用户名: 密码: 验证码:
P波方位AVO理论及煤层裂隙探测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据现有研究,瓦斯突出与多种地质因素有关。其中,煤层的构造破坏程度或裂隙发育是关键因素之一。另外,煤层裂隙作为煤层气的主要存贮空间和运移通道,直接影响着煤层气的开发效率。因此,煤层构造破坏和裂隙发育程度的探测是预防煤矿瓦斯突出和优化煤层气开采的关键因素。
     通过对煤层P波AVO技术的研究,修正了业界对煤田AVO技术的一些习惯性认识。认为煤层——不论是厚煤层还是薄煤层,其反射P波都适合进行AVO分析。通过煤层反射P波的AVO分析,可以识别煤层的构造破坏程度,特别是可以识别出软分层构造煤。此外,通过给出的煤层P波AVO近似方程,大大提高了煤层反射P波AVO的近似精度;通过AVO的坐标代换,扩展了可用于AVO分析的P波勘探数据范围;从而使煤层高精度AVO属性反演成为可能。通过对煤层反射P波AVO的P—G交会图分析,发现如果煤层类型不同或煤层顶/底板岩性不同时,煤层反射P波AVO的P、G散点在P—G交会图上呈有规律分布。
     大部分煤层存在着大量的裂隙和节理,地震波在其中传播时具有各向异性。通过引入等效各向异性介质理论,获得了VTI构造煤、HTI构造煤、裂隙型HTI构造煤和ORT构造煤的弹性常数和速度各向异性,发现在多数情况下煤层的各向异性较弱。通过引入各向异性参数,定量计算了煤层的各向异性参数值,发现煤层在多数情况下满足弱各向异性假设。
     通过对VTI构造煤的P波AVO特性的研究,发现VTI构造煤的P、G属性明显区别于原生煤;随着VTI构造煤的构造破坏程度的增大,其在P—G交会图上呈有规律的线性移动。通过给出的VTI构造煤P波AVO近似公式,使VTI构造煤的高精度AVO属性反演成为可能。通过对HTI构造煤的方位AVO/AVAz特性的研究,发现在小入射角情况下(小于10o),其方位AVO/AVAz的方位各向异性可以忽略;随着入射角的增大,其方位各向异性的幅度增大。当HTI构造煤的顶板为砂岩时,其方位各向异性的幅度大于顶板为泥岩时的情形。对于裂隙型HTI构造煤来说,其方位AVO/AVAz特性基本和HTI构造煤一致,但其方位各向异性明显受裂隙控制。在同等裂隙密度情况下,煤层裂隙水饱和时的规范化AVAz曲线的波幅大于气饱和的情况。当裂隙间相互连通时,渗透率对裂隙气饱和煤层的方位AVO/AVAz特性没有影响;当裂隙水饱和时,随着裂隙间渗透率的增大,煤层方位AVO的P、G值减小、AVAz曲线的波幅减小。当煤层为ORT构造煤时,其方位AVO/AVAz特性完全取决于两组裂隙的相对关系。当煤层顶板是由泥岩和砂岩组成的VTI介质时,其P波方位AVO的P、G值介于泥岩顶板和砂岩顶板情况时的取值之间;其规范化AVAz曲线的波幅同样介于泥岩顶板和砂岩顶板情况时的取值之间,但更接近于泥岩顶板时的取值。最后,通过引入的物理模拟数据,研究了观测系统对裂隙各向异性解释结果的影响,并给出了P波裂隙各向异性数据的处理和解释流程。
     总之,通过对煤层顶/底板反射P波AVO的分析或对薄煤层反射P波AVO的分析,可以确定煤层及其顶/底板岩性;通过对构造煤的方位AVO/AVAz特性的研究,可以确定构造煤的构造破坏程度或裂隙发育情况。
As recent research, CBM (Coal Bed Methane) effusion relate with several geological factors. Among those factors, the tectonic damage or cracked degree are key factors. On the other hand, as the chief storages and main migratory channels of CBG (Coal Bed Gas), cracks affect its production directly. From those two aspects, the survey of tectonic damage or cracked degree is the key factor to prevent CBM effusion and optimize CBG production.
     By analyzing the technique of reflected P-wave AVO on coal beds, revised the traditional viewpoint on coal field’s P-wave AVO, and considered that all coal beds, not only thick but also thin, are fitting AVO analyzing. Through the analysis of reflected P-wave AVO, tectonic damage of coal beds identified, especially soft coal detected. In addition, by introducing coal bed’s approximation of P-wave AVO, improved approximation’s precision of reflected P-wave AVO on coal bed, and by coordinate transforming, extended analyzable data range of P-wave survey. Thus making high precision’s AVO inversion of coal beds becomes feasible. Through cross-plot analyzing of P, G attributes reflected on coal beds, finds that the scatter graphs of P, G attributes are regular spread according to different coal beds and their roof/floor.
     Most coal beds have massive cracks and cleavages, and when seismic wave propagating in them, seismic wave will exhibit anisotropy. By the introduction of effective media theory, achieved the elastic constant and velocity anisotropic curves of VTI coal, HTI coal, cracked HTI coal and ORT coal, and discovered that most coal beds have weak anisotropy. By importing anisotropic parameters, quantitatively achieved coal beds’anisotropies, and found that most coal beds adapt to weak anisotropic theory.
     By analyzing the AVO characters of P-wave on VTI coals, found that their P, G attributes are differ from primary coal obviously. Along with the enlargement of tectonic damage, they assume the orderly linear migration on P, G attributes’cross plot. By giving an AVO approximation of VTI coal, made high precision AVO inversion possible. Through the studying of azimuthal AVO/AVAz on HTI coal, discovered that the azimuthal anisotropy of azimuthal AVO/AVAz almost may neglect when incidence angle is smaller (less than 10o degree); along with incidence angle increasing, its scope of azimuthal anisotropy increases. When the roof of HTI coal is sandstone, its scope of azimuthal anisotropy is bigger than the situation of mudstone roof. Regarding cracked HTI coal, its azimuthal AVO/AVAz characters are basically consistent with HTI coal; the only difference is its azimuthal anisotropy obviously controlled by cracks. At the same crack density cases, the water saturated anisotropic scope of AVAz curve is bigger than the case of gas saturated. When cracks mutually connected, the permeability almost not affects the azimuthal AVO/AVAz characters of gas saturated. When cracks water saturated, along with the permeability increasing, the attributes of P, G and fluctuate scope of AVAz curves reduce. When coal bed is ORT coal, the distribution and fluid infilling of two group cracks decide the characters of azimuthal AVO/AVAz. When coal bed’s roof is VTI medium composed with mudstone and sandstone, its P, G attributes of P-wave azimuthal AVO are situated between mudstone roof’s value and sandstone roof’s value; and its normalized AVAz scope is similarly situated between mudstone roof’s scope and sandstone roof’s scope, but it is more close to mudstone roof’s scope. Finally, through the introduction of a physical modeling, has studied the influence of survey layout on the interpretation of cracked anisotropy, and has given the flow charts of anisotropic processing and interpretation.
     In brief, through analyzing reflected P-wave AVO’s characters on coal roof/floor or thin coal beds, coal bed’s lithology could be determined; through studying the velocity anisotropy and azimuthal AVO/AVAz characters of tectonic coal, the degree of tectonic damage and the development of crack distribution could be confirmed too.
引文
[1] Andreas Rüger. Reflection coefficients and azimuthal AVO analysis in anisotropic media[D]. Colorado: Colorado School of Mines, 1996.
    [2] Andreas Rüger. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry[J]. Geophysics, 1997, 62(3), 713-722.
    [3] Andreas Rüger, Ilya Tsvankin. Using AVO for fracture detection: Analytic basis and practical solutions[J]. The Leading Edge, 1997, 16(10), 1429-1434.
    [4] Andrey Bakulin, Vladimir Grechka, ILya Tsvankin. Estimation of fracture parameters from reflection seismic data—PartI: HTI model due to a single fracture set[J]. Geophysics, 2000, 65(6), 1788-1802.
    [5] B.A. Auld. Acoustic fields and waves in solid, Vol.1[M]. Malabar: Robert E. Krieger Publication Co., 1990.
    [6] Brian E. Hornby, Larry M. Schwartz, John A. Hudson. Anisotropic effective-medium modeling of the elastic properties of shales[J]. Geophysics, 1994, 59(10), 1570-1583.
    [7] C.H. Chang, G.H.F. Gardner, J.A. McDonald. A physical model for shear-wave propagation in a transversly isotropic solid[J]. Geophysics, 1994, 59(3), 484-487.
    [8] C.H. Cheng. Crack models for a transversely anisotropic medium[J]. J. Geophys. Res., 1993, 98(5), 675-684.
    [9] C.H. Sondergeld, C.S. Rai. Laboratory observations of shear-wave propagation in anisotropic media[J]. 1992, The Leading Edge, 11(2), 38-43.
    [10] Chen Tong-jun, Cui Ruo-fei, et al. Prediction of Coal Seam Methane Enriched Area Using Seismic Data[J]. Journal of China University of Mining &Technology(English Edit), 2006, 16(4), 421-424.
    [11] D.F. Winterstein, G.S. De. Case history: VTI documented[J].Geophysics, 2001, 66(1), 237-245.
    [12] D.L. Anderson. Elastic wave propagation in layered anisotropic media[J]. J. Geophysics Res., 1961, 66(9), 2953-2964.
    [13] Daley P.F., Hron F.. Reflection and transmission coefficients for transversely isotropic media[J]. Seismic Soc. Am., 1977, 67(3), 661-675.
    [14] Debashish Sarkar, Andrey Bakulin, Robert L.. Anisotropic inversion of seismic data for stressed media: Theory and a physical modeling study on Berea Sandstone[J]. Geophysics, 2003, 68(2), 690-704.
    [15] Liu, E., J. A. Hudson, S. Crampin, et al. Seismic properties of a general fracture. H. P. Rossmanith, Mechanics of jointed and faulted rocks: A. A. Balkema, 1995, 673–678.
    [16] Enru Liu, Stuart Crampin. Effects of the Internal Shear Wave Window: Comparison With Anisotropy Induced Splitting[J]. J. Geophys. Res., 1990, 95(B7), 11275-11281.
    [17] Enru Liu, J. A. Hudson, Tim Pointer. Equivalent medium representation of fractured rock[J]. J. Geophys. Res., 2000, 105, 2981-3000.
    [18] Fred J. Hilterman. Is AVO the seismic signature of lithology?A case history of Ship Shoal-South Addition[J]. The Leading Edge, 1993, 9(6), 15-22.
    [19] Fred J. Hilterman. Seismic Amplitude Interpretation[M]. SEG&EAGA, 2001.
    [20] G. E. Backus. Long-wave elastic anisotropy produced by horizontal layering[J]. J. Geophys. Res., 1962, 67(11), 4427–4440.
    [21] G.A. Dorn. Modern 3-D seismic interpretation[J]. The leading Edge, 1998, 17(9), 1262 -1272.
    [22] G.W. Postma. Wave propagation in a stratified medium[J]. Geophysics, 1955, 20(4), 780-806.
    [23] Gary Mavko, Tapan Mukerji, Jack Dvorkin. The rock physics handbook: Tools for seismic analysis in porous media[M]. Cambridge: Cambridge University Press, 2003.
    [24] H.H. Hess. Seismic anisotropy of the uppermost mantle under oceans[J]. Nature, 1964, 203(8), 629 -631.
    [25] Ilya Tsvankin. P-wave signatures and notation for transversely isotropic media: An overview[J]. Geophysics, 1996, 61(2), 467-483.
    [26] Ilya Tsvankin. Anisotropic parameters and P-wave velocity for orthorhombic media[J]. Geophysics, 1997a, 62(4), 1292-1393.
    [27] Ilya Tsvankin. Reflection moveout and parameters estimation for horizontal transverse isotropy[J]. Geophysics, 1997b, 62(2), 614-629.
    [28] Ilya Tsvankin. Seismic signatures and analysis of reflection data in anisotropic media, 2nd ed.[M]. Elsevier Science Publ. Co., Inc, 2005.
    [29] J.A. Hudson. Overall properties of a cracked solid. Math. Proc.[J]. Cambridge Philos. Soc., 1980, 88(2), 371-384.
    [30] J.A. Hudson. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophys. J. Int., 1981, 64(1), 133-150.
    [31] J.A. Hudson. A higher order approximation to the wave propagation constants for a cracked solid[J]. Geophys. J. Int., 1987, 87(1), 265-274.
    [32] J.A. Hudson. Seismic wave propagation through material containing partially saturated cracks[J]. Geophys. J. Int., 1988, 92(1), 33-37.
    [33] J.A. Hudson, E. Liu, S. Crampin. The mechanical properties of materials with interconnected cracks and pores[J]. Geophys. J. int., 1996, 124(1), 105-l 12.
    [34] J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proc. R. Soc. London, A., 1957, 241(1226), 376-396.
    [35] J. Douma. The effect of the aspect ratio on cracked-induced anisotropy[J]. Geophysical prospecting, 1988, 36(6), 614-632.
    [36] J. Helen Isaac, Don C. Lawton. A practical method for estimating effective parameters of anisotropy from reflection seismic data[J]. Geophysics, 2004, 69(3), 681-689.
    [37] J.P. Blangy. AVO in transversely isotropic media---An overview[J]. Geophysics, 1994, 59(5), 775-781.
    [38] J.P. Castagna, H. W. Swan. Principles of AVO crossplotting[J]. The Leading Edge, 1997, 16(4), 337-342.
    [39] J.P. Castagna, Swan H. W., Foster D. J.. Framework for AVO gradient and intercept interpretation[J]. Geophysics, 1998, 63(3), 948-956.
    [40] J. Wright. The effects of transverse isotropy on reflection amplitude versus offset[J]. Geophysics, 1987, 52(4), 564-567
    [41] Jamal M.A., Robert H.T., J.A. McDonald. A physical model study of microcrack-induced anisotropy[J]. Geophysics, 1992, 57(12), 1562-1570.
    [42] James G. Berryman. Analysis of Thomsen parameters for finely layered VTI media[J]. SEG Expanded Abstracts, 1997, 16, 941-948.
    [43] James G. Berryman. Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies[J]. Geophysics, 2008, 73(1), D1-D10.
    [44] K. Helbig, L. Thomsen. 75-plus years of anisotropy in exploration and reservoir seismic: A historical review of concepts and methods[J]. Geophysics, 2005, 70(6), 9-23.
    [45] K. Helbig. Anisotropy and dispersion—Two side of coin[J]. Geophysics, 2009, 74(2), WA15-WA23.
    [46] L. Thomsen. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10), 1954-1966.
    [47] L. Thomsen. Weak anisotropy reflections, in Castagna J.P. and Backus M. Eds., Offset dependent reflectivity: Theory and practice of AVO analysis[M]. Soc. Expl. Geophys. , 1993, 103-111.
    [48] L. Thomsen. Elastic anisotropy due to aligned cracks in porous rock[J]. Geophysics, Geophysical prospecting, 1995, 43(6), 805-829.
    [49] L. Thomsen. Seismic anisotropy[J]. Geophysics, 2001, 66(1), 40-41.
    [50] Leonie E. A. Jones, Herbert F. Wang. Ultrasonic velocities in Creataceous shales from the Williston basin[J]. Geophysics, 1981, 46(3), 288-297.
    [51] M.A. Widess. How thin is a thin bed[J]. Geophysics, 1973, 38(6), 1176~1180.
    [52] M.J.P. Musgrave. Propagation of elastic waves in crystals and other anisotropic media[J]. Rep. Progr. Phys. , 1959, 22(1), 74-96.
    [53] M.S. Sams. Attenuation and anisotropy: the effect of extra fine layering[J]. Geophysics, 1995, 60, 1646-1655.
    [54] M. Schoenberg, J. Protázio.‘Zoeppritz’rationalized and generalized to anisotropy[J]. J. Seismic Expl., 1992, 1(1), 125-144.
    [55] M. Schoenberg, C.M. Sayers. Seismic anisotropy of fractured rock[J]. Geophysics, 1995, 60(1), 204-211.
    [56] Mohammed al-Otaibi. Thin bed amplitude versus offset[D]. Huston: University of Huston, 2002.
    [57] Mu Luo, Norio Arihara, et al. Abnormal transmission attenuation and its impact on seismic-fracture prediction—A physical modeling study[J]. Geophysics, 2006, 71(1), D15-D22.
    [58] Mu Luo, M. Takanashi, et al. Physical modeling of overburden effects[J]. Geophysics, 2007, 72(4), T37-T45.
    [59] R. Bortfeld. Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves[J]. Geophysics Prospecting, 1961, 9(4), 485–502.
    [60] R. M?rig, H. Burkhardt. Experimental evidence for the Biot-Gardner theory[J]. Geophysics, 1989, 54(4), 524 -527.
    [61] R.T. Shuey. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4), 609-614.
    [62] Robert E. Sheriff. Encyclopedic Dictionary of Exploration Geophysics(Third Edition)[M]. Tulsa: Society of Exploration Geophysicists, 2002.
    [63] Rutherford S. R., Williams R. H.. Amplitude-versus-offset in gas sands[J]. Geophysics, 1989, 54(6), 680-688.
    [64] S. Crampin. Seismic wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic[J]. Geophys. J. Int., 1978, 53(3), 467-496.
    [65] S. Crampin, Robert McGonigle, David Bamford. Estimating crack parameters from observation of P-wave velocity anisotropy[J]. Geophysics, 1980, 45(3), 345-360.
    [66] S. Crampin. A review of wave motion in anisotropic and cracked elastic media[J]. Wave Motion, 1981, 40(3), 343~391.
    [67] S. Crampin. Effective anisotropic elastic-constants for wave propagation through cracked solids[J]. Geophys. J. Int., 1984, 76(1), 135-145.
    [68] S. Crampin. Evaluation of anisotropy by shear-wave splitting[J]. Geophysics, 1985, 50(1), 142 -152.
    [69] S. Crampin. The fracture criticality of crustal rocks [J]. Geophys. J. int., 1994, 118(2), 428-438.
    [70] S. Vlastos, E. liu, et al.. Numerical simulation of wave propagation in media with discrete distributions of fractures: effects of fracture sizes and spatial distributions[J]. Geophys. J. Int., 2003, 152(3), 649-668.
    [71] Scott Koza, John P. Castagna. The effects of noise on AVO crossplots[J]. SEG Expanded Abstracts, 2003, 22, 274- 277.
    [72] Sean Guest. The effect of fracture filling fluids on shear-wave propagation[J]. SEG Expanded Abstracts, 1998 17, 948-955.
    [73] Serge A.Shapiro, Axel Kaselow. Porosity and elastic anisotropy of rocks under tectonic stress and pore-pressure changes[J].Geophysics, 2005, 70(5), N27-N38.
    [74] Shangxu Wang, Xiang-Yang Li. Fracture detection using 3D seismic data: A physical modeling study[J]. SEG Expanded Abstracts, 2003, 22, 2303~2307.
    [75] Tim Pointer, Enru Liu, J.A. Hudson. Seismic wave propagation in cracked porous media[J]. Geophys. J. Int. , 2000, 142(1), 199-231.
    [76] T. Chen, R. Cui. P-wave AVO and AVAZ modeling for coal beds, CD[C]. Brisbane: Proceedings of 2008 Asia Pacific CBM symposium, 2008.
    [77] Václav Vavrycuk, Ivan Psencik. PP-Wave reflection coefficients in weakly anisotropic elastic media[J]. Geophysics, 1998, 63(6), 2129-2141.
    [78] Václav Vavrycuk. Ray velocity and ray attenuation in homogeneous anisotropic viscoelastic media[J]. Geophysics, 2007, 72(6), 119-127.
    [79] W.T. Thomson. Transmission of elastic waves through a stratified solid medium[J]. J. Appl. Phys., 1950, 21(2), 89-93.
    [80] Wei Chen. AVO in azimuthally anisotropy media fracture detection using P-Wave data and a seismic study of naturally fractured tight gas reservoirs[D]. California: Stanford University, 1995.
    [81] Y. Wang. Approximations to the Zoeppritz equations and their use in AVO analysis[J]. Geophysics, 1999, 64(6), 1920-1937.
    [82] Y. Zhu, Ilya Tsvankin. Plane-wave propagation in attenuative transversely isotropic media[J]. Geophysics, 2006, 71(2), T17-T30.
    [83] Yaping Zhu, Ilya Tsvankin, et al.. Effective attenuation anisotropy of thin-layered media[J]. Geophysics, 2007, 72(5), D93-D106.
    [84]程五一,张序明等.煤与瓦斯突出区域预测理论及技术[M].北京:煤炭工业出版社, 2005.
    [85]陈同俊,崔若飞,刘恩儒.构造煤AVO特征及正演模拟研究[J].地球物理学进展, 2008, 23(5), 1610- 1615.
    [86]崔若飞,陈同俊,赵虎等.煤层瓦斯富集区的地震预测方法[C].青岛:矿难事故分析及煤矿安全技术研讨会, 2005, 140-146.
    [87]崔若飞,陈同俊等.煤层气地震勘探技术[C].威海:中国煤层气勘探开发利用技术进展论文集, 2006, 155-162.
    [88]董守华.煤弹性各向异性系数测试与P波方位各向异性裂缝评价技术[D].徐州:中国矿业在学, 2004.
    [89]董渊,杨慧珠.利用P波层间时差确定裂缝性地层的各向异性参数东[J].石油地球物理勘探, 1999, 34(5), 520-525.
    [90]傅雪海.多相介质煤岩体物性的物理模拟与数值模拟[D].徐州:中国矿业大学, 2001.
    [91]高云峰. AVO技术在煤层瓦斯富集部位检测中的应用—以淮南煤田为例[D].北京:中国矿业大学, 2003.
    [92]勾精为,姚陈,于光明等.用转换波检测煤层裂隙的方法探讨[J].中国煤田地质, 2001, 13(3), 77-82.
    [93]郭德勇,韩德馨.围压下构造煤的波速特征实验研究[J].煤炭科学技术, 1998, 26(4) :21-23.
    [94]侯伯刚. AVO处理解释技术研究及应用[D].北京:中国地质大学, 2005.
    [95]何继善.瓦斯突出地球物理研究[M].长沙:中南工业大学出版社, 1999.
    [96]胡光岷,贺振华,黄德济等.利用纵波资料反演裂缝发育密度和方向[J].成都理工学院学报, 2000, 27(2), 145~147.
    [97]琚宜文,姜波等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社, 2005.
    [98]刘恩儒,曾新吾.裂缝介质的有效弹性常数[J].石油地球物理勘探, 2001, 26(1), 37-44.
    [99]刘洋,董敏煜.各向异性介质中的方位AVO[J].石油地球物理勘探, 1999, 34(3), 260-267.
    [100]吕绍林.超声波探测瓦斯突出煤体[J].矿业安全与环保, 1997, (3) :15~18
    [101]彭苏萍,高云峰,杨瑞召等. AVO探测煤层瓦斯富集的理论探讨和初步实践---以淮南煤田为例[J].地球物理学报, 2005, 48(6), 1475-1486.
    [102]曲寿利,季玉新,王鑫等.全方位P波属性裂缝检测方法[J].石油地球物理勘探, 2001, 36(4), 392~397.
    [103]阴可,杨慧珠.各向异性介质中AVO[J].石油物探, 1997, 36(4), 28~37.
    [104]张爱敏,汪洋,赵世尊.不同厚度煤层AVO特征及模型研究[J].中国矿业大学学报, 1997, 26(3), 36-41.
    [105]郑晓东. AVO理论和方法的一些新进展[J].石油地于物理勘探, 1992, 27(3), 305-317
    [106]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社, 1999.
    [107]王大兴,辛可锋等.地层条件下砂岩含水饱和度对波速及衰减影响的实验研究[J].地球物理学报, 2006, 49(3), 908-914.
    [108]王兴谋,韩文功,李红梅.浅层岩性气藏检测的陷阱分析[J].石油大学学报, 2003, 27(1), 19~22.
    [109]魏建新.正交各向异性介质波场特征的物理模拟研究[D].北京:中国地震局地球物理研究所, 2003.
    [110]姚宝奎,孙广忠,尹代勋等.煤与瓦斯突出的区域性预测[M].北京:科学技术出版社, 1993.
    [111]殷八斤,曾灏,杨在岩. AVO技术理论与实践经验[M].北京:石油工业出版社, 1995.
    [112]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700