用户名: 密码: 验证码:
矿用多匝小回线源瞬变电磁场数值模拟与分布规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井瞬变电磁法勘探是预测巷道顶、底板和掘进工作面附近突水构造的主要物探方法之一,与地面瞬变电磁法勘探相比,该方法具有分辨率高、体积效应小、灵活和高效等优点;但其基础理论的发展却相对滞后,使之成为矿井瞬变电磁法勘探技术中亟待解决的问题。本文通过数值模拟的方法对全空间介质中的巷道影响以及典型地质-地球物理模型的瞬变电磁响应进行了研究。
     推导了全空间多匝小回线源产生的瞬变磁场解析式,分析了瞬变电磁一次场、二次场和总场暂态过程,并对全空间磁偶极源中线性关断电流和半正弦关断电流关断效应的计算方法进行了研究。结果表明:磁偶极子场在r=0处存在奇异点,致使中心回线装置无法使用。多匝小回线源二次场的衰减规律与磁偶极源的二次场相似,但其磁场值在“早期”约为磁偶源场值的10 3倍。关断时间的长短影响着一次场感应电动势的幅值和暂态过程的时间范围,关断时间增长使感应时间增加,电动势幅值降低,总场的衰减速度加快。线性关断电流和半正弦关断电流对瞬变电磁场的影响都主要表现在“早期”,关断时间越长,关断效应对瞬变电磁场的影响越向瞬变“晚期”延伸,半正弦关断电流的影响相对更大。
     采用时域有限差分法推导了3D瞬变电磁场差分方程,证明了3维Euler法和DuFort-Frankel法的稳定性,得出了差分计算中初始时间步长和网格步长的关系。结果表明:三维DuFort-Frankel差分算法是无条件稳定的,瞬变电磁场的扩散速度与采样时间间隔和电阻率差异有关。与全空间多匝小回线源解析解作比较,采用非均匀网格技术并选取相应的时间步长计算三维瞬变电磁场差分方程具有较好的精度,在1.05ms时刻,奇异点以外各节点处的磁场值与解析解的最大误差不超过12%。
     以廖氏吸收边界条件为基础,推导了修正的廖氏吸收边界条件,并提出了差分计算中巷道边界条件问题。结果表明:新的吸收边界条件能较好的反映瞬变电磁场的扩散规律,对低频电磁波具有更好的吸收效果,当选取α=1、γ=0.98、N=4和初始时间步长在50μs之内时,修正的廖氏吸收边界条件的最大误差不超过0.01。巷道边界条件适用于扩散方程的差分计算并具有很好的稳定性。
     定义了巷道影响因子的概念,研究了巷道影响与装置形式、巷道几何大小、围岩导电性、装置位置以及关断时间的关系。结果表明:巷道空间的存在使瞬变电磁场感应电动势值减小;关断时间越长巷道对瞬变电磁场的影响越严重;与分离回线相比,重叠回线的观测结果受巷道影响较大,两种装置形式观测的瞬变晚期场受巷道影响程度近似相同;巷道围岩导电性越强,巷道几何尺寸越大,巷道及其边界对瞬变电磁场的影响越大;重叠回线装置在巷道底板、顶板和侧帮中心点上探测时受到巷道影响程度相同,而当装置位于巷道堵头中心点时,瞬变电磁场受巷道影响最大。
     采用了3维切片和2维切片结合的成图方法,研究了典型地质-地球物理模型的瞬变电磁场分布规律和视电阻率异常响应特征,并用数值模拟的方法验证了物理模拟实验的效果。结果表明:全空间瞬变电磁响应的强度和持续时间与介质的电阻率差异、尺寸、形状、至测点的距离等因素相关;层状介质响应与各层间的电阻率差异、层厚相关;断层的断点对瞬变电磁场响应影响最大;对同一地质模型,采用数值模拟和物理模拟实验的方法得出的结论相同。
Mine transient electromagnetic method (MTEM) is one of mainly geophysical methods, which are used to predict water inrush structures nearby the roof, bottom and driving face in roadway. Compared with ground transient electromagnetic method, this technique has many advantages: high resolution, small volume effect, flexibility and high efficiency. However, relatively slow development of its fundamental theory makes it become an immediate problem to be solved. These theoretical problems, roadway effect, transient response for the typical geologic geophysical model in whole-space are studied using numerical modeling method in this paper.
     Analysis solution of whole-space multi-turn coils was derived; transient processes of primary, secondary and total field were analyzed; and calculation method of turn-off effects for linear current and half sine current in whole-space magnetic dipole source was also studied. The results indicate that central loop cannot be used because of singular point r=0 in magnetic dipole field. Secondary field of multi-turn coils has a similar attenuation regular with magnetic dipole source, but its magnetic value is 10 3 times than magnetic dipole value in“early time”. Amplitude value of primary field induced electromotive force and time range of transient process are influenced by turn-off time; increase of inductance time, decrease of electromotive force amplitude value, and acceleration of total field attenuation are caused by the longer turn-off time.“Early time”transient field is disturbed heavily by linear and half sine turn-off current; influence to transient field affected by the turn-off effect extends to“later time”for longer turn-off time; and compared with linear turn-off current, the half sine current has more heavy influence on transient field than linear current.
     Time domain finite-difference method was used to derive three-dimensional difference equation for transient electromagnetic field; and stability of 3D Euler method and Dufort-Frankel method was proved, and relationship between initial time and grid length in numerical calculation was obtained in this proof process. The results show that, 3D Dufort-Frankel method is unconditional stable; the diffusion velocity of transient field is related to sample interval and resistivity contrast. Numerical method of 3D transient difference equation, using non-uniform grid method and setting relevant time step length parameter, has a high accuracy by comparing numerical solution with theoretical solution of multi-turn coils; actually, the maximum error between numerical and analyzed solution in computational domain beyond the singular point is less than 12% at the moment 1.05ms.
     Based on Liao absorbing boundary condition, modified Liao absorbing boundary condition was derived; problem of roadway boundary condition was presented for the first time. The results indicate that, using the new boundary condition can preferably reflect the diffusion regular of transient field, and has a better absorbing effect on low frequency electromagnetic wave. The maximum error of new Liao absorbing boundary condition is less than 0.01, when choosing the parameterα=1,γ=0.98 and N=4, and the initial time step length less than 50μs. Roadway boundary condition has a good applicability and stability in difference calculation of diffusion equation.
     Roadway factors were defined; and relationship between roadway effect and equipments, geometry size of roadway, host rock conductivity, equipment position and turn-off time was studied by using roadway factors. The results show that, inductive electromotive force of transient electromagnetic field is much lower because of roadway effect; roadway effect increases with turn-off time. Compared with separated loop, data measured by coincident loop is influenced heavily by roadway space, but transient“later time”field of the two equipments is approximately equal. The bigger geometry size of roadway and the higher conductivity of host rock are, the heavier transient field affected by roadway effect and its boundary is. Roadway effect is same when coincident loop is located at the center of roadway roof, floor and side; and it is heaviest when coincident loop is located at the center of roadway plug.
     The method of plotting combining 3D slice with 2D slice was used; the diffusion regular and anomalous characteristics of apparent resistivity for typical geologic-geophysical models in whole-space were studied; the effect of physical model experiment was verified by using numerical method. The results indicate that, the strength and time of transient response is related to several factors in the low-resistivity layer: resistivity, geometric size, shape and the distance from roadway. Transient response of layered medium is determined by resistivity contrast and layer thickness. The influence to transient response at break points in fault is stronger. Numerical method has similar conclusions with physical experiment for the same geologic model.
引文
[1]米萨克N.纳比吉安.勘查地球物理电磁法:第1卷[M].赵经祥,王艳君译.北京:地质出版社,1992.
    [2] A.A.考夫曼,G.V.凯勒.频率域和时间域电磁测深[M].王建谋译.北京:地质出版社,1987
    [3]СиДорвВА.脉冲感应电法勘探[M].牛之链等译.中南工业大学电磁法教研组,1991.
    [4] Wait J R. Transient EM propagation in a conducting medium [J].Geophysics, 1951, 16.
    [5] Wait J R. A conducting sphere in a time varying magnetic field [J].Geophysics, 1951, 16.
    [6] Morrison H F,Phillips R J,Obien D P.Quantitative interpretation of transient electromagnetic fields over a layered half space[J].Geophysics Prospecting,1969,17:82-101.
    [7] Kaufman A A. The influence of currents induced in the host rock on electromagnetic response of a spheroid directly beneath a loop [J].Geophysics, 1981, 47.
    [8] Oristaglio M L, Hohmann G W. Diffusion of electromagnetic fields into the earth from a line source of current [J].Geophysics, 1982, 47:1585-1592.
    [9] Willian A S, Perry A E,Hohmann G W. The effect of a conductive half space on the transient electromagnetic response of a three dimensional body [J].Geophysics, 1985, 50(7):1144 -1162.
    [10] Sanfilipo W A , Hohmann G W. Integral equation solution for the transient electromagnetic response of a three dimensional body in a conductive half space[J].Geophysics,1985,50(5):798 -809.
    [11] Newman G A , Hohmann G W. Transient electromagnetic response of a three dimensional body in a layered earth[J].Geophysics,1986,51 (8) :1608 -1627.
    [12] Lee T, Thomas L. The transient electromagnetic response of a polarizable sphere in a conducting half space[J].Geophysics Prospecting, 1992,40:541-563.
    [13] Nabighian M N. Foreward and Introduction,Time-Domain electromagnetic methods of exploration,special Issue[J].Geophsics,1984,49(7).
    [14] Hoversten GW, Morrison H F. Transient fields of a current loop source above a layered earth. Geophysics[J].1982,47 (7) :1068 -1077.
    [15] Reid J E, Macnae J C. Comments on the electromagnetic‘smoke ring’concept [J]. Geophysics, 1998, 63 (6):1908 -1913.
    [16] Fernando L. Teixeira and Weng Cho Chew. Finite-Difference Computation of Transient Electromagnetic Waves for Cylindrical Geometries in Complex Media [J].IEEE Trans. on Geoscience and Remote Sensing, 2000, 38(4):1530-1543.
    [17] Calhoun J. A finite difference time domain (FDTD) simulation of electromagnetic wave propagation and scattering in a partially conducting layered earth [J].In Proc. 1997 IGARSS: Int. Geoscience and Remote Sensing Symp, Singapore,1997:922–924.
    [18] Tie Jun Cui. Detection of Buried Targets Using a New Enhanced Very Early Time Electromagnetic(VETEM) Prototype System [J].IEEE Trans.on Geoscience and Remote Sensing.2001 39(12):2702-2712.
    [19] Hordt A, Scholl C. The effect of local distortions on time-domain electromagnetic measurements [J].Geophysics, 2004, 69(1):87-96.
    [20] Smith R S, Lee T J. Approximate apparent conductance(or conductivity) from the realizable moments of the impulse response[J].Geophisics,2005,70(1):G29-G32.
    [21] Nabighian M N. Quasi-static transient response of a conducting half-space—An approximate representation[J].Geophisics,1979,44(10):1700-1705.
    [22] Pellerin L, Hohmann G W. A parametric study of the vertical electric source[J].Geophisics,1995,60(1):43-52.
    [23] Kuo J T, Cho D H.Transient time-domain electromagnetic[J].Geophysics, 1980, 45:271-292.
    [24] Goldman M M, Stoyer C H. Finite-difference calculations of the transient field of an axially symme -tric earth for vertical magnetic dipole excitational[J].Geophysics, 1983, 48:953-962.
    [25] Adhidjaja J I, Hohmann G W, Oristaglio M L. Two-dimensional transient electromagnetic response[J].Geophisics,1985,50(12):2849-2861.
    [26] Goldman Y A. finite-element solution for the transient electromagnetic response of an arbitrary two -dimentional resistivity distribution[J].Geophysics, 1986, 51:1450-1461.
    [27] Leppin M. Electromagnetic modeling of 3-D sources over 2-D inhomogenetices in the time domain[J].Geophysics, 1992, 57:994-1003.
    [28] Wang T, Hohmann G W. A finite difference time domain solution for three dimensional electromagnetic modeling[J].Geophysics,1993,58(6) :797 -817.
    [29] Das U C. Apparent resistivity curves in controlled-source electromagnetic sounding directly reflecting true resistivities in a layered earth [J].Geophysics, 1995, 60(1):53-60.
    [30] Das U C. Frequency-and time-domain electromagnetic responses of layered earth-A multiseparation, multisystem approach [J].Geophysics, 1995, 60(1):285-290.
    [31] Stefi K, Chouteau M. Whole-space modeling of a layered earth in time-domain electromagnetic measurements [J]. Journal of Applied Geophisics, 2002, 50:375-391.
    [32] EI-Kaliouby H M, EIdiwany E A. Transient electromagnetic responses of 3D polarizable body [J].Geophysics, 2004, 69(2):426-430.
    [33]蒋邦远.实用近区磁源瞬变电磁法原理[M].北京:地质出版社,1998.
    [34]牛之链.时间域电磁法原理[M].长沙:中南工业大学出版社,1992.
    [35]方文藻等.瞬变电磁法原理[M].西安:西北工业大学出版社,1993.
    [36]李金铭等.电法勘探新进展[M].北京:地质出版社,1996.
    [37]霍全明等.瞬变电磁法在煤矿水害预测防治中的应用[M].西安:西北工业大学出版社,1994.
    [38]李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002.
    [39]朴化荣.电磁测深法原理[M].北京:地质出版社,1990.
    [40]倪光正,杨仕友.工程电磁场数值计算[M].北京:机械工业出版社,2004.
    [41]殷长春,李吉松.任意角度瞬变电磁测深正演问题计算方法[J].物探与化探,1994,18(4).
    [42]殷长春,刘斌.瞬变电磁法三维问题正演及激电效应特征研究[J].地球物理学报,1994,37(增Ⅰ).
    [43]翁爱华,陆冬华.利用连分式定义瞬变电磁法全区视电阻率研究[J].煤田地质与勘探,2003.
    [44]宋维琪,仝兆歧.3D瞬变电磁场的有限差分正演计算[J].石油地球物理勘探,2000,12.
    [45]陈明生,闫述.二维地质体的瞬变电磁场响应特征[J].地震地质,2001,6.
    [46]邓正栋,关洪军,等.稳定点电流源场三维有限差分正演模拟[J].解放军理工大学学报,2000,6.
    [47]李永明,俞集辉,黄键.时域有限差分法中的吸收边界条件与角点处理[J].重庆大学学报(自然科学版),2001,5.
    [48]蒋邦远.磁源瞬变电磁法测深一维反演经验式及应用效果[J].物探与化探,2000,4.
    [49]宋先旺.瞬变电磁法全期视电阻率、视深度求解方法与应用[J].矿产与地质,1997,4.
    [50]于景邨.矿井瞬变电磁法理论与应用技术研究[D].中国矿业大学博士学位论文,2001.
    [51]苏朱刘,胡文宝.中心回线方式瞬变电磁测深虚拟全区视电阻率和一维反演方法[J].石油物探,2002,41(2).
    [52]白登海,Meju M A.瞬变电磁法中两种关断电流对响应函数的影响及其应对策略[J].地震地质,2001,23(2):245-251.
    [53]熊彬,罗延钟.电导率分块均匀的瞬变电磁2.5维有限元数值模拟[J].地球物理学报,2006,49(2):590-597.
    [54]闫述,陈明生.瞬变电磁场资料的联合时-频分析解释[J].地球物理学报,2005,48(1):203-208.
    [55]王华军,罗延钟.中心回线瞬变电磁法2.5维有限单元算法[J].地球物理学报,2003,46(6):855-862.
    [56]谭捍东,余钦范.大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报,2003,46(5):705-711.
    [57]薛国强.论瞬变电磁测深法的探测深度[J].石油地球物理勘探,2004,39(5):575-577.
    [58]嵇艳鞠,林君,王忠.瞬变电磁接收装置对浅层探测的畸变分析与数值剔除[J].地球物理学进展,2007,22(1):262-267.
    [59]嵇艳鞠.浅层高分辨率全程瞬变电磁系统中全程二次场提取技术研究[D].长春:吉林大学博士学位论文,2004.
    [60]杨长福,林长佑,等.三维瞬变电磁近似反演[J].地震学报,2000,22(4):377-384.
    [61]刘树才,刘志新,姜志海.瞬变电磁法在煤矿采区水文勘探中的应用[J].中国矿业大学学报,2005,34(4):414-417.
    [62]刘树才,岳建华,刘江.西部保水开采中的水文电法勘探技术[J].中国矿业大学学报,2004,33(2):188-189.
    [63]熊彬,罗延钟,强建科.瞬变电磁2.5维反演中灵敏度矩阵计算方法[J].地球物理学进展,2004,19(3):616-620.
    [64]王忠,嵇艳鞠.全程瞬变电磁系统的浅层探测实验研究[J].吉林大学学报(地球科学版),2005,35(专辑).
    [65]方文藻,李予国.大回线法瞬变电磁测深正演计算[J].煤田地质与勘探.1991,2:49-53.
    [66]盛圣圣,牛之琏.一维层状大地的瞬变电磁测深正演计算[J].煤田地质与勘探,1991,19(6):53-57.
    [67]严良俊,胡文宝.瞬变电磁测深一维反演及结果分析[J].江汉石油学院学报,1994,1.
    [68]殷长春,刘斌.瞬变电磁法三维问题正演及激电效应特征研究[J].地球物理学报,1994,37(增Ⅰ):486-492.
    [69]阮百尧,徐世浙.线源二维时间域电磁响应的有限差分解[J].高校地质学报,1996,2(4):437-447.
    [70]曹立斌.瞬变电磁测深资料反演——逐步缩小搜索范围的演化算法[J].勘探地球物理进展,2004,27(2):108-111.
    [71]白登海,何兆海,卢健等.地下全空间瞬变电磁法在煤矿水害预防中的应用[C].第六届中国国际地球电磁学学术研讨会.北京2003.
    [72]郭纯,刘白宙,白登海.地下全空间瞬变电磁技术在煤矿巷道掘进头的连续跟踪超前探测[J].地震地质,2006,28(3):456-462.
    [73]闫述,石显新.井下全空间瞬变电磁法FDTD计算中薄层和细导线的模拟[J].煤田地质与勘探,2004,32(增刊):87-89.
    [74]岳建华,甘会春.矿井瞬变电磁法及其应用[J].中国地球物理学会年会论文.南京:南京师范大学出版社,2003.
    [75]周仕新,岳建华.巷道围岩中瞬变电磁场三维数值模拟[J].物探与化探,2005,29(6):533-536.
    [76]周仕新,岳建华.矿井瞬变电磁场三维时域有限差分模拟[J].勘探地球物理进展,2005,28(6):408-412.
    [77]岳建华,姜志海.矿井瞬变电磁探测技术与应用[J].能用技术与管理,2006,5:72-75.
    [78]杨海燕,岳建华,刘志新.矿井瞬变电磁法多匝小回线装置电感效应的理论研究[J].吉林大学学报,2006,36(增刊):168-171.
    [79]周仕新.巷道围岩中全空间瞬变电磁场时域有限差分数值模拟[D].徐州:中国矿业大学,2006.
    [80]岳建华,杨海燕等.矿井瞬变电磁法三维时域有限差分数值模拟[J].地球物理学进展,2007,22(6):1904-1909.
    [81]杨海燕,岳建华等.矿井瞬变电磁法中多匝回线电感对目标体探测的影响[J].物探与化探,2007,31(1):34-37.
    [82]刘志新,岳建华,刘仰光.扇形探测技术在超前探测中的应用研究[J].中国矿业大学学报,2007,36(6):822-825.
    [83]姜志海,岳建华,刘树才.多匝重叠小回线装置形式的矿井瞬变电磁观测系统[J].煤炭学报,2007,32(11):1152-1156.
    [84] Jiang Zhi-hai, Yue Jian-hua, Liu Shu-cai. Prediction technology of buried water-bearing structures incoal mines using transient electromagnetic method[J].Journal of china university of mining and technology,2007, 17(2):164-167.
    [85]姜志海,岳建华,刘志新.矿井瞬变电磁法在老窑水超前探测中的应用[J].工程地球物理学报,2007, 4(4):291-294.
    [86]刘志新,岳建华,刘仰光.矿井物探技术在突水预测中的应用[J].工程地球物理学报,2007,4(1):9~14.
    [87]岳建华,杨海燕.巷道边界条件下矿井瞬变电磁响应研究[J].2008,37(2):152-156.
    [88]杨海燕,岳建华.磁偶源2.5维瞬变电磁场全空间FDTD数值模拟[J].物探与化探, 2008,32(3):326-330.
    [89]杨海燕,岳建华.巷道影响下三维全空间瞬变电磁法响应特征[J].吉林大学学报,2008,38(1):129-134.
    [90]杨海燕,岳建华.瞬变电磁法中关断电流的响应计算与校正方法研究[J].地球物理学进展,2008,23(6):1947-1952.
    [91]刘志新.矿井瞬变电磁场分布规律与应用研究[D].中国矿业大学博士学位论文,2008.
    [92]姜志海.巷道掘进工作面瞬变电磁超前探测机理与技术研究[D].中国矿业大学博士学位论文,2008.
    [93] HU Bo,YUE Jian-hua,YANG Hai-yan.Algorithm Study of Transient Response of Vertical Magnetic Bipolar Source in Whole Space Plane Layered Medium[J].Journal of China University of Mining & Technology,2009,In press.
    [94]代刚,漆泰岳,谭代明.全空间瞬变电磁法在地下工程探水中的应用[J].岩土工程,2006,26(2):59-60.
    [95]谭代明,漆泰岳,.地下全空间瞬变电磁响应的研究[J].工程地球物理学报,2008,8(8):533-537.
    [96]任来平,赵俊生,侯世喜.磁偶极子磁场空间分布模式[J].海洋测绘,2002,22(2):18-21.
    [97]嵇艳鞠,林君,等.ATTEM系统中电流关断期间瞬变电磁场响应求解的研究[J].地球物理学报, 2006, 49(6):1884-1890.
    [98] Raiche A P. The Effect of Ramp Function Turn-off on the TEM Response of Layered Earth Exploration [M]. Geophysics, 1984.
    [99] Fitterman D V, Anderson W L. Effect of Transmitter Turn-off Time on Transient Soundings [M]. Geoexploration; 1987.
    [100] Ward S H, and Hohmann G W. Electromagnetic theory for geophysical applications[A]. In: Nabighian, M N, Ed. Electromagnetic methods in applied geophysics. SEG Vol.1, Theory.
    [101] Oristaglio M L, Hohmann G W. Diffusion of electromagnetic fields in two-dimensional earth: a finite-difference approach[J].Geophysics, 1984, 49:870-894.
    [102] Demarest K, Plumb R, Huang Z. The performance of FDTD absorbing boundary conditions for buried scatters [J].In Proc. URSI Radio Science Meeting, 1994.
    [103] GERRIT M. Total-Field Absorbing Boundary Conditions for the Time-Domain Electromagnetic FieldEquations [J].IEEE Trans. on Electromagnetic Compatibility, 1998, 40 (5):100-102.
    [104]林宝琴,徐利军.一种新型的FDTD吸收边界条件[J].微波学报,2005,21(5):29-32.
    [105]张洪欣,吕英华.PML-FDTD及总场-散射场区连接边界条件在三维柱坐标下的实现及应用[J].微波学报,2004,20(3):19-25.
    [106]王永刚,邢文军,谢万学,等.完全匹配层吸收边界条件的研究[J].中国石油大学学报,2007,31(1):19-24.
    [107]赵海波,王秀明,王东,等.完全匹配层吸收边界在孔隙介质弹性波模拟中的应用[J].地球物理学报, 2007,50(2): 581-591.
    [108]廖振鹏.透射边界与无穷远辐射条件[J].中国科学:E,2001,31(3):254-262.
    [109]廖振鹏,周正华,张艳红.波动数值模拟中透射边界的稳定实现[J].地球物理学报,2002,45(4):533-545.
    [110]岳建华,刘树才.矿井直流电法勘探[M].徐州:中国矿业大学出版社,2000.
    [111]岳建华,李志聃.巷道空间对矿井电测曲线影响模型实验研究[J].煤田地质与勘探,1993,21(2):56-59.
    [112]岳建华,李志聃,刘世蕾.巷道层测深理论曲线数值模拟及资料解释方法[J].煤田地质与勘探,1997,25(1):52-56.
    [113]岳建华.巷道层状围岩介质中稳恒电流场的边界积分解[J].中国矿业大学学报,1998,27(2):128-131.
    [114]岳建华,李志聃,刘世蕾.层状介质中巷道底板电测深边界元正演[J].煤炭学报,1998,23(4):347-351.
    [115]岳建华,李志聃.矿井直流电法勘探中的巷道影响[J].煤炭学报,1999,24(1):7-10.
    [116]于景邨.矿井瞬变电磁法勘探[M].徐州:中国矿业大学出版社,2007.
    [B1]倪光正,杨仕友.工程电磁场数值计算[M].北京:机械工业出版社,2004.
    [B2]李永清.串联互感线圈的等效自感系数[J].辽宁师专学报,2002,4(2):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700