用户名: 密码: 验证码:
半导体纳米粒子掺杂液晶的材料、器件和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪的第一个十年已经接近尾声,中小尺寸液晶显示器件正在越来越多地被市场所接受,从技术层面而言,低功耗是其一个较为关键的性能指标,低功耗不仅代表着节约能源,也意味着液晶显示器在电池充电以后能够使用更长时间,这样可以更充分发挥显示器的可移动特性。从液晶显示器结构和原理角度来看,其自身就是一个复杂的整体,要获得低功耗的特性可以从多个方面着手进行改进,如优化驱动电路模式、使用低功耗的LED背光源、改善液晶器件工作模式以及选择具有低功耗特性的液晶材料等。本论文所研究的采用半导体纳米粒子掺杂的液晶材料,就是通过掺杂修饰的方法获得具有低功耗特性的液晶材料和器件,相比于设计合成新型液晶材料,这无疑是一条事半功倍的捷径。
     半导体纳米粒子在液晶材料中的掺杂应用是区别于以往研究中所报道的二氧化硅纳米粒子、金属纳米粒子、金属氧化物纳米粒子、铁电性纳米粒子和碳纳米管等众多材料的另一类纳米粒子。尽管半导体纳米粒子已经凭借其在电学、光学及化学领域的独特性质在很多方面有了广泛的应用,但还很少有在液晶材料中掺杂的相关研究报道。本论文选择CdS和ZnO两种典型的半导体纳米粒子在5CB液晶材料中进行掺杂,分别研究了掺杂材料的相变温度、秩序度、介电各向异性等物理性质以及器件的开启电压、响应时间和频率调制特性等电光特性。研究中发现半导体纳米粒子的掺杂能够有效降低液晶器件的开启电压,这将有助于获得具有低功耗特性的液晶显示器件。
     由于在掺杂体系中,纳米粒子均匀分散在液晶分子之间,其表面包裹的有机物会对液晶分子起到锚定作用,而在液晶盒中的液晶分子还具有保持原有排序的趋势,因此,液晶分子的指向矢会在纳米粒子周围出现弯曲,从而导致液晶材料的秩序度和相变温度分别下降。至于器件的电光特性,由于半导体纳米粒子被有机物所包裹,纳米粒子对外可以看作一个介质球,因而会在外加电场的影响下产生极化电荷和极化电场,在外加交流电场方向切换的过程中,外加电场和极化电场能够共同促进液晶分子沿着电场方向偏转,由此获得较低的器件开启电压,两个电场的共同作用还可以用以解释器件响应时间的特性和测试结果。
     在实验和讨论的基础上,计算机模拟技术也被引入进行相关的模拟计算。论文中选择较为简单的迭代差分法进行液晶分子指向矢分布的模拟计算,并使用Jones矩阵方法计算液晶器件的电光特性。在模拟过程中,结合对半导体纳米粒子掺杂液晶体系的空间结构模型和纳米粒子的电学特性对指向矢分布和电光特性进行重新计算,并对计算结果进行了比较。同时,结合液晶分子秩序度和液晶盒等效厚度的降低,也对这两个因素对器件开启电压的影响进行模拟计算。所得结论与实验数据相符,进一步对半导体纳米粒子掺杂液晶的体系进行了分析。
     本文的创新性可以概括为三个方面,分别是低功耗的液晶器件特性,这时本文的主要研究成果,为生产和研制要求具有低功耗特性的移动液晶显示器件提供了一种新的技术手段;其次是低频率调制特性,半导体纳米粒子的掺杂改善金属纳米粒子掺杂所引入的频率调制特性,能够方便地使用现有的驱动电路进行控制,而不需要设计专门的频率调制驱动电路,这便于这项技术低成本低推广使用;最后,本文对掺杂体系物理机制的研究,既是对现有研究成果的解释,也能指导这项技术进一步深入研究。
     综上,本论文介绍了CdS和ZnO两种半导体纳米粒子在5CB液晶材料中掺杂应用。所涉及的纳米粒子合成、液晶材料的掺杂与物理性质表征、液晶器件的电光特性评价、纳米粒子掺杂液晶体系的物理机理以及电光特性的计算机模拟等方面的内容,对于半导体纳米粒子掺杂液晶材料的研究开发有一定的理论指导意义,在一定程度上完善了纳米粒子掺杂液晶的研究体系,不仅有助于这项技术在实际生产中的应用,对于液晶材料技术的发展也有一定的实践意义。
Standing at the end of the first decade of 21st century, we are witnessing a small-medium LCD industry, which has been gradually accepted by the market. Technically speaking, low power consumption is a key performance. That means energy saving as well as a long working time for the LCD after battery recharging, which enhances the advantage of portability. The structure and principle of LCD are integrated complex topics. Multiple angles could work as the starting point to obtain an improved low power consumption feature, such as optimizing driver circuit pattern, using low-power consumption LED backlight, improving working mode of liquid crystal devices, and choosing liquid crystal materials with low-power features. This thesis focuses on liquid crystal materials doped with semiconductor nanoparticles, which means obtaining liquid crystal devices with low-power features via doping. This is definitely a shortcut to get twice the result with half the effort, compared with designing and synthesizing new liquid crystal materials.
     Semiconductor nanoparticles' doping in liquid crystal materials is another category of nanoparticles, which is different from what has been reported in past research works such as silicon dioxide nanoparticles, metal nanoparticles, metal oxide nanoparticles, ferroelectric nanoparticles and carbon nanotubes. Although semiconductor nanoparticles has been widely used in quite a lot of fields, given its unique features in electrics, optics and chemicals, there has been few researches on the usage in doping into liquid crystal materials. In this thesis, two typical semiconductor nanoparticles, i.e., CdS and ZnO, are used to dope into 5CB liquid crystal material. The doped material's physical performance, like phase transition temperature, order parameter and dielectric anisotropy, and electrooptical characteristics, like threshold voltage, response time and frequency modulation, have been measured. It is found that the semiconductor nanoparticles doped LC cells can significantly lower threshold voltage, and this is helpful to develop the LCDs with low power consumption.
     As the nanoparticles disperse uniformly between liquid crystal molecules in the doping system, the organics enwrapping them will anchor the liquid crystal molecules. While on the other hand, the liquid crystal molecules in the liquid crystal cell also have a trend to keep the original order. Therefore, the molecule director will show bending of directions around the nanoparticles, resulting in a decrease of order parameter and phase transition temperature, respectively. As for the electrooptical characteristics of the devices, the semiconductor nanoparticles can be regarded as a dielectric sphere as they are wrapped with organics, Polarization charge and polarization electric field will emerge with external electric field. When the direction of external AC electric field changes, the external electric field and the polarization electric field can work together to push the liquid crystal molecules to turn along with the electric field direction. As a result, a lower threshold voltage will be achieved. The combined efforts by both electric fields can also explain the device response time and other test results.
     Based on experiments and discussions, computer simulation technology is also introduced in related calculation. The thesis selected relatively simple simulation approach of iterative difference method to analyze the director distribution of liquid crystal molecules, based on which the transmittance of liquid crystal devices is calculated via the Jones matrix method. In the calculation process, the director distribution and electrooptical characteristics are recalculated taking into consideration the spatial structure model of the semiconductor nanoparticles doped in liquid crystal system and the electricity features of nanoparticles, and the respective results are compared. In the mean time, with the decrease of the order parameter of liquid crystal molecules and the thickness of liquid crystal cell, the impact from these two factors on threshold voltage has also been simulated. The simulation results are consistent with experiment findings, which further explain the system of semiconductor nanoparticles doped in liquid crystal materials.
     The innovation of this thesis can be recapitulated into three aspects. First of all, the low power consumption of doped liquid crystal displays is the most vital result of this research. That provides a new technology approach to meet the requirement of production and investigation of mobile liquid crystal devices. Secondly, the frequency modulation characteristic introduced by semiconductor nanoparticles doped liquid crystal devices is improved compared with metal nanoparticles doped ones. The devices can be drived by existing driving circuit and there is no need to design special frequency modulation driving circuit. Last but not least, the studies on the mechanism of doping system can not only explain the research results but also give a direction to the further researches.
     In summary, this thesis introduces the doping application in 5CB liquid crystal materials of two types of semiconductor nanoparticles. The research work involves synthesis of nanoparticles, doping with liquid crystal materials and measurements of physical performance of liquid crystal materials and electrooptical characteristics of liquid crys- tal devices, physical mechanism of liquid crystal system doped with nanoparticles and the computer simulation of electrooptical characteristics. This contributes to the significance of theoretical guidance for the research works on semiconductor nanoparticles' doping in liquid crystal materials and helps to fulfill the research framework of nanoparticles' doping in liquid crystal materials to some extent. The thesis is worthwhile in facilitating the application of this technology in practice, as well as in promoting the practical significance of technology development on liquid crystal materials.
引文
[1] F. Reinitzer. Beitrage zur kenntnis des cholesterins [J]. Monatsh Chemie, 1888, 9: 421-441.
    [2] O. Lehmann. On flowing crystals [J]. Z. Phys. Chem. 1889, 4: 462-472.
    [3] G. Friedel. The mesomorphic states of matter [J]. Annales de Physique, 1922, 18(2): 273-473.
    [4] R. Williams. Domains in liquid crystals [J]. Journal of Chemical Physics, 1963, 39(2): 384-388.
    [5] G. Heilmeier, L. Zanoni and L. Barton. Dynamic scattering in nematic liquid crystals [J]. Applied Physics Letter, 1968, 13(1): 46-47.
    [6] G. Heilmeier, L. Zanoni and L. Barton. Dynamic scattering: a new electrooptic effect in certain classes of nematic liquid crystals [J]. Proceedings of the IEEE, 1968,56(7): 1162-1174.
    [7] W. Dejeu and R. Eidenschink. Static scattering in filled nematic: new liquid crystal display technique [J]. Electronics Letters, 1991, 27(13): 1195-1196.
    [8] M. Kreuzer, T. Tschudi and R. Eidenschink. Erasable optical storage in bistable liquid-crystal cells [J]. Molecular Crystals and Liquid Crystals, 1992, 223(1): 219-227.
    [9] G. Guba, Y. Reznikov, N. Lopukhovich, V. Ogenko, V. Reshetnyak and O. Yaroshchuk. Electrically controlled light scattering of the aerosil-liquid crystal system [J]. Molecular Crystals and Liquid Crystals, 1994, 251: 303-309.
    [10] A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov and O. Yaroshchuk. Memory effect in filled nematic liquid crystals [J]. Liquid Crystals, 1997, 23(2): 241-246.
    [11] G. Puchkovskaya, Y. Reznikov, A. Yakubov, O. Yaroshchuk and A. Glushchenko. Transformation of hydrogen bonding of a liquid crystal-aerosil system under the influence of an electric field [J]. Journal of Molecular Structure, 1996, 381: 133-139.
    [12] G. Puchkovskaya, Y. Reznikov, A. Yakubov, O. Yaroshchuk and A. Glushchenko. Molecular interaction and 'memory' of filled liquid crystals [J]. Journal of Molecular Structure, 1997,404: 121-128.
    [13] A. Glushchenko, G. Guba, N. Lopukhovich, V. Ogenko, V. Reshetnyak, Y. Reznikov and O. Yaroshchuk. Influence of the aerosol surface modification on electro-optical characteristics of filled liquid crystals [J]. Molecular Crystals and Liquid Crystals, 1995, 262: 111-118.
    [14] N. Diorio, M. Fisch and J. West. The electro-optic properties of colloidal silica filled nematics [J]. Liquid Crystals, 2002, 29(4): 589-596.
    [15] N. Tabiryan, V. Grozhi and S. Serak. Photosensitive liquid crystals with nanopar-ticulate internal structure [J]. Optics Letters, 2002, 27(22): 1968-1970.
    [16] S. Nersisyan and N. Tabiryan. The effect of low-frequency microvibrations on nanoparticle networks embedded in liquid crystals [J]. Applied Physics Letters, 2006,88(15): 1511061-3.
    [17] L. Dolgov and O. Yaroshchuk. Electrooptic properties of liquid crystals filled with silica nanoparticles of different sorts [J]. Colloid and Polymer Science, 2004,282(12): 1403-1408.
    [18] J. Miiller, C. Sonnichsen, H. Poschinger, G. Plessen, T. Klar and J. Feldmann. Electrically controlled light scattering with single metal nanoparticles [J]. Applied Physics Letters, 2002, 81(1): 171-173.
    [19] P. Mulvaney. Surface plasmon spectroscopy of nanosized metal particles [J]. Langmuir, 1996,12(3): 788-800.
    [20] S. Link, C. Burda, M. Mohamed, B. Nikoobakht and M. Elsayed. Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time [J]. Physical Review B, 2000, 61(9): 6086-6090.
    [21] S. Park and D. Stroud. Surface-enhanced plasmon splitting in a liquid-crystal-coated gold nanoparticle [J]. Physical Review Letters, 2005, 94(21): 2174011-4.
    [22] F. Hung, O. Guzm(?)n, B. Gettelfinger, N. Abbott and J. Pablo. Anisotropic nanoparticles immersed in a nematic liquid crystal: Defect structures and potentials of mean force [J]. Physical Review E, 2006, 74(1): 0117111-12.
    [23] D. Nelson. Toward a tetravalent chemistry of colloids [J]. Nano Letters, 2002, 2(10): 1125-1129.
    [24] T. Lubensky, D. Pettey and N. Currier. Topological defects and interactions in nematic emulsions [J]. Physics Review E, 1998,57(1): 610-625.
    [25] P. Poulin and D. Weitz. Inverted and multiple nematic emulsions [J]. Physical Review E, 1998, 57(1): 626-637.
    [26] H. Stark. Physics of colloidal dispersions in nematic liquid crystals [J]. Physical Reports, 2001, 351: 387-474.
    [27] H. Qi, B. Kinkead and T. Hegmann. Unprecedented dual alignment mode and freedericksz transition in planar nematic liquid crystal cells doped with gold nanoclusters [J]. Advanced Functional Materials, 2008, 18(2): 212-221.
    [28] H. Qi, J. Neil and T. Hegmann. Chirality transfer in nematic liquid crystals doped with (S)-naproxen-functionalized gold nanoclusters: an induced circular dichroism study [J]. Journal of Materials Chemistry, 2008, 18: 374-380.
    [29] H. Qi and T. Hegmann. Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles [J]. Journal of Materials Chemistry, 2006, 16: 4197-4205.
    [30] R. Ruhwandl and E. Terentjev. Long-range forces and aggregation of colloid particles in a nematic liquid crystal [J]. Physical Review E, 1997, 55(3): 2958-2961.
    [31] P. Kossyrev, A. Yin, S. Cloutier, D. Cardimona, D. Huang, P. Alsing and J. Xu. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix [J]. Nano Letters, 2005, 5(10): 1978-1981.
    [32] Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu and S. Kobayashi. Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles [J]. Applied Physics Letters, 2002, 81(15): 2845-2847.
    [33] T. Miyama, J. Thisayukta, H. Shiraki, Y. Sakai, Y. Shiraishi, N. Toshima and S. Kobayashi. Fast switching of frequency modulation twisted nematic liquid crys- tal display fabricated by doping nanoparticles and its mechanism [J]. Japanese Journal of Applied Physics, 2004, 43(5A): 2580-2584.
    [34] T. Miyama, H. Shiraki, Y. Sakai, T. Masumi, S. Kundu, Y. Shiraishi, N. Toshima and S. Kobayashi. Dielectric properties and electro-optic characteristics of TN-LCDs doped with metal nanoparticles exhibiting frequency modulation response accompanying fast response [J]. Molecular Crystals and Liquid Crystals, 2005, 433(1): 29-40.
    [35] S. Kobayashi, T. Miyama, N. Nishida, Y. Sakai, H. Shiraki, Y. Shiraishi and N. Toshima. Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response [J]. Journal of Display Technology, 2006, 2(2): 121-129.
    [36] S. Sano, T. Miyama, K. Takatoh and S. Kobayashi. Enhancement of the characteristics of LCDs by doping nanoparticles: reduction of the operating voltage, viscosity, and response times [J]. Proceedings of SPIE, 2006, 6135: 6135011-5.
    [37] H. Yoshikawa, K. Maeda, Y. Shiraishi, J. Xu, H. Shiraki, N. Toshima and S. Kobayashi. Frequency modulation response of a tunable birefringent mode nematic liquid crystal electrooptic device fabricated by doping nanoparticles of Pd covered with liquid-crystal molecules [J]. Japanese Journal of Applied Physics, 2002,41(11B): 1315-1317.
    [38] J. Thisayukta, H. Shiraki, Y. Sakai, T. Masumi, S. Kundu, Y. Shiraishi, N. Toshima and S. Kobayashi. Dielectric properties of frequency modulation twisted nematic LCDs doped with silver nanoparticles [J]. Japanese Journal of Applied Physics, 2004,43(8A): 5430-5434.
    [39] Y. Sakai, N. Nishida, H. Shiraki, Y. Shiraishi, T. Miyama, N. Toshima and S. Kobayashi. Dielectric properties of twisted nematic liquid crystal displays fabricated by doping Ag-Pd metal nanoparticles having a long term stability [J]. Molecular Crystals and Liquid Crystals, 2005, 441: 143-152.
    [40] F. Haraguchi, K. Inoue, N. Toshima, S. Kobayashi and K. Takatoh. Reduction of the threshold voltages of nematic liquid crystal electrooptical devices by doping inorganic nanoparticles [J]. Japanese Journal of Applied Physics, 2007, 46(34): 796-797.
    [41] S. Prasad, K. Sandhya, G. Nair, U. Hiremath, C. Yelamaggad and S. Sampath. Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites [J]. Liquid Crystals, 2006, 33: 1121-1125.
    [42] D. Martire, G. Oweimreen, G. Agren, S. Ryan and H. Peterson. The effect of quasispherical solutes on the nematic to isotropic transition in liquid crystals [J]. Journal of Chemical Physics, 1976, 64: 1456-1463.
    [43] Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko and J. West. Ferroelectric nematic suspension [J]. Applied Physics Letters, 2003, 82(12): 1917-1919.
    [44] E. Ouskova, O. Buchnev, V. Reshetnyak, Y. Reznikov and H. Kresse. Dielectric relaxation spectroscopy of a nematic liquid crystal doped with ferroelectric Sn_2P_2S_6 nanoparticles [J]. Liquid Crystals, 2003, 30(10): 1235-1239.
    [45] A. Glushchenko, C. Cheon, J. West, F. Li, E. B(?)y(?)ktanir, Y. Reznikov and A. Buchnev. Ferroelectric particles in liquid crystals: recent frontiers [J]. Molecular Crystals and Liquid Crystals, 2006,453, 227-237.
    [46] F. Li, J. West, A. Glushchenko, C. Cheon and Y. Reznikov. Ferroelectric nanoparticle/liquid-crystal colloids for display applications [J]. Journal of the SID, 2006, 14(6): 523-527.
    [47] V. Reshetnyak, S. Shelestiuk and T. Sluckin. Fredericksz transition threshold in nematic liquid crystals filled with ferroelectric nano-particles [J]. Molecular Crystals and Liquid Crystals, 2006,454: 201-206.
    [48] V. eshetnyak. Effective dielectric function of ferroelectric LC suspensions [J]. Molecular Crystals and Liquid Crystals, 2004,421: 219-224.
    [49] F. Li, O. Buchnev, C. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin and J. West. Orientational coupling amplification in ferroelectric nematic colloids [J]. Physical Review Letters, 2006, 97(14): 1478011-4.
    [50] M. Copic, A. Mertelj, O. Buchnev and Y. Reznikov. Coupled director and polarization fluctuations in suspensions of ferroelectric nanoparticles in nematic liquid crystals [J]. Physical Review E, 2007, 76(1): 0117021-5.
    [51] L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. Alkeskjold, S. Wu and A. Bjarklev. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals [J]. Optics Express, 2009, 17(5): 3754-3764.
    [52] M. Suzuki, H. Furue and S. Kobayashi. Polarizerless nanomaterial doped guesthost LCD exhibiting high luminance and good legibility [J]. Molecular Crystals and Liquid Crystals, 2001, 368: 191-196.
    [53] W. Lee and Y. Wang. Evidence for holographic image storage in a fullerene-doped liquid-crystal film [J]. Chinese Journal of Physics, 2001, 39(4): L295-L298.
    [54] W. Lee and Y Wang. Voltage-dependent orientational photorefractivity in a planar C-60-doped nematic film [J]. Journal of Physics D-Applied Physics, 2002, 35(9): 850-853.
    [55] W. Lee, C. Wang and Y Shih. Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host [J]. Applied Physics Letters, 2004, 85(4): 513-515.
    [56] W. Lee and Y. Shih. Effects of carbon-nanotube doping on the performance of a TN-LCD [J]. Journal of the SID, 2005, 13(9): 743-747.
    [57] I. Baik, S. Jeon, S. Lee, K. Park, S. Jeong, K. An and Y Lee. Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell [J]. Applied Physics Letters, 2005, 87(26): 2631101-3.
    [58] I. Dierking, G. Scalia, P. Morales and D. LeClere. Aligning and reorienting carbon nanotubes with nematic liquid crystals [J]. Advanced Materials, 2004, 16(11): 865-869.
    [59] I. Dierking, G. Scalia and P. Morales. Liquid crystal-carbon nanotube dispersions [J]. Journal of Applied Physics, 2005,97(4): 0443091-5.
    [60] I. Dierking and S. San. Magnetically steered liquid crystal-nanotube switch [J]. Applied Physics Letters, 2005, 87(23): 2335071-3.
    [61] C. Huang, C. Hu, H. Pan and K. Lo. Electrooptical responses of carbon nanotube-doped liquid crystal devices [J]. Japanese Journal of Applied Physics, 2005, 44(11): 8077-8081.
    [62] J. Russell, S. Oh, I. LaRue, O. Zhou and E. Samulski. Alignment of nematic liquid crystals using carbon nanotube films [J]. Thin Solid Films, 2006, 509(1-2): 53-57.
    [63] H. Duran, B. Gazdecki, A. Yamashita and T. Kyu. Effect of carbon nanotubes on phase transitions of nematic liquid crystals [J]. Liquid Crystals, 2005, 32(7): 815-821.
    [64] S. Jeon, S. Shin, S. Jeong, S. Lee, S. Jeong, Y. Lee, H. Choi and K. Kim. Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field [J]. Applied Physics Letters, 2007, 90(12): 1219011-3.
    [65] S. Jeng, C. Kuo, H. Wang and C. Liao. Nanoparticles-induced vertical alignment in liquid crystal cell [J]. Applied Physics Letters, 2007, 91(6): 0611121-3.
    [66] S. Hwang, S. Jeng, C. Yang, C. Kuo and C. Liao. Characteristics of nanoparticle-doped homeotropic liquid crystal devices [J]. Journal of Physics D: Applied Physics, 2009,42(2): 0251021-6.
    [67] C. Kuo, S. Jeng, H. Wang and C. Liao. Application of nanoparticle-induced vertical alignment in hybrid-aligned nematic liquid crystal cell [J]. Applied Physics Letters, 2007, 91(14): 1411031-3.
    [68] I. Ruoff, D. Tse, R. Malbotra, D. Lorents. Solubility of C_(60) in a variety of solvents [J]. Journal of Physical Chemistry, 1993, 97(13): 3379-3383.
    [69] D. Sikharulidze. Nanoparticles: An approach to controlling an electro-optical behavior of nematic liquid crystals [J]. Applied Physics Letters, 2005, 86(3): 0335071-3.
    [70] T. Hegmann, H. Qi and V. Marx. Nanoparticles in liquid crystals: synthesis, self-Assembly, defect formation and potential applications [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 13(7): 483-508.
    [71] H. Qi and T. Hegmann. Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays [J]. Journal of Materials Chemistry, 2008, 18(28): 3288-3294.
    [72] R. Birringer, H. Gleiter, H. Klein and P. Marquardt. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? [J]. Physics Letters A, 1984, 102(8): 365-369.
    [73] P. Ball and L. Garwin. Science at the atomic scale [J]. Nature, 1992, 355(6363): 761-766.
    [74] L. Yiping, G. Hadjipanayis, C. Sorensen and K. Klabunde. Magnetic properties of fine cobalt particles prepared by metal atom reduction [J]. Journal of Applied Physics, 1990, 67(9): 4502-4504.
    [75] A. Hagfeldt and M. Graetzel. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chemical Reviews, 1995, 95(1): 49-68.
    [76]S.Linderoth and S.Mφrup.Chemically prepared amorphous Fe-B particles:In-fluence of pH on the composition[J].Journal of Applied Physics,1990,67(9):4472-4474
    [77]曹宗良,王健农,丁冬雁,戴杰华,余帆.化学气相沉积法快速生长定向纳米碳管[J].新型炭材料,2003,18(1):48-52.
    [78]K.Mazdiyasni.Powder synthesis from metal-organic precursors[J].Ceramics International,1982,8(2):42-56.
    [79]徐华蕊,李凤生,陈舒林,宋洪昌.沉淀法制备纳米级粒子的研究——化学原理及影响因素[J].化工进展,1996,5:29-31,57.
    [80]K.Soumitra and C.Subhadra.Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation Process[J].Journal of Physical Chemistry B,2006,110(10):4542-4547.
    [81]B.Simmons,S.Li,V.John,G.McPherson and A.Bose.Morphology of CdS nanocrystals synthesized in a mixed surfactant system[J].Nano Letters,2002,2(4):263-268.
    [82]H.Cao,Y.Xu,J.Hong,H.Liu,G.Yin,B.Li,C.Tie and Z.Xu.Sol-Gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template[J].Advanced Materials,2001,13(18):1393-1394.
    [83]K.Kimura and T.Sunagawa.Applications of sol-gel-derived membranes to neutral carrier-type ion-sensitive field-effect transistors[J].Analytical Chemistry,1997,69(13):2379-2383.
    [84]M.Reta,O.Waymas and J.Silber.Partition of polyhydroxy compounds of biological and pharmacological significance between AOT reverse microemulsions and aqueous salt solutions[J].Journal of Physical Organic Chemistry,2006,19(3):219-227.
    [85]S.Abel,M.Waks,W.Urbach and M.Marchi.Structure,stability,and hydration of a polypeptide in AOT reverse micelles[J].Journal of the American Chemical Society,2006,128(2):382-383.
    [86]M.Curri,A.Agostiano,L.Manna,M.Monica,M.Catalano,L.Chiavarone,V.Spagnolo and M.Lugar.Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion:the role of the cosurfactant[J].Journal of Physical Chemistry B,2000,104(35):8391-8397.
    [87]I.Pastoriza-Santos,J.Perez-Juste and M.Liz-Marzan.Silica-coating and hydrophobation of CTAB-stabilized gold nanorods[J].Chemistry of Materials,2006,18(10):2465-2467.
    [88]B.Simmons,S.Li,V.John,G.McPherson,A Bose,W.Zhou and J.He.Morphology of CdS nanocrystals synthesized in a mixed surfactant system[J].Nano Letters,2002,2(4):263-268.
    [89]B.Harruff and C.Bunker,Spectral properties of AOT-protected CdS nanoparticles:quantum yield enhancement by photolysis[J].Langmuir,2003,19(3):893-897.
    [90]L.Song,J.Jin,T.Qing,Z.Ying,L.Jin,J.Mei,D.Liang,M.Hong and N.Zheng.Studies of nanoparticulate cadmium sulfide in amphiphilic polymaleic acid otadecanol ester Langmuir-Blodgett films[J].Supramolecular Science,1998,5(5-6):475-478.
    [91]X.Xin and L.Zheng.Solid state reactions of coordination compounds at low heating temperatures[J].Journal of Solid State Chemistry,1993,106(2):451-460.
    [92]J.Lang and X.Xin.Solid state synthesis of Mo(W)-S cluster compounds at low heating temperatures[J].Journal of Solid State Chemistry,1994,108(1):118-127.
    [93]张军,孙聆东,钱程,廖春生,严纯华.CTAB-正已醇-正庚烷-水四元反相胶束体系制备CdS纳米微粒及其光学性质[J].科学通报,2001,46(17):1423-1426.
    [94]J.Zhang,L.Sun,C.Liao and C.Yan.Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method[J].Solid State Communications,2002,124(1-2):45-48.
    [95]C.Chory,D.Buchold,M.Schmitt,W.Kiefer,C.Heske,C.Kumpf,O.Fuchs,L.Weinhardt,A.Stahl,E.Umbach,M.Lentze,J.Geurts,G.M(u|¨)ller.Synthesis,structure and spectroscopic characterization of water-soluble CdS nanoparticles [J].Chemical Physics Letters,2003,379(5-6):443-451.
    [96]J.Litster,C.Garland,K.Lushington and R.Schaetzing.Experimental studies of liquid crystal phase transitions[J].Molecular Crystals and Liquid Crystals,1981,63:145-156.
    [97]J.Xu,H.Okada,H.Onnagawa,S.Sugimori and K.Toriyama.Liquid crystal system as molecular machinery:Investigatin of dynamic impedance matching between molecular core and terminal groups using rotor-bearing model[J].Japanese Journal Applied Physics,2000,39(4A):1801-1807.
    [98]宣丽,乌日娜,彭增辉,于涛,张力,阮圣平.红外二向色性法测量取向膜表面液晶界面层的取向度[J].液晶与显示,2002,17(6):416-421.
    [99]L.Frunza,H.Kosslickb,U.Bentrupb,I.Pitschb,R.Frickeb,S.Frunzaa and A.Sch(o|¨)nhals.Surface layer in composites containing 4-n-octyl-4'-cyanobiphenyl.FTIR spectroscopic characterization[J].Journal of Molecular Structure,2003,651-653:341-347.
    [100]B.Ivanova,V.Simeonov,M.Arnaudov,D.Tsalev,Linear-dichroic infrared spectroscopy-Validation and experimental design of the new orientation technique of solid samples as suspension in nematic liquid crystal[J].Spectrochimica Acta Part A,2007,67:66-75.
    [101]A.Leadbetter and E.Norris,Distribution functions in three liquid crystals from X-ray diffraction measurements[J].Molecular Physics,1979,38(3):669-686.
    [102]M.Deutsh.Orientational order determination in liquid crystals by x-ray diffraction [J].Physical Review A,1991,44:8264-8270.
    [103]R.Sonmashekar,H.Somashekarappa,A.Divya,D.Revanasiddaiah and M.Madhava.Orientational distribution function in nematic liquid crystal by x-rays:Fourier method[J].Pramana-Journal of Physics,1999,52:67-74.
    [104]P.Karat and N.Madhusudana.Elastic and optical properties of some 4'-n-alkyl-4-cyanobiphenyls[J].Molecular Crystals and Liquid Crystals,1976,36:51-64.
    [105]T.Bezrodna,I.Chashechnikova,L.Dolgov,G.Puchkovska,Y.Shaydyuk,N.Lebovka,V.Moraru,J.Baran and H.Ratajczak.Effects of montmorillonite modification on optical properties of heterogeneous nematic liquid crystal-clay mineral nanocomposites[J].Liquid Crystals,2005,32(8):1005-1012.
    [106]M.Schadt.The twisted nematic effect:liquid crystal displays and liquid crystal materials[J].Molecular Crystals and Liquid Crystals,1988,165:405-438.
    [107]P.Karat and N.Madhusudana.Elasticity and Orientational Order in Some 4'-n-Alkyl-4-Cyanobiphenyls:Part Ⅱ[J].Molecular Crystals and Liquid Crystals,1977,40:239-245.
    [108]Y.Poggi,J.Robert and J.Borel.Relations between liquid crystal order parameter and macroscopic physical coeffocient-expermental proof[J].Molecular Crystals and Liquid Crystals,1975,29:311-322.
    [109]E.Jakeman and E.Paynes.Electro-optic response times in liquid crystals[J].Physics Letters,1972,39A(1):69-70.
    [110]H.Weller.Quantized Semiconductor Particles:A novel state of matter for materials science[J].Advanced Materials,1993,5(2):88-95.
    [111]李秀梅.纳米氧化锌的性质和用途[J].通化师范学院学报,2004,25(4):54-54.
    [112]王久亮,刘宽,秦秀娟,邵光杰.纳米氧化锌的应用研究展望[J].哈尔滨工业大学学报,2004,36(2):226-230.
    [113]M.Arnold,P.Avouris,W.Zheng and L.Zhong.Field-Effect transistors based on single semiconducting oxide nanobelts[J].Journal of Physical Chemistry B,2003,107(3):659-663.
    [114]W.Park,J.Kim,G.Yi,M.Bae and H.Lee.Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors[J].Applied Physics Physics,2004,85(21):5052-5054.
    [115]Z.Fan,D.Wang,P.Chang,W.Tseng,and J.Lu.ZnO nanowire field-effect transistor and oxygen sensing property[J].Applied Physics Physics,2004,85(24):5923-5925.
    [116]Z.Fan,P.Chang,J.Lu,E.Walter,R.Penner,C.Lin and H.Lee.Photoluminescence and polarized photodetection of single ZnO nanowires[J].Applied Physics Physics,2004,85(25):6128-6130.
    [117]Y.Heo,L.Tien,Y.Kwon,D.Norton,S.Pearton,B.Kang and E Ren.Depletionmode ZnO nanowire field-effect transistor[J].Applied Physics Physics,2004,85(12):2274-2276.
    [118]R.Hoffman,B.Norris and J.Wager.ZnO-based transparent thin-film transistors [J].Applied Physics Physics,2003,82(5):733-735.
    [119]袁方利,李晋林,黄淑兰,林元华.超细氧化锌的制备及应用新进展[J].材料导报,1998,12(6):32-35.
    [120]程敬泉,严会娟,魏雨.氧化锌超细粒子的制备及应用[J].河北师范大学学报(自然科学版),2000,24(4):509-512.
    [121]C.Minero,E.Pelizzetti,P.Piccinini and M.Vincenti.Photocatalyzed transformation of nitrobenzene on TiO_2 and ZnO[J].Chemosphere,1994,28(6):1229-1244.
    [122]H.Hidaka,K.Nohara,K.Ooishi,J.Zhao,N.Serpone and E.Pelizzetti.Photodegradation of surfactants.XV:Formation of SO~(2-)_4 ions in the photooxidation of sulfur-containing surfactants[J].Chemosphere,1994,29(12):2619-2624.
    [123]G.Rodr(?)guez-Gattorno,P.Santiago-Jacinto,L.Rendon-V(?)izquez,J.N(?)meth,I.D(?)k(?)ny and D.D(?)az.Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts[J].Journal of Physical Chemistry B,2003,107(46):12597-12604.
    [124]B.Yue,J.Yang,Y.Wang,C.Huang,R.Dave and R.Pfeffer.Particle encapsulation with polymers via in situ polymerization in supercritical CO_2[J].Powder Technology,2004,146(1-2):32-45.
    [125]S.Maeda,R.Corradi and S.Armes.Synthesis and caracterization of carboxylic acid-functionalized polypyrrole-silica microparticles[J].Macromolecules,1995,28(8):2905-2911.
    [126]H.Xia and Q.Wang.Ultrasonic irradiation:A novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites[J].Chemistry of Materials,2002,14(5):2158-2165.
    [127]H.Kawaguchi.Functional polymer microspheres[J].Progress in Polymer Science,2000,25(8):1171-1210.
    [128]S.Hayashi,K.Fujiki and N.Tsubokawa.Grafting of hyperbranched polymers onto ultrafine silica:postgraft polymerization of vinyl monomers initiated by pendant initiating groups of polymer chains grafted onto the surface[J].Reactive and Functional Polymers,2000,46(2):193-201.
    [129]M.Rong,M.Zhang,H.Wang and H.Zeng.Surface modification of magnetic metal nanoparticles through irradiation graft polymerization[J].Applied Surface Science,2002,200(1-4):76-93.
    [130]O.Prucker and J.R(?)he.Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators[J].Macromolecules,1998,31(3):592-601.
    [131]E.Tang,G.Cheng and X.Ma.Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles [J].Powder Technology,2006,161(3):209-214.
    [132]D.Berreman.Numerical modelling of twisted nematic devices[J].Philosophical Transactions of the Royal Society of London A,1983,309(1507):203-216.
    [133]A.Lien.Application of computer simulation to improve the optical performance of liquid crystal displays[J].Optical Engineering,1993,32(08):1762-1768.
    [134]H.Deuling.Deformation pattern of twisted nematic liquid crystal layers in an electric field[J].Molecular Crystals and Liquid Crystals,1974,27:81-93.
    [135]D.Berreman.Dynamics of liquid-crystal twist cells[J].Applied Physics Letters,1974,25(1):12-15.
    [136]C.van Doorn.Dynamic behavior of twisted nematic liquid-crystal layers in switched fields[J].Journal of Applied Physics,1975,46(9):3738-3745.
    [137]周富山,高鸿锦,欧阳钟灿.TN/STn LCD中指向矢分布及电光特性的模拟计算[J].液晶与显示,1998,13(1):15-32.
    [138]王谦,何赛灵.液晶指向矢分布的模拟和比较研究[J].物理学报,2001,50(5):926-932.
    [139]邵喜斌,黄锡珉.有限元法求解液晶层中的指向矢的分布[J].液晶与显示,2001,16(3):163-169.
    [140]李伯符.液晶物理——电场对液晶的作用与液晶的光学性质[J].液晶与显示,2001,16(3):227-233.
    [141]R.Clark Jones.A New Calculus for the Treatment of Optical Systems[J].Journal of the Optical Society of America,1941,31(7):488-493.
    [142]R.Clark Jones.A New Calculus for the Treatment of Optical Systems.IV.[J].Journal of the Optical Society of America,1942,32(8):486-493.
    [143]S.Teitler and B.Henvis.Refraction in stratified,anisotropic media[J].1970,60(6):830-834.
    [144]D.Berreman and T.Scheffer.Bragg reflection of light from single-domain cholesteric liquid-crystal films[J].Physical Review Letters,1970,25(9):577-580.
    [145] D. Berreman. Optics in stratified and anisotropic media: 4×4-matrix formulation [J]. Journal of the Optical Society of America, 1972, 62(4): 502-510.
    [146] D. Berreman. Optics in smoothly varying anisotropic planar structures: Application to liquid-crystal twist cells [J]. Journal of the Optical Society of America, 1973,63(11): 1374-1380.
    [147] A. Lien. Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence [J]. Applied Physics Letters, 1990, 57(26): 2767-2769.
    [148] P. Allia, C. Oldano and L. Trossi. Polarization transfer matrix for the transmission of light through liquid-crystal slabs [J]. Journal of the Optical Society of America B, 5(12): 2452-2461.
    [149] K. Yang. Elimination of the Fabry-Perot effect in the 4x4 matrix method for inhomogeneous uniaxial media [J]. Journal of Applied Physics, 1990,68(4): 1550-1554.
    [150] K. Eidner, G. Mayer, M. Schmidt and H. Schmiedel. Optics in stratified mediathe use of optical eigenmodes of uniaxial crystals in the 4×4-matrix formalism [J]. Molecular Crystals and Liquid Crystals, 1989, 172: 191-200.
    [151] P. Yeh. Extended Jones matrix method [J]. Jonrnal of the Optical Society of Amerian, 1982, 72(4): 507-513.
    [152] C. Gu and P. Yeh. Extended Jones matrix method Ⅱ [J]. Jonrnal of the Optical Society of Amerian A, 1993, 10(5): 966-973.
    [153] G. Panasyuk, D. Allender and J. Kelly. Approximate description of the two-dimensional director field in a liquid crystal display [J]. Journal of Applied Physics, 2001, 89(9): 4777-4786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700