化技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球竞争的加剧和科学技术的进步,现代管理思想和手段不断变革和发展,越来越多的企业开始注重供应链分销网络性能优化,以提高客户的满意度,提升企业的核心竞争力,从而保证供应链系统的快速响应变化能力,支持供应链整体绩效的改善和个体收益的“双赢”。
     针对供应链分销网络的选址、产品优化配置、运作和再优化,以供应链分销网络优化为目标,本文以“供应链分销网络选址问题研究→供应链产品的优化配置问题研究→供应链分销网络流段选址优化问题研究→供应链分销网络再优化问题研究”为研究主线,给出了若干模型与算法以解决上述问题。
     主要研究工作包括以下几个方面:
     (1)针对面向客户群的供应链分销网络选址问题,采用数据挖掘中的聚类分析的方法,引入聚类有效性函数和划分模糊度的概念,将划分熵与划分模糊度相结合,给出“和”聚类有效性函数,并定义一种修正的划分模糊度作为聚类有效性函数,通过引入聚类的分类属性的权值参数λ来控制数值属性和分类属性对聚类过程的作用,由于聚类有效性问题又可以转化为最佳类别数k的确定,为此针对客户群中客户的数值数据、类属性数据和混合数据,采用基于修正划分模糊度的参数选择方法,研究对应客户数据类型聚类的最佳选址数量的确定方法。
     (2)针对供应链的特点,以客户偏好序列数据为切入点,分析消费者对多种评价对象的心理趋向是否存在聚类,建立客户偏好取向与客户特征属性间的关联关系模型,借鉴数据挖掘的符号序列聚类方法,研究符号类型序列数据对应的性质,沿着形式化和实例化两个方向讨论符号序列相似性问题,对偏好符号序列聚类问题的本质进行分析;研究如何应用自组织特征映射作为符号序列的聚类算法,并对聚类模型进行比较。
     (3)针对面向顾客的服务设施选址问题,研究带双重容量限制和时间价格约束的供应链分销网络流段选址问题,给出启发式算法,并将该问题转化为传统的流段选址问题来解决。针对市场需求细分和顾客流量接受绕行距离需求的供应链分销网络选址问题,研究带路径需求服务半径的供应链分销网络流段选址问题,给出解决问题的贪婪算法、局部搜索算法以及禁忌算法,并进行比较。研究需求不确定情况下的的供应链分销网络设施流段选址分配问题,建立MAXMIN-FIFLP模型,给出启发式算法。
     (4)针对市场的竞争情况,研究当沿途顾客的消费能力随着存在的经营网点的效用函数有界线性扩张时,供应链分销网络流段选址优化问题。构造竞争条件下消费能力线性扩张的CCLE-IFIFLP模型,给出对应的启发式算法。研究竞争环境下的市场份额最大化的选址问题,通过引入竞争设施聚集引起的需求增长率和距离折扣率来刻画设施的聚集效应,建立该问题的模型,给出求解该问题的分支定界算法和贪婪算法,分析需求增长率和距离折扣率对选址决策的影响。同时针对供应链中客户满意度存在的问题,用顾客的时间的满意度来表示覆盖半径,研究基于时间满意度的最大覆盖的供应链分销网络再优化问题,给出问题的模型和启发式算法。
     为验证理论研究成果,本文以威海海都食品企业信息化作为典型应用案例,应用本文提出的各种算法和模型,实现供应链分销网络的产品分析、渠道分析和市场分析。给出了应用及结果,验证了本文的理论和方法。
With intensifying global competition, progress on science and technology, and evolution of modern management ideology and means, for the purpose of improving customer satisfaction and enhancing their core competitiveness, more and more enterprises are starting to pay attentions on the optimization performance of the Supply Chain Distribution Network to guarantee the rapid response and change of the supply chain system, the support of improvement of overall performance and the capability of supply chain system and the win-win situation of the individual income.
     In respect of locating the Supply Chain Distribution Networks, optimal configuration of products, operation and further optimization of products, this paper will follow the outline of "research on locating the Supply Chain Distribution Networks, research on optimal configuration of products, research on optimization of selecting location for flow sections of Supply chain retailing network, and research on further optimization of Supply chain retailing network”. Some models and algorithms are established to address the issues mentioned above. The main contribution of this thesis includes the following aspects.
     1) Aiming at locating the customer- group oriented facility of the Supply Chain Distribution Networks, the cluster analysis methods of data mining are adopted, including introduction of cluster validity function and division of fuzzy degree, combining the partition entropy and partition fuzzy degree, giving“sum”cluster validity function, giving modified partition fuzzy degree as cluster validity function. This paper introduces the weight parametersλfor the assification attributes to control the influence of process of clustering from numerical attribues and classification attributes of the classification. Because the effectiveness of the cluster can be transformed into the best category number k, parameter selection method based on modified Partition fuzzy degree is proposed to study the determination method for optimal site chosen number corresponding to the cluster of customer data sructure to deal with the problem from numerical data, attribute data and mixed data type in customer group.
     2) Aiming at the characteristics of supply-chain, considered the customer preferences sequence data, analysis is carried out to determine whether a cluster exists for customer’s mind tendency for multiple evaluation objects. This paper creates association relation model relating customer preferences and customer characteristic attributes. Borrowed cluster method for the symbol sequence in data mining, corresponding properties of the data from type symbol sequence are studied. The reasearch follows two directions, formal and instantiation, to discuss similarity issues of symbol sequence in which essential problems in cluster from preference symbol sequence clustering are analized. In addition, this paper also studies on how to apply self-organizing feature map as a symbol of the sequence clustering algorithm, and compares clustering model.
     3) As for the service facility location problem for customers, location selection problem relating retail network flow supply chain with dual capacity constraints and time-price constraints and the heuristic algorithm is given, in which the problem is transformed into a traditional CFIFLP issue to deal with. In view of the market demand has been fine segmented and retail network location selection for the supply chain for the customer flow that accepts detour distance, retail network location selection for the supply chain with route requirement and service radius is atudied, in which a greedy algorithm to solve the problem, local search algorithm, as well as taboo algorithm are given and compared. Research on more uncertain circumstances demand Flow Interception Facility Location Problem, and established a model and MAXMIN-FIFLP model, and gives a heuristic algorithm.
     4) Aiming at the situation of competition in the market, this paper studies the optimal location selection problem when the consumption capacity of the on road customers expanded. Competitive Capability Line Expand CCLE-IFIFLP model and heuristic algorithm have been proposed. Futther, location selection problem that maximizes the market share under the competitive environment is studied by introducing incremental demand rate and distance discount caused by competitive facilities cluster to describe cluster effects. In this paper, the model has been created, and the branch and bound algorithm and the greedy algorithm are used to solve this problem. The growth rate of demand discount and distance discount rate have been analized to determine the effects to the loation selection decision. To solve the customer satisfaction problems in the supply chain, customers’time satisfaction rate is used as coverage radius to discuss the distribution optimization problem in the supply chain based on time satisfaction rate maximized coverage the model and the corresponding heuristic algorithm are given.
     To verify the theoretical research results, the models and algorithms presented in this paper are implemented in the Weihai-HAIDU food industry information project as a typical application use case, in which product analysis, channel analysis and market analysis for the distribution network of supply chain. Application and the testing results are given and the theory proposed in the paper is verified.
引文
1. Govil M., ProthSupply Chain Design and Management. U.S.A: Academic Press, 2002. 7.
    2. Gerard P.Cachon, Martin A.lariviere. Capacity Choice and Allocation Strategic Behavior and Supply Chain Performance [J]. Management Science, 1999, 45(8):1092-1108.
    3. Gerard Pcachon, Two-Stage Supply Paul H.Zipkin. Competitive and Cooperative Inventory Policies in a Chain [J]. Management Science, 1999, 45(7):936-953.
    4. Gerard P.Cachon, Martin A.lariviere. Contracting to Assure Supply: How to Share Demand Forecasts in a Supply Chain [J]. Management Science, 2001, 47(5): 629-646.
    5. Sfl. Selcfluk Ereng Ucfl,N.C. Simpson,Asoo J. Vakharia. Integrated Production Distribution Planning in Supply Chains an Invited Review [J]. European Journal of Operational Research, 1999, 115:219-236.
    6. S. Viswanathan, Rajesh Piplani. Coordinating Supply Chain Inventories Through Common Replenishment Epochs [J]. European Journal of Operational Research, 2001, 129:277-286.
    7. Carlos J. Vidal, Marc Goetschalckx. Strategic Production-distribution Models: A Critical Review with Emphasis on Global Supply Chain Models [J]. European Journal of Operational Research, 1997, 98:1-18.
    8. Schmidt G.,Wilhelm W.E. Strategic, Tactical and Operational Decisions in Ulti-national Logistics Networks:Production Research a Review and Discussion of Modeling Issues. International Journal of 2000, 38(7): 1501-1523.
    9. Warsing D.P., Souza G.C., Greis N.P. Determing the Value of Dedicated Multimodal Cargo Facilities in a Multi-region Distribution Network. European Journal of Operational Research, 2001, 133(1): 81-93.
    10. Calvete H.I. Network Simplex Algorithm for the General Equal Flow Problem. European Journal of Operational Research, 2003, 150(3): 584-600.
    11. R.C.Dubes and A.K.Jain. Algorithms for Clustering Data. Englewood Cliffs,NJ: Frentice Hall 1988, 10(4):44-50.
    12. S.Y.Smith. Threshold Validity for Mutual Neighborhood Clustering. IEEE Trans. PAMl, 1993, 5(1): 89-92.
    13. M.P.Windham. Cluster Validity for Fuzzy C-means Clustering Algorithms. IEEE Trans, 1982, 4(4): 357-363.
    14. J.C.Dunn. Well-separated Clusters and the Optimal Fuzzy Partitions. Journal of Cybernet. 1974, 14: 94-104.
    15. D.L.Davies, D.W.Bouldin. A Cluster Separation Measure. IEEE Trans. Pattern Analysis and Machine Intelligence, 1979,1(1): 224-227.
    16. R.C.Dubes and A.K.Jain. Validity Studies in Clustering Methodologies. 1979, 11: 234-254.
    17.范九伦,表继红,谢维信,基于可能性分布的聚类有效性,电子学报,1998, 26(1):127-130.
    18. Dunn J. C. Well Separated Clusters and the Optimal Fuzzy Partitions. [J] Cybernet, 1974, 4:95-104.
    19. Gunderson R. Applications of Fuzzy ISODATA Algorithms Startracker Printing Systems. In Proceedings 7th Triennial World IFAC Congress, Helsinki, Finland, 1978: 1319-1323.
    20. Xie X L , Beni G. A Validity Measure for Fuzzy Clustering. IEEE Transactions An Pattern Analysis and Machine Intelligence, 1991,13: 841-847.
    21. Pal N.R, and Biswas J. Clustering Validation Using Graph Theoretic Concepts. Pattern Recognition, 1997, 30(6):847-857.
    22. Vogel M A, Wong A C. PFS Clustering Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 3: 237-245.
    23. Jain A K, Moreau J V. Bootstrap Techniques in Cluster Analysis. Pattern Recognition, 1987, 20(5): 547-563.
    24. Beni C, Liu X M. A Least Biased Fuzzy Clustering Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 16(9): 954-960.
    25. Huang Zhexue, Michael K.N. A Fuzzy K-modes Algorithm for Clustering Categorical Data. IEEE Transactions on Fuzzy System, August, 1999, 7(4): 446-452.
    26. Guha S, Rastogi R. and Shim K. ROCK: A Robust Clustering Algorithm forCategorical Attribute. In Proceedings 1999 International Conference Data Engineering (ICDE'99), Sydney, Australia, 1999, 3: 512-521.
    27. Yang Y., Guan X., You J. CLOPE: A Fast and Effective Clustering Algorithm for Transactional Data, In Proceedings of ACMSIGKDD, International Conference on Knowledge Discovery & Data Mining, Edmonton, Alberta, Canada, 2002,12(2): 1803-1809.
    28. Ravi Kothari, Dax Pitts. On Finding the Number of Clusters, Pattern Recognition Letters, 2003, 20(1):404-416.
    29. Halkidi, M., Vazirgiannis, M., Batistakis, I. Quality Scheme Assessment in the Clustering Process. Proceedings of European Conference on Principles of Data Mining and Knowledge Discovery, London, UK: Springer-Verlag, 2004,12(2): 264-276.
    30. C.C.Aggatwval. On the Effects of Dimensionality Reduction on High Dimensional Similar Search.Proceedings Principles of Database of ACM SIGMOD- IGACT-SIGART Symposium Systems, New York, NY, USA: ACM Press, 2004, 3(2):256-266.
    31. R.Mizoguchi, M. Shimura. A Nonparametric Algorithm for Detecting Clusters Using Hierarchical Structure. IEEE Trans. PAMI, 2001, 2(4): 292-300.
    32. T.L.Huntsberger, Et.al. Iterative Fuzzy Image Segmentation. PR, 1985, 2(18): 131-138.
    33. K.P, Chan, Y.S.cheung. Clustering of Clusters. PR, 1992, 25(2): 211-217.
    34. A.M.Bensaid, Et Al., Validity-guided (re) clustering with Applications to Image Segmentation.IEEE Trans. FS. 1998, 4(2): 112-122.
    35.董红斌,黄厚宽,周成,何军,尚文倩.基于模糊权和有效性函数的演化聚类算法[J].电子学报, 2007,35,(05):964-970.
    36.普运伟,金炜东等.模糊C均值算法的聚类有效性研究[J].计算机科学,2007,1,(2):207-210.
    37. LGath and A.B.Geve. Unsupervised Optimal Fuzzy Clustering. IEEE Trans. SMC, 2004, 11(7): 773-781.
    38. H.Frigui, R.Krishnapuram. A robust Algorithm for Automatic Extraction of an Unknown Number of Clusters from Noisy Data. 2006, 17(2): 1223-1232.
    39.胡春春,孟令奎等.空间数据模糊聚类的有效性评价[J]武汉大学学报,2007,32(8):740-743.
    40. E.H.Ruspini. Numerical Methods for Fuzzy Clustering. Information Science, 1970, 2(1): 319-350.
    41.孟令奎,胡春春.基于模糊划分侧度的聚类有效性指标[J]. 2007, 33 (11): 15-17.
    42. Zkim Le. Fuzzy Relation Compositions and Pattern Recognition, Information Science, 89, 1996: 107- 130.
    43. Zhenggu Wu, R.Leathy. An Optimization Theoretic Approach to Data Clustering: Theory and its Application to Image Segmentation. IEEE Trans. PAMI 15(11), 1993: 1101-1113.
    44. J.C.Bezdek, J.O.Hatris. Convex Decompositions of Fuzzy Partitions.JMAA, 1979, 67: 490- 512.
    45. Milligan.G.W. An Clustering Algorithms.Examination of the Effect of Six Types of Error Perturbation on Fifteen Psychometrika, 45, 1980: 324-342.
    46. Ji He, Et Al., Initialization of Cluster Refinement Algorithms: A Review and Comparative Study. IJCNN 2004, 12(4):56-61.
    47. Forgy, E. Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of Classifications. Biometrics, 1965, 21(1): 768-772.
    48. Tou, J.and R.Gonzales. Pattern Recognition Principles. MA: Addison- Wesley. Reading, 1974, 7(1):44-50.
    49. I. Katsavounidis, C. Kuo, and Z. Zhang. A New Initialization Technique for Generalized Lioyd Iteration. IEEE Signal Processing Letters, 1994, 1(10): 144-146.
    50. L.Kaufman, P.J.Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. NY:John Wiley&Sons, 1990,3:34-39.
    51. Moh'd B.A1-Daoud, Stuart A.Roberts. New Methods for the Initialization of Clusters. Pattern Recognition Letters, 1996, 17: 451-455.
    52. Ronald R. Yager and Dimitar P. Filev. Approximate Clustering Via the Mountain Method. IEEE Trans. On System, Man and Cybernetics, 1994, 24(2): 1279-1284.
    53. Stephen L. Chiu. A Cluster Estimation Method with Extension to Fuzzy Model Identification. Proc. of the 3rd IEEE Conference on Fuzzy Systems, San Diego, CA, 1994, 3(1): 1240-1245.
    54. Fisher.D. Iterative Optimization and Simplification of Hierarchical Clustering. Journal of Artificial Intelligence Research, 1996, 4(1): 147-179.
    55. Linde, Y., A. Buzo, R. Gray. An Algorithm for Vector Quantizer Design. IEEE Trans. Comm., 1980, 28(1): 84-95.
    56. Milligan.G.W. An Clustering Algorithms.Examination of the Effect of Six Types of Error Perturbation on Fifteen Psychometrika, 1980,4(8): 324-342.
    57. Ward.J.H, Hierarchical Grouping to Optimize an Objective Function. Journal of American Statistical Association, 1963, 5(8): 236-244.
    58. Higgs, R.E., Bemis, K.G., Watson, L.and Wikel, J.H. Experimental Designs for Molecules from Large Chemical Databases. Journal of Chemical Information and Selecting Computer Sciences, 2001, 37(5): 861-870.
    59. Snarey, M., Temett, N.K., Willet, P. and Wilton, D.J. Comparison of Algorithms for Dissimilarity-based Compound Selection. Journal of Molecular Graphics and Modeling, 2002, 15(4):372-385.
    60. P.S.Bradley, U.M.Fayyad.Refining Initial Points for K-Means Clustering. The 15th International Conf. on Machine Learning. San Francisco, CA: Morgan Kaufmann, 2003, 15(2): 91-99.
    61. J. M. Pena, J. A. Lozano, P. Latanaga. An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm. Pattern Recognition Letters, 2003, 20(10):1027-1040.
    62. A.Likas, N.Vlassis, and J.Verbeek. The Global K-means Clustering Algorithm. Pattern Recognition, 2005, 36(2): 451-461.
    63. Fayyad, Usama M, Cory Reina and P.S. Bradley, Initialization of Iterative Refinement Clustering Algorithms. Proc. of the 4th International Conference on Knowledge Discovery and Data Mining, Menlo Park, CA: AAAI/MIT Press 1998, 12(3): 194-198.
    64. Snarey, M., Temett, N.K., Willet, P. and Wilton, D.J. Comparison of Algorithms for Dissimilarity-based Compound Selection. Journal of Molecular Graphics and Modeling, 1997, 15(3):372-385.
    65. Bin Zhang, Meichun Hsu and Umesh Dayal. K-Harmonic Means-A Spatial Clustering Algorithm with Boosting. Proceedings of the First International Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining-Revised Papers, London, UK: Springer-Verlag, 2000, 12(9): 31-45.
    66.健庄,谢维信等,聚类分析的遗传算法方法,电子学报,1995, 23( 11): 81-83.
    67. G. Babu, M. Murty. A Near-optimal Initial Seed Value Selection in K-MeansAlgorithm Using a Genetic Algorithm. Pattern Recognition Letters, 2003, 14(10):763-769.
    68. Rakesh Agrawal, Ramakrishnan Srikant: Mining Sequential Patterns. Proc. 1995 Int'1 Conf Data Eng. 1995.3:3-14.
    69. H.V Jagadish, Alberto O. Mendelzon Et Al: Similarity-based Queries. Proc. ACM SIGACT SIGMOD-SIGART PODS, 1995, 4(2):36-45.
    70. Faloutsos. C, Jagadish. H, Et Al: A signature Technique for Similarity-based Queries. Proceedings of the Int'1 Conference on Compression and Comple- xiti of Sequences. Positano-Salerno, Italy,1997,6(1): 11-13.
    71. Rakesh Agrawal, K. Lin, H. S. Sawhney, K. Shim: Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases. VLDB 1995,4(1):34-39.
    72.吕星,程代杰.基于隐马尔可夫模型的符号序列自组织聚类[J].计算机科学.2006, 33(8):210-212.
    73. Darya Chudova, Padhraic Smyth: Pattern Discovery in Sequences Under a Markov Assumption SIGKDD'02 Edmonton, 2002, 17(4):12-18.
    74. Tim Oates, Laura Firoiu, Et Al: Clustering Time Series with Hidden Markov Models and Dynamic Time Warping. Proceedings of the IJCAI-99 Workshop on Neural, Symbolic and Reinforcement Learning Methods for Sequence Learning, 1999, 13(3):29-34.
    75. R. Sutton, A.Barto: Reinforcement Learning. Mit Press, Cambridge, MA, 1997, 10(4):55-59.
    76. Jurgen Schmidhuber: Sequential Decision Making Based on Direct Search. Sequence Learning Paradigms, Algorithms, and Applications. Lecture Notes in Computer Science Springe, 2001, 23(4):88-93.
    77.曲文龙,张克君,杨炳儒.游福成.基于奇异事件特征聚类的时间序列符号化方法.[J]系统工程与电子技术.2006,28(8):1131-1134.
    78. Jessica Lin, Eamonn Keogh et al: Visually Mining and Monitoring Massive Time Series. SIGKDD, 2005, 30(4):460-469.
    79. Peter Ti `no, Ata Kab` an, Yi Sun: A Generative Probabilistic Approach to Visualizing Sets of Symbolic Sequences. In SIGKDD, 2005, 24(6):701-706.
    80. Jinze Liu, Wei Wang et al: A Framework for OntologyDriven Subspace Clustering. In SIGKDD, 2005, 33(4):623-628.
    81. Hodgson J. A Flow-capturing Location Allocation Model. GeographicalAnalysis, 1990, 22(3): 270-279.
    82. Berman O.,Fouska N.,Larson R. C.Optimal Location of Discretionary Service Facilities. Transportation Science, 1992, 26(3): 201-211.
    83. Mirchandani P. B.,Rebello R.,and Agnetis A. The Inspection Station Location Problem in Hazardous Materials Transportation: Some Heuristics and Bound. INFOR, 1995, 33: 100-113.
    84. Hodson M. J.,K. E Rosing and F. Schmulevitz. A Review of Locaton- Allocation Applications Literature. Studies in Locational Analysis, 1993, 5: 3-29.
    85. Averbakh I.,Berman O. Minimax Regret Robust Median location on a Network Under Uncertainty. Working Paper, 1997.5:45-51.
    86. Berman O, Krass D. Flow Intercepting Spatial Interaction Model: A New Optimal Location of Competitive Facilities. Location Science, 1998, 6(1): 41-65.
    87. Wu T. H, Lin J. N. Solving the Competitive Discretionary Service Facility Location Problem. European Journal of Operational Research, 2003, 144(2): 366-378.
    88. Berman O, Fouska N, Larson R. C. Optimal Location of Discretionary Service Facilities. Transportation Science, 1992, 26 (3): 201-211.
    89. Hodgson M.J, Rosing K. E, Stonier G.Applying the Flow-capturing Location-allocation Model to an Authentic Network: Edmonton, Canada. European Journal of Operational Research, 1996, 90(3): 427-443.
    90. Berman O, Bertsimas D, Larson R. C. 1995. Locating Discretionary Service Facility II: Minimizing Inconvenience. Operations Research, 1995, 43 (4): 623-632.
    91. Averbakh I, Berman O. Location Flow-capturing Units on a Network with Multi-counting and Diminishing Returns to Scale. European Journal of Operational Research, 1996, 91(4): 494-506.
    92. Berman O, Krass D, Xu C. W. Locating Flow-Intercepting Facilities: New Approaches and Results. Annals of Operations research. 1995, 60(1): 121-143.
    93. Hodgson M. J, Rosing K. E. A Network Location-allocation Model Trading off FlowCapturing and p-Median Objectives. Annals of Operations Research, 1992, 40(2): 247-260.
    94. Wu T. H, Lin J. N. Solving the Competitive Discretionary Service Facility Location Problem. European Journal of Operational Research, 2003, 144(2): 366-378.
    95.马云峰;刘勇;杨超.一类带时间和容量约束的截流选址问题[J].武汉科技大学学报(自然科学版).2007, 30(2):217-219.
    96. Mirchandani P. B, Rebello R, Agnetis A. The Inspection Station Location Problem in Hazardous Materials Transportation: Some Heuristics and Bound. INFOR, 1995, 33: 100-113.
    97. Gendreau M, Laporte G, Parent I. Heuristic for the Location of Inspection Stations on a Network. Naval Research Logistics, 2000, 47: 287-303.
    98. Lam W H. K, Yim K. N. Evaluation of Count Location Selection Methods for O-D Matrices from Traffic Counts. Journal of Transportation Engineering, 1998, 124(4): 376-383.
    99.杨珺;杨超;吴云.带危险度瓶颈限制的服务站截流选址-分配模型研究.[J]数学物理学报,2007,27(5):955-960.
    100. Yang H, Yang C. An Algorithm for Optimal Selection of Cordon-screen Lines in Road Network to Appear in Computer&OR, 2004.4:23-34.
    101. Hotelling H. Stability in competition. Economic Journal, 1929, 39: 41-57.
    102. Hakimi S. L. P-median Theorems for Competitive Location. Annals of Operations Research, 1986, 5(1): 79-88.
    103. ReVelle C S, Eiiselt H A. Location analysis: A synthesis and survey [J].European Journal of Operational Research, 2005, 165(1):1-19.
    104. Serra D, Marianov V, ReVelle C. The Hierarchical Maximum Capture Problem. European Journal of Operational Research, 1992, 62(3): 34-56.
    105. Reilly W. J. The Law of Retail Gravitation. Knickerbocker Press, New York, 1929, 5(1):7- 13.
    106. ReVelle C S. The Maximum Capture or Sphere of Influence Location Problem: Hotelling Revisited on a Networks [J].Journal of Regional Science.1986, 26(2):343-358.
    107. Friesz T.Mfiller T,Tobin R Competitive Network Facility Location Models: A Survey Papers of the Regional Science Association, 1988, 65(1):47- 57.
    108.杨峰.预算限制约束的竞争分销终端选址问题研究[J].物流技术.2008, 27(2):45-84.
    109. Eiselt H A, Laporte G. The Maximum Capture Problem in a Weighted Networks [J].Journal of Renional Science, 1989, 29(3):433-439.
    110. ReVelle C, Serra D. The Maximum Capture Problem Includinn Relocation [J].Information and Operations Research, 1991, 29(2) 130- 138.
    111. Serra D, Marianov V, ReVelle C. The Maximum-capture Hierarchical Problems [J]. European Journal of Operational Research, 1992, 62(3):363- 371.
    112.杨珺;张敏;刘婵媛.具有地区零售饱和度限制的竞争型零售网点选址模型[ J].工业工程与管理.2006,1:32-36.
    113. Benati S, IIansen P. The Maximum Capture Problem With Random Utilities: Problem Formulation and Algorithms [J].European Journal of Operational Research, 2005, 143(3):518-530.
    114. Shiode S, Drezner Z. A Competitive Facility Location Problem on a Tree Network with Stochastic Weights.[J] Ruropean Journal of Operational Research, 2006, 149( 1):47-52.
    115.华国伟,杨丰梅,黎建强.两个双目标竞争选址问题模型.[J] 2007, 1:99-106.
    116. Colomc R, Lourenco II R Serra D. A New Chance Constrained Maximum Capture Location Problem [J].Annals of Operations Research, 2006, 22(14)121-139.
    117. Fang Zhennsong. An Analysis on the Assembling Effect of Small Commodity Markets [J].China Business and Market, 2007, 17(6):43-4l.
    118. Nakanishi M, Cooper L. G. Parameter Estimates for Multiplicative Competitive Intercation Models Least Square Approach. Journal of Marketing Research, 1974, 11(5): 201-311.
    119. Eiselt H. A, Laporte G. The Maximum Capture Problem in Weighted Network. Journal of Regional Science, 1989, 29(3): 433-439.
    120. Drezner T. Locating a Single New Facility Among Existing Unequally Attractive Facilities. Journal of Regional Science, 1994, 34 (2): 237-252.
    121. Drezner T, Drezner Z, Eiselt H. A. Consistent and Inconsistent Rules in Competitive Facility Choice. Journal of the Operational Research Society, 1996, 47(2): 1494-1503.
    122. Rezner T, Drezner Z, Salhi S. Solving the Multiple Competitive Facilities Location Problem. European Journal of Operational Research, 2005, 142(1):138-151.
    123. Benati S. An Improved Branch&Bound Method for the Uncapacitated Competitive Location Problem. Annals of Operations Research, 2007, 122(1): 43-58.
    124. Sasaki M, Fukushima M. Stackelberg Hub Location Problem. Journal of the Operations Research Society, 2005, 44(4): 390-401.
    125. Shiode S, Drezner Z. A Competitive Facility Location Problem on a Tree Network with Stochastic Weights. European Journal of Operation Research, 2006, 149(2): 47-52.
    126. Jain AK, Murty MN. Data Clustering: A Review. ACM Computing Surveys, 1979, 11 (3):264 - 323.
    127. J.C.Dunn. Well-separated Clusters and the Optimal Fuzzy Partitions. Journal of Cybernet. 1974, 1(4): 95-104.
    128. Bezdek J C. Clustering Validity with Fuzzy Sets. Journal of Mathematical Biology, 1974, 22(1):57-71.
    129. X.L.Xie and G.beni. A Validity Measure for Fuzzy Clustering. IEEE Trans. PAMI, 1991, 13(4):841-847.
    130. Maria Halkidi, Y. Batistakis, and M.Vazirgiannis.On Clustering Validation Techniques. Intelligent Information Systems, 2003, 17(3): 107-145.
    131. Maria Halkidi, Yannis Batistakis, Michalis Vazirgiannis. Cluster Validity Methods: Part I. ACM SIGMOD Record, 2004, 31(2): 40-45.
    132. Maria Halkidi, Yannis Batistakis Michalis Vazirgiannis Cluster Validity Methods: Part II.ACM SIGMOD Record, 2005, 31(3): 19-27.
    133. E.Trauwaert. on the Meaning of Dunn's Partition Coefficient for Fuzzy Clusters. Fuzzy Sets and Systems, 1988, 25(2): 217-242.
    134. X.L.Xie and G.beni. A Validity Measure for Fuzzy Clustering. IEEETrans. PAMI, 1991, 13(4):841-847.
    135. Bezdek J.C, Patten Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
    136. Everitt B. Cluster Analysis. Heinemann Educational Books Ltd, 1974.
    137. N.R.PaI and J.C.Bezdek. On Clustering Validity for the Fuzzy C-means Model, IEEE Trans. FS, 1995, 3(3):370-379.
    138.于剑,程乾生,模糊聚类方法中的最佳聚类数的搜索范围,中国科学,2002, 32(2): 274-280.
    139. Tormod Noes, Et Al: Identifying and Interpreting Market Segments Using Conjoint analysis. Food Quality and Preference.2005, 12:133-143.
    140. William D. Neal: Advances in Market Segmentation. Marketing Research; 2001, 13(1):14-18.
    141. C. de la Higuera, F. Casacuberta: Topology of Strings: Median String is NP-complete Theoretical Computer Science, 2004, 3:223-28.
    142. Richard O. Duda, Peter E. Hart Et Al. Pattern Classification, Second Edition. John Wiley&Sons Inc, 2005, 15(2):45-51.
    143. T.Kohonen: Self-organizing Maps. Edition, Springer-Verlag, 2003, 12: 23-28.
    144. C. de la Higuera, F. Casacuberta: Topology of Strings: Median String is NP-complete Theoretical Computer Science, 2003 .3:23-29.
    145. W. Hardle, L. Simar: Applied Multivariate Statistical Analysis. Http:// www.quatlet.com/ dstat/scripts/mva/htmlbook/mvahtmlframe34.html,2006.
    146. Hodgson M. J, Rosing Location-allocation Model to K. E, Stonier G. Applying the Flow-capturing an Authentic Network: Edmonton, Canada. European Journal of Operational Research, 1996, 90(3): 427-443.
    147. Revelle C S, Eiselt H A. Location Analysis: A Synthesis and Survey E A Synthesis and Survey [J].European Journal of Operational Research, 2007,165(1):1-19.
    148. Nemhauser G. L. Wolsey L. A, Fisher M. L. Integer and Combinatorial Optimization.Wiley, New York, 1988, 12:45-49.
    149.牟德一,陈秋双.基于安全库存的二级库存系统的优化方法[J].系统工程,2003, 21(2):83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700