用户名: 密码: 验证码:
基于粒子群智能的遥感找矿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用现代遥感技术辅助矿产资源勘查,是快速有效的勘查支持方法,但由于遥感影像中各种矿化蚀变信息是一类弱信息,传统方法的提取效果仍存在许多方面问题有待于进一步提高或改进。矿化蚀变信息提取是遥感矿产勘查中的关键技术,因此对现有的技术进行深入研究,将新技术、新方法应用到遥感矿化蚀变信息提取中,提高遥感找矿的效率与可信度,具有非常重要的理论和实际意义。本文结合一项“十一五”国家科技支撑计划项目和一项青海省重大科技攻关项目的研究工作,建立了一种新的基于粒子群智能的遥感找矿辅助方法。
     通过对大规模组合优化问题的优化和求解方法研究,提出了符合蒙特卡罗算法性质的化简模型,揭示了问题优化解之间的多种性质。将上述研究结论应用于多种智能计算方法的实验结果表明,智能算法的收敛质量得到明显地提高。对比试验结果显示,粒子群智能在离散问题求解中具有较其它智能计算方法更好的搜索性能,确定以粒子群智能作为本项研究工作的核心技术。
     在对粒子群智能的机理研究基础上,建立了基于粒子群智能的二维离散空间搜索框架模型。模型中二维离散空间中的点赋予引力,粒子在引力作用下以模拟智能生命的概率控制方式飞翔。由于模型中使用了引力机制,使得搜索模型具备常规方法缺乏的全局性,引力衰减机制的引入增强了模型的鲁棒性,因此新提出的搜索模型具有良好的人性化指标。
     将粒子群智能搜索框架和线性混合像元分解两个模型结合,建立了基于粒子群智能的混合像元分解新方法。首先利用粒子群智能搜索算法进行尝试性分解搜索,然后根据搜索结果再进行线性混合像元分解,在一定程度上解决了常规混合像元分解方法中存在诸如线性配准不可控、误判、缺乏全局性等问题。对比实验结果表明:新分解方法的分解结果更符合影像中目标地物的展布情况,表现了良好的全局性,保留了更多的遥感找矿信息。
     通过对遥感影像中矿物岩石光谱特征的研究与分析,提出了一种矿物岩石光谱特征“漂移”假说,将该假说与粒子群智能搜索模型结合,建立了基于粒子群智能的矿化蚀变信息提取方法。由于遥感影像分辨率尚没有达到理想状态,所以像元通常是多种地物的混合光谱,造成矿化地物光谱部分波段出现偏移,利用这种现象建立了地物类别划分方法。同时在新方法中使用新的邻域搜索参考模型,增强了方法在搜索过程中对邻域信息的参考强度,使得分类结果的全局性得到了进一步加强。在此基础上,将粒子群智能行为特征以量化方式表示,建立了一种新的分类结果密度分布模型,为下一步遥感找矿奠定基础。
     针对支持向量机分类器进行遥感矿化蚀变信息的提取,建立了粒子群智能快速优选支持向量机分类器超参数的方法。通过对分类器两个关键参数对分类结果影响情况的分析,确定以整数编码方式以及k-折交叉验证作为适应度评价实现参数优选搜索;同时提出了两点中心法和多点重心法两种启发式策略,进一步提高算法的搜索效率。采用经过优化参数后的支持向量机分类器进行遥感矿化蚀变信息提取,缩短了特征提取时间,分类质量得到了进一步提高。
     综合上述各种技术建立了基于粒子群智能计算技术的遥感找矿流程,对项目中几个典型矿化区段进行了遥感矿化信息提取应用。通过野外实地验证和与已知的矿(化)区资料对比,提取的蚀变异常信息与已知的矿(化)点位置基本吻合,新发现的一些矿化蚀变异常点均不同程度存在矿化蚀变现象。综合其它找矿资料,给出了4个成矿预测远景区、4处找矿靶区和9处新的找矿线索地段。
It is a kind of fast and efficient support way of exploration to utilize modern remote sensing technique to assist mineral resource exploration. There are many issues to be resolved or improved in traditional information extraction approaches because mineralization alteration information is weaker than other information in remote sensing image. Mineralization alteration information extraction is critical technology of remote sensing mineral exploration, so it has important academic and applied significance for improving efficiency and reliability of remote ore-finding to go deep into existing technology, and to apply new technique and new method to remote sensing mineralization alteration information extraction. Research working in this theme, establishing a kind of assist method for remote sensing ore-finding based on particle swarm intelligence computation technique, is based on the 11th Five Years support programs for science and technology development of China and key technologies R&D program of Qinghai Province.
     Through studying optimization and solving method for large scale combinatorial optimization problem, simplification model is put forward settling for Monte Carlo algorithm property, and manifold characters among optimal solutions are revealed also. The experimental results, applying above-mentioned conclusion to different intelligence computation methods, show that convergence performances of those algorithms are improved obviously. Contrastive experiential results show also that particle swarm intelligence has better search performance than other intelligence computation methods while being applied to solve discrete problems. Therefore, it is treated as kernel technique to be studied in this theme.
     Searching framework model based on particle warm intelligence is established for two-dimension discrete space on a basis of mechanism study of particle swarm intelligence computation. In the model, points in two-dimension discrete space are assigned gravity to. All of particles fly under gravity action according to probability controlling manner that simulates intelligence life. The new model possesses overall situation which normal methods are absent because it utilizes gravity mechanism. Gravity attenuation mechanism boosts up robustness of model. Consequently, new model is provided with better human indicator.
     Particle swarm intelligence mixels decomposition method is brought forward through combining searching framework with linear mixels decomposition model. Tentative decomposing search is done firstly utilizing intelligence search algorithm, and then decomposing images utilizing linear mixels decomposition according to search results. This settles some issues existing in general mixels decomposition methods, such as non-controlled property of linear matching, and lack of overall situation and so on. Contrastive experiential results show that decomposition results meet distribution of target landmarks in remote sensing image. New method is with better overall situation, and reserves more remote sensing ore-finding information.
     Shifting hypothesis of mineralization spectrum character is put forward through analyzing and studying mixture property of mineral spectrum in remote sensing image. Particle swarm intelligence mineralization alteration information extraction method is established through combining the hypothesis with particle swarm intelligence search model. In the meanwhile, new neighborhood-search reference model is added into the new method to enhance ulteriorly overall situation of classification results. On this basis, behavior characteristic of particle swarm intelligence is quantified to established probability distribution model of classification results, and to lay the groundwork for follow-up remote sensing ore-finding.
     In allusion to remote sensing mineralization alteration information retraction utilizing support vector machine, quick optimization-selecting method using particle swarm intelligence for support vector machine classifier is put forward. Through analyzing influence to classification results produced by two critical parameters of classifier, parameter search method is implemented by way of integer encoding manner and evaluating through k-fold crossover validation. In the meanwhile, two heuristic strategies, two-point-epicenter method and multi-point- barycenter method, are founded for improving search efficiency. All of these reduce time of feature extraction, and improve ulteriorly classification quality.
     Workflow of remote sensing ore-finding based on particle swarm intelligence is established integrating above-mentioned techniques. New method is applied to several representative mineralization segments of programs. Through field experiments and comparing with data of the known alteration areas, we find that the alteration information is nearly in accordance with the known alteration areas. Alteration points founded newly have alteration phenomenon in some degree. Four metallogenic prediction prospective areas, four mine prospecting target areas and nine new ore-finding clue segments are given through synthesizing other ore-finding materials.
引文
[1]孙家炳.遥感原理与应用[M].武汉:武汉大学出版社,2003.
    [2]金聪,彭嘉雄.利用遗传算法实现数字影像分割[J].小型微型计算机系统,2002,23(7):875-877.
    [3]Ramos V,Almeida F.Artificial ant colonies in digital image habitats-a mass behavior effect study on pattern recognition[A].Dorico M,Birattari M,Blum C.Proc of ANTS 2000-2nd Int Workshop on Ant Algorithms[C],2000:113-116.
    [4]Zhao B,Liu Y,Xia S W.Support vector machine and its application in handwritten numeral recognition[A].Proceedings of 15th International Conferenceon Pattern Recognition[C],2000:720-723.
    [5]Shen L S,Wei B G,Cai Y H,et al.Image analysis for tongue characterization[J].Chinese Journal of Electronics,2003,12(3):317-323.
    [6]Osuna E,Freund R,Girosit F.Training support vector machines:an application to face detection[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],1997:130-136.
    [7]刘志刚.支持向量机在光谱遥感影像分类中的若干问题研究:[博士学位论文].武汉:武汉大学,2004.
    [8]杨自安.西部高寒山区遥感与化探信息综合找矿定位预测研究:[博士学位论文].北京:中国地质大学,2005.
    [9]付文杰.遥感矿化蚀变信息提取中两种新方法的应用研究:[博士学位论文].长沙:中南大学,2006.
    [10]何灵敏.支持向量机集成及在遥感分类中的应用:[博士学位论文].杭州:浙江大学,2006.
    [11]Hunt G R,Salisbury J W.Visible and Near-infrared Spectra of Minerals and Rocks Ⅺ Sedimentary Rocks[J].Modern Geology,1976,(5):211-2171.
    [12]Hunt G R,Salisbury J W.Visible and Near-infrared Spectra of Minerals and Rocks Ⅻ Metamorphic Rocks[J].Modern Geology,1976,(5):219-2281.
    [13]地质部情报研究所.遥感专辑--矿物岩石的可见-中红外光谱及其应用[M].北京:地质出版社,1980.
    [14]Ambrams M J.Landsat thematic mapper and thematic mapper simulator data for a porphyry copper deposit[J].Photogrammetric Engineering and Remote Sensing, 1984,14:128-136.
    [15]Crosta A,Moore J M.Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State,Brazil- A prospecting case history in greenstone belt terrain[A].Thematic Conference on Remote Sensing for Exploration Geology,1989:1173-1187.
    [16]Loughlin W P.Principal component analysis for alteration mapping[J].Photogrammetric Engineering and Remote Sensing,1991,57:1163-1169.
    [17]Timothy M K,Talaat M R.Structural controls on Neoprotero zoic mineralization in the South Eastern Desert,Egypt:an integrated field,Landsat-TM,and SIR-C/X SAR approach[J].Journal of African Earth Sciences,2002,35:107-121.
    [18]Crowley J K,Hubbard B E,Mars J C.Hydrothermal Alteration on the cascade stratovolcanoes:A remote sensing survey[J].Geological Society of America Abstracts with Programs,2003,35(6):552.
    [19]刘燕君.遥感找矿的原理和方法[M].北京:冶金工业出版社,1991.
    [20]赵元洪,张福祥,陈南峰,等.波段比值主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,(3):12-18.
    [21]何国金,胡德永,陈志军,等.从TM影像中直接提取金矿化信息[J].遥感技术与应用,1995,10(3):51-54.
    [22]陈赶良,杨柏林.黔桂地区微细浸染型金矿蚀变信息提取机理[J].环境遥感,1996,11(2):88-93.
    [23]张满郎,郑兰芬.Landsat TM及JERS-1 SAR数据在金矿探测中的应用研究[J].环境遥感,1996,11(4):260-266.
    [24]马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,1(3):208-213.
    [25]陈松岭,卢福宏,高光明,等.华北地台北缘内蒙古段金矿围岩蚀变的遥感识别[J].国土资源遥感,2001,(2):13-18.
    [26]杨波,吴德文,赖健清,等.矿化信息提取定量遥感模型的建立--以鹰嘴山硅化蚀变为例[J].遥感学报,2005,9(6):718-724.
    [27]吴德文,朱谷昌,张远飞.多元数据分析与遥感矿化蚀变信息提取模型[J].国土资源遥感,2006,(1):22-25.
    [28]李建国,毛德宝.基于ETM+与ASTER数据的矿化蚀变信息提取方法研究--以满都拉地区为例[J].地质调查与研究,2007,30(3):235-240.
    [29]荆凤,陈建平.矿化蚀变信息的遥感提取方法综述[J].遥感信息,2005,(2):62-65.
    [30]赵鹏大,池顺都.当今矿产勘探问题的思考[J].地球科学,1998,23(1):70-74.
    [31]於崇文.大型矿床和成矿区(带)在混沌边缘[J].地学前缘,1999,6(1):85-101.
    [32]陈建平,唐菊兴,李志军.混沌理论在三江北段成矿地质条件研究上的应用--以玉龙成矿带北段元素地球化学异常分析为例[J].地质与勘探,2003,39(3):1-4.
    [33]张哲儒,毛华海.分形理论与成矿作用[J].地学前缘,2000,7(1):195-204.
    [34]陈春仔,金友渔.分形理论在成矿预测中的应用[J].矿产与地质,1997,60(11):272-276.
    [35]成秋明.多维分形理论和地球化学元素分布规律[J].地球科学-中国地质大学学报,2000,25(3):311-318.
    [36]王祖伟,周永章,姚东良,等.两广庞西垌-金山成矿带银金矿床分形性研究[J].矿床地质,1999,18(2):183-188。
    [37]金章东.江西德兴铜厂斑岩体铜品位的分形结构[J].矿床地质,1998,17(4):363-368.
    [38]邓军,杨立强,方云,等.成矿系统嵌套分形结构和自有序效应[J].地学前缘,2000,7(1):133-146。
    [39]Deng J,Fang Y,Yang L,et al.Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems[J].Acta geologica sinica,2001,75(2):220-232.
    [40]陈建国,夏庆霖.利用小波分析提取深层次物化探异常信息[J].地球科学,1999,24(5):509-512.
    [41]李超岭,邱丽华.人工神经网络在区域地质调查中的应用--反向传播模型(BP网)建立与应用[J].中国区域地质,1999,18(4):436-443.
    [42]纪瑛瑛,孙忠实.灰色系统理论在海沟金矿成矿预测中的应用[J].吉林地质,1999,18(4):38-42.
    [43]白润才,郭嗣琮,宋子岭.矿床地质模型的神经网络方法[J].煤炭学报,2000,25(3):234-237.
    [44]王海平,张彤.人工神经网络方法及其在遥感地质找矿中的应用[J].矿床地质,2004,23(1):123-128.
    [45]成秋明.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J].地球科学--中国地质大学学报,2006,31(3):337-346.
    [46]朱雅琼,袁艳斌,周尤,等.金矿资源定量预测的粗糙集方法[J].地球科学进展,2008,23(2):214-218.
    [47]Fukuyama Y.Fundamentals of particle swarm techniques[A].Lee K Y,E12Sharkawi M A.Modern Heuristic Optimization Techniques with Applications to Power Systems[C].IEEE Power Engineering Society,2002:45-51.
    [48]Van Den Bergh F.An analysis of particle swarm optimizers:[Ph.D.Thesis].South Africa:University of Pretoria,2002.
    [49]Eberhart R C,Shi Y.Guest Editorial Special Issue on Particle Swarm Optimization [J].IEEE Transaction on Evolutionary Computation,2004,8(3):201-203.
    [50]Higashi N,Iba H.Particle Swarm Optimization with Gaussian Mutation[C].Proceedings of the 2003 Congress on Evolutionary Computation[A].Piscataway,NJ:IEEE Press,2003:72-79.
    [51]赫然,王永吉,王青,等.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044.
    [52]潘峰,陈杰,甘明刚,等.粒子群优化算法模型分析[J].自动化学报,2006,32(3):369-378.
    [53]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6.
    [54]Baskar S,Suganthan P N.A Novel Concurrent Particle Swarm Optimization[A].Proceedings of the 2004 Congress on Evolutionary Computation[C].Piscataway,NJ:IEEE Press,2004:792-796
    [55]Van Den Bergh F,Engelbrecht A P.Effects of Swarm Size on Cooperative Particle Swarm Optimizers[A].Proceeding of the GECCO[C],San Francisco,USA,2001:892-899.
    [56]伍振军,刘吉平.基于遥感和遗传BP算法的流域土地覆盖/利用分类方法[J].湖北地矿,2002,16(2):33-36.
    [57]Fernandes C,Ramos V,Rosa A C.Self-Regulated artificial ant colonies on digital image habitats[J].International Journal of Lateral Computing,2005,2:1-8.
    [58]尹淑玲,舒宁,刘新华.基于自适应遗传算法和改进BP算法的遥感影像分类[J].武汉大学学报(信息科学版),2007,32(3):201-204.
    [59]韦玉春,黄家柱.Landsat5图像的增益偏置取值及其对行星反射率计算分析[J].地球信息科学,2006,8(1):110-113,126.
    [60]Suganthan P N.Particle swarm optimizer with neighborhood operator[A].Proceeding of the Congress on Evolutionary Computation[C].Washington DC,1999:1958-1962.
    [61]Clerc M.The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization[A].Proceeding of the Congress on Evolutionary Computation[C].Washington DC,1999:1951-1957.
    [62]Shi Y H,Eberhart R.Fuzzy adaptive particle swarm optimization[A].Proceeding IEEE International Conference on Evolutionary Computation[C].Seoul,2001:101-106.
    [63]Ismail A,Engelbrecht A P.Training product units in feedforward neural networks using particle swarm optimization[A].Proceedings of the International Conference on Artificcial Intelligence[C].Durban,South Africa,1999:36-40.
    [64]Eberhart r c,hu X.human tremor analysis using particle swarm optimization[A].Proceeding Congress on Evolutionary Computation[C].Washington,DC,USA,1999:1927-1930.
    [65]Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability[A].Proceedings of International Conference on Intelligent System Application to Power Systems [C].Maui,Hawaii,1999:117-121.
    [66]El Gallad A I,El Hawary,Sallam M E,et al.Swarm-intelligently trained neural network for power transformer protection[A].Canadian Conference on Electrical and Computer Engineering[C].Toronto,Ont.Canada,2001:265-269.
    [67]Kassabalidis I,El Sharkawi,Marks M A,et al.Adaptive-SDR:Adaptive swarm-based distributed routing[A].Proceedings of the 2002 International Joint Conference on Neural Networks[C].Honolulu,HI USA,2002,1:351-354.
    [68]Robinson J,Sinton S,Rahmat-Samii.Particle swarm,genetic algorithm,and their hybrids:optimization of a profiled corrugated horn antenna[A].2002 IEEE Antennas and Propagation Society International Symposium and URSI Natinal Radio Science Meeting[C].USA:Sun Automo,TX,16-21 June 2002,1:314-317.
    [69]Carpaneto G,Toth P.Some New Branching and Bounding Criteria for the Asymmetric Traveling Salesman Problem[J].Management Science,1980,26(7):736-743.
    [70]Dantzing G B.Solution of a Large Scale Traveling Salesman Problem[J].Operations Research,1954,2:393-410.
    [71]Bellman R.Dynamic Programming Treatment of the Traveling Salesman Problem [J].Journal of the ACM,1962,9:61-63.
    [72]Grefenstette J J,Gopal R,Rosmaita B,et al.Genetic Algorithms for Traveling Salesman Problem[C].In:Proceedings of an International Conference on Genetic Algorithms and Their Applications[A],1985:160-168.
    [73]谢秉磊,李良,郭耀煌.求解配送/收集旅行商问题的模拟退火算法[J].系统工程理论方法应用,2002,11(3):240-243.
    [74]Tseng C C,Tsai C F,Tsai C W.A new hybrid heuristic approach for solving large traveling salesman problem[J].Information Sciences,2004,166:67-81.
    [75]贺一,刘光远.禁忌搜索算法求解旅行商问题研究[J].西南师范大学学报(自然科学版),2002,27(3):341-345.
    [76]Gutin G,Yeo A.Polynomial approximation algorithms for the TSP and the QAP with a factorial domination number[J].Discrete applied Mathematics,2002,119(1-2):107-116.
    [77]Cochrane E M,Beasley J E.The co-adaptive neural network approach to the Euclidean Traveling Salesman Problem[J].Neural Networks,2003,16(10):1499-1525.
    [78]Johnson D S,Papadim It Riou C H,Yannakakis M.How easy is local search?[J].Journal of Computer and System Sciences,1988,37(1):79-100.
    [79]Papadimitriou C H,Yannakakis M.Optimization,Approximation and complexity classes[J].Journal of Computer and System Sciences,1991,43(3):425-440.
    [80]Christine L V,Antonia J J.Estimating the Held-Karp lower bound for the geometric TSP[J].European Journal of Operational Research,1997,102(1):157-175.
    [81]Miliotis P.Using cutting planes to solve the symmetric traveling salesman problem [J].Mathematical Programming,1978,15,177-188.
    [82]邹鹏,周智,陈国良,等.求解TSP问题的多级归约算法[J].软件学报,2003:14(1):35-42.
    [83]Hu T C,Klee V,Larman D.Optimization of Globally Convex Function[J].SIAM J.on Control and Optimization,1989,27(5):1026-1047.
    [84]Boese K.Cost versus distance in the traveling salesman problem[R].Technical Report,TR-950018,CS Department,UCLA,1995.
    [85]David A,Robert B,Vasek C.Concorde network optimization package[CP/OL].http://www.tsp.gatech.edu/concorde/downloads/codes/src/co031219.tgz.1997-08-08/2007-04-16.
    [86]University of Heidelberg.Traveling Salesman Problems Library[DB/OL].http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.1997-08-08/2007-04-16.
    [87]Jones T,Forrest S.Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms[C]//ESHFILMAN L.Proceeding of the 6th International Conference on Genetic Algorithms.San Mateo,CA:Morgan Kauffrnan, 1995:184-192.
    [88]Held M,Karp R M.The Traveling Salesman Problem and Minimum Spanning Trees[J].Operations Research,1970,18:1138-1162.
    [89]Held M,Karp R M.The Traveling Salesman Problem and Minimum Spanning Trees:part Ⅱ[J].Mathematical Programming,1971,1:6-25.
    [90]Stutzle T,Hoos H H.MAX-MIN ant system and local search for the traveling salesman problem[A].Proceedings of the IEEE International Conference on Evolutionary Computation(ICEC' 97)[C].Indianapolis,USA,1997:309-314.
    [91]杨辉,康立山,陈毓屏.一种基于构建基因库求解TSP问题的遗传算法[J].软件学报,2003,26(12):1753-1758.
    [92]张铃,张钹.佳点集遗传算法[J].软件学报,2001,24(9):917-922.
    [93]张彦,邵美珍.基于径向基函数神经网络的混合像元分解[J].遥感学报,2002,6(4):285-288.
    [94]刘成,王丹丽,李笑梅.混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J].遥感技术与应用,2003,18(2):95-98.
    [95]杨贵军,张继贤.利用灰色相关分解混合像元方法研究[J].测绘通报,2004,(10):1-3.
    [96]吴波,张良培,李平湘.基于支撑向量回归的高光谱混合像元非线性分解[J].遥感学报,2006,10(3):312-318.
    [97]张伟,杜培军,张华鹏.基于神经网络的高光谱混合像元分解方法研究[J].测绘通报,2007,(7):23-26.
    [98]梁娜,何明一.基于遗传算法的混合像元快速分解及分类算法[J].遥感技术与应用,2007,22(4):560-564.
    [99]王旭红,郭建明,贾百俊,等.元胞自动机的遥感影像混合像元分类[J].测绘学报,2008,37(1):42-48.
    [100]陶雪涛,王斌,张立明.基于NMF的遥感图像混合像元分解新方法[J].信息与电子工程,2008,6(1):34-39.
    [101]吴波,周小成,高海燕.面向混合像元分解的光谱维小波特征提取[J].华侨大学学报(自然科学版),2008,29(1):156-160.
    [102]陈光火.中等程度植被覆盖区岩石蚀变信息提取技术及其应用[J].国土资源遥感,1992,(2):55-60.
    [103]陈光火.高光谱遥感蚀变矿物岩石识别与填图译文集[M].全国遥感地质协调小组新技术方法课题组,天津市遥感中心资源部,冶金部大津地质研究院,1991.
    [104]张玉君,杨建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,(2):46-53.
    [105]Tromp M,Epema G F.Spectral Mixture Analysis for Mapping Land Degradationin Semi-aridareas[J].Geologieen Mijnbouw,1999,77:153-160.
    [106]王小敏,曾生根,夏德深.基于松弛因子的快速独立分量分析算法的遥感图像分类技术[J].计算机工程与应用,2005,(7):84-86.
    [107]裴亮,谭阳.辅以纹理特征的遥感影像神经网络分类[J].煤炭技术,2007,26(12):84-85.
    [108]陈蜜,伭剑辉,李德仁.基于独立分量分析和支持向量机的遥感影像融合分类算法[J].中国图象图形学报,2007,12(9):1665-1670.
    [109]温兴平,胡光道,杨晓峰.基于C5.0决策树分类算法的ETM+影像信息提取[J].地理与地理信息科学,2007,23(6):26-29.
    [110]陈杰,孙志英,檀满枝.模糊逻辑在土地利用遥感分类中的应用[J].土壤学报,2007,44(5):769-774.
    [111]Benz U C,Hofmann P,Willhauck G,et al.Multi-resolution,object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J].Journal of Photogrammetry and Remote Sensing,2004,58:239-258.
    [112]刘小平,黎夏,彭晓鹃,等.一种基于生物群集智能优化的遥感分类方法[J].中国科学(D辑:地球科学),2007,37(10):1400-1408.
    [113]甘甫平.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社,2004年2月.
    [114]中国科学院黄金科技工作领导小组办公室.中国金矿研究新进展(第2卷)[M].北京:地震出版社,1994.
    [115]Siegrist A W,Schnetyler C C.岩石判别的最佳波段,译自《photogr.Eng.Rem.Sen.》,Vol.46,No.9,1980.遥感专辑(第二辑)《图象处理和地质应用》[M].地矿部情报研究所编,北京:地质出版社,1982
    [116]童庆禧.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990
    [117]Hunt G R.Spectroscopic properties of rocks and minerals,in Handbook of physical properties of rocks[J].CRC press,Boca Raton,1982,(1):295-385.
    [118]Hunt G R.粒状矿物的可见及近红外光谱特征标记图,王宗良译自《Geophsics》vol.42,no.3,1977.遥感专辑(第一辑)[M].北京:地质出版社.
    [119]Clark N R.Spectroscopy of Rocks and Minerals,and Priciples of Spectroscopy [EB/OL],http://speclab.cr.usgs.gov,1999.
    [120]王润生.成像光谱方法技术开发应用研究[R].国土资源部“九五”重点科研项 目报告,航空物探遥感中心,1999.
    [121]莱昂(I,yon R J P).风化及其它荒漠漆表层对高光谱分辨率遥感的影响(一)[J].环境遥感,1996,11(2):138-150.
    [122]莱昂(I,yon R J P).风化及其它荒漠漆表层对高光谱分辨率遥感的影响(二)[J].环境遥感,1996,11(3):186-194.
    [123]杨波.遥感信息多层次分离提取技术[D]:硕士学位论文.中南大学硕士论文,2004.
    [124]阎积惠,康慧,陈怀亮.TM图像地质应用原理与方法[M].北京:冶金工业出版社,1995.
    [125]田庆久,董卫东,郑兰芬,等.新疆柯坪地区沉积岩光谱特征分析[J].遥感技术与应用,1996,11(2):1-8.
    [126]李永颐,李斌山,陆成.遥感地质学[M].重庆:重庆大学出版社,1990.
    [127]常青.甘肃北山南带岩(矿)石波谱特征的初步研究[J].甘肃地质学报,1999,8(1):49-55.
    [128]孟新,姚国清.内蒙古阿木乌苏地区TM影像褐铁矿化蚀变信息提取研究[J].遥感技术与应用,1995,10(2):23-27.
    [129]Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
    [130]Hermes L,Rieauff D,Puzicha J.Support Vector Machines for Land Usage Classification in Landsat TM Imagery[J].Geoscience and Remote Sensing Symposium,1999,1:348-350.
    [131]Fabio R,Fumera G.Support Vector Machines for Remote-Sensing Image Classification[J].Proceedings of SPIE,2001,4170:160-66.
    [132]Huang C,Davis L S,Townshend JRG.An Assessment of Support Vector Machines for Land Cover Classification[J].International Journal of Remote Sensing,2002,23:725-749.
    [133]Zhu G B,Blumberg D G.Classification Using ASTER Data and SVM Algorithms [J].Remote Sensing of Environment,2002,80:233-240.
    [134]Pal M,Mather P M.Support Vector Classifiers for Land Cover Classification[M].Image Processing & Interpretation,2003.
    [135]Camps-Vails G,Gomez-Chova L,Calpe-Maravilla J.Support Vector Machines for Crop Classification Using Hyperspectral Data[J].Pattern Recognition and Image Analysis,2003:134-141.
    [136]Melgani F,Bruzzone L.Classification of Hyperspectral Remote Sensing Images With SVM[J].Geoscience and Remote Sensing,2004,42:1778-1790
    [137]骆剑承,周成虎,梁怡.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55.
    [138]夏建涛.基于机器学习的高维多光谱数据分类:[博士学位论文].西安:西北工业大学,2002.
    [139]赵书河,冯学智,都金康,等.基于支持向量机的Spin-2影像与Spot-4多光谱影像融合研究[J].遥感学报,2003,7(5):407-412.
    [140]胡自申,张迁.基于SVM的遥感影像的分类[J].遥感信息,2003,2:14-19.
    [141]刘志刚.支持向量机在光谱遥感影像分类中的若干问题研究:[博士学位论文].武汉:武汉大学,2004.
    [142]梅建新.基于支持向量机的高分辨率遥感影像的目标检测研究:[博士学位论文].武汉:武汉大学,2004.
    [143]徐芳,梅文胜,张志华.航空影像分割的最小二乘支持向量机方法[J].武汉大学学报(信息科学版),2005,30(8):694-698.
    [144]洪金益,姚学恒,潘冬,等.基于SVM遥感影像矿化信息提取试验[J].矿业研究与开发,2004,24(5):63-65.
    [145]陈果.基于遗传算法的支持向量机分类器模型参数优化[J].机械科学与技术,2007,26(3):347-350.
    [146]杜京义,侯媛彬.基于遗传算法的支持向量回归机参数选取[J].系统工程与电子技术,2006,28(9):1430-1433.
    [147]周红刚,杨春德.基于免疫算法与支持向量机的异常检测方法[J].计算机应用,2006,26(9):2145-2147.
    [148]燕中,袁春伟.基于蚁群智能和支持向量机的人脸性别分类方法[J].电子与信息学报,2004,26(8):1177-1181.
    [149]Vapnik V著,张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000
    [150]Fletcher R.Practical Methods of Optimization[M].John Wiley and Sons,2~(nd)edition,1987.
    [151]Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20:273-297.
    [152]Abu-mostafa Y S.The Vapnik-Chervonenkis dimension:information versus complexity in learning[J].Neural Computation,1989,(1):312-317.
    [153]Schmitt M.On using the poincare polynomial for calculating the VC dimension of neural networks[J].Neural Networks,2001,14(10):1465-1467.
    [154]Pascal Loiran,Eduardo D S.Vapnik-Chervoneenkis dimension of recurrent neural networks[J].Discrete Applied Mathematics,1998,86(1):63-79.
    [155]Nello Cristianini,John Shawe-Taylor著.李国正,王猛,曾华军译.支持向量机导论[M].北京:电子工业出版社,2004.
    [156]辛宪会.支持向量机理论、算法与实现:[硕士学位论文].郑州:中国人民解放军信息工程大学,2005.
    [157]Tax D,Duin R.Data domain description by support vectors[A].Proceedings of the European Symposium on Artificial Neural Networks[C].Brussels:Facto D Press,1999:251-256.
    [158]Lee Y J,MANGASARIAN O L.RSVM:Reduced Support Vector Machines[A].In Proceedings of the.SIAM International Conference on Data Mining[C].SIAM,Philadelphia,2001:350-366.
    [159]Luntz A,Brailovsky V.On estimation of characters obtained in statistical procedure of recognition[M].Technicheskaya Kibernetica,1969
    [160]Chang C C,Lin C J.LIBSVM - A Library for Support Vector Machines[CP/OL].http://www.csie.ntu.edu.tw/-cjlin/,2001.
    [161]Chang C C,Lin C J.LIBSVM Data:Classification,Regression,and Multi-label [DB/OL].http://www.csie.ntu.edu.tw/-cjlin/libsvmtools/datasets/,2001.
    [162]吴樊,王超,张红.基于纹理特征的高分辨率SAR影像居民区提取[J].遥感技术与应用,2005,20(1):148-152.
    [163]邢立新,吕凤军,潘军,等.遥感蚀变信息场的确立及其信息提取[J].2006,(4):12-14,19.
    [164]王润生,杨文立,黄大年,等.地质勘查图像分析与综合[M].北京:地质出版社,1992.
    [165]朱章森,杨武年.遥感信息“分层”解析与无模型预测法[J].物探化探计算技术,1994,16(4):328-337.
    [166]赵福岳.矿源场-成矿节-遥感信息异常找矿模式法[J].国土资源遥感,2000,(4):28-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700