用户名: 密码: 验证码:
聚合物驱分层注入技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆油田实践表明,聚合物驱可在水驱基础上提高采收率10个百分点以上。2008年大庆油田聚驱年产量达到1110万吨,占总产量的1/4,已连续七年超过1000万吨,为大庆油田高产、稳产发挥了重要作用。
     大庆油田受沉积环境影响,油层非均质性严重,高、低渗透层差异较大。在笼统注入聚合物驱方式下,存在着高渗透层无效循环严重、低渗透层动用程度低的矛盾。为了改善开发效果,提高资源利用率,必须实现分层注入,即通过限制高渗透层注入量、提高低渗透层注入量,保证注入流体以活塞方式均匀推进。但对于聚合物溶液这种粘弹性非牛顿流体,如果采用常规水驱分层注入技术(即通过减小过流面积来形成节流压差、控制注入量)进行分层注入,存在着粘度损失率高(40~70%)、影响驱替效果的问题。
     在深入调研基础上,开展了对聚合物驱分层注入技术的研究。针对不同油层的特点,形成了两项核心技术,即聚合物驱同心分注技术和聚合物驱分质注入技术。聚合物驱同心分注技术,适合于单层注入量大的一类油层,可实现2~3层聚合物分注。聚合物驱分质注入技术,适合于层间矛盾更大的二、三类油层,可实现多层聚合物分质注入。通过实现分层分子量的调节,可缓解由于低渗透油层对中、高分子量聚合物的适应性差而造成的低渗透油层堵塞问题。
     1、聚合物驱同心分注技术。研制了流线形环型降压槽的同心配注器,实现对注入压力的控制,满足(20~150)m3/d注入量要求,最大节流压差达到3.0MPa,对聚合物溶液最大粘损率小于4.0%。
     到2008年底,应用757口井,连通油井平均单井日增油2吨,含水下降1.4个百分点,累计增油96万吨。
     2、聚合物驱分质注入技术。实现分层分子量及分层注入量的双重控制,使聚合物分子量与油层渗透率的匹配关系趋于合理。分子量调节器采用机械降解方式实现聚合物分子量的调节,在50m3/d流量范围内,可将聚合物分子量降低(20~50)%,最大节流压差1.5Mpa。通过驱油实验确定了不同分子量聚合物与油层渗透率的匹配关系,并创立了聚合物溶液在分子量调节元件中流动的节流压差和粘损计算模型。压力调节器控制压差达到3.5MPa,单层控制流量70m3/d以内,粘度降解率小于8%。
     到2008年底,应用114口井。分质注入后,与正常分层注聚井对比,厚度动用比例由85.9%提高到94.9%,分质井组含水下降幅度比全区见效井高7.1个百分点。与笼统注聚井组对比,连通油井含水下降14.5个百分点,平均单井日增油3.5吨,累计增油26万吨。
It is indicated that polymer flooding can enhance oil recovery above 10% on the basis of water flooding in Daqing Oil Field. The annual yield of polymer flooding has measured up to 11.10 million ton in 2008 at Daqing Oil Field,occupy 1/4 of total yield,continuously exceed 10 million ton for seven years,played an important part in high production and stable yields for Daqing Oil Field.
     Affected by depositional environment of Daqing Oil Field,inhomogeneity of oil layer is serious,the difference between high and low permeability zone is large. Under vague injection,the contradiction of invalid cycle seriously in high permeability zone and usage level lowly in low permeability zone is existence. In order to enhance resource utilization ratio,improve develop effect,we should achieve separate zone injection.It is to say that we should ensure the injected fluid drive uniformevenly in the method of piston by confine injection of high permeability zone and enhance injection of low permeability zone. But polymer solution is viscoelasticity and non-Newtonian fluid,routine water drive separate injection technology is about forming orifice pressure difference and controlling influx through decreasing open area,so the problem of high viscosity loss factor(40~70%)and the affection on displacement effectiveness is existence.
     At the basic of in-depth research,the technological research of separate zone injection in polymer flooding is launched. At the moment,two core technologies are formed aiming at the feature of different oil zone,which are the technology of concentric separate zone injection in polymer flooding and the technology of dual injection in polymer flooding. The technology of concentric separate zone injection in polymer flooding is fit forⅠoil zone whose single zone injection amount is large,can achieve 2~3 layers separate injection of polymer. The technology of dual injection in polymer flooding is fit forⅡ、Ⅲoil zone whose interlamination contradictory is more larger,can achieve multilayer dual injection of polymer. Through achieving the adjustment of layering molecular weight, the problem of low permeability zone blocking up which is caused by the poor adaptability of the low permeability zone to the middle,high molecular weight polymer is alleviated.
     The technology of concentric separate zone injection in polymer flooding: In order to control the injection pressure, the concentric injection distribution device use the streamline ring step-down groove, which satisfied 20-150m3 /d diurnal injection, the maximum choke pressure difference can reached to 3.0MPa, the maximum visco-loss rate to the polymer solution less than 4.0%.
     The technology has used in 757 wells by the end of 2008,the daily crude output increased 2t/d, water content decreased 1.4%of a single well in Connected oil well, oil production accumulativel increased 9.6×10~5 tons.
     The technology of dual injection in polymer flooding: The dual control of layered molecular weight and layered injection volume, so that the matching relations of the polymer molecular weight and the reservoir permeability become rational. Molecular weight regulator use the mechanical degradation to control the polymer molecular weight. Under the the scope of 50m3/d, polymer molecular weight can be reduced by 20% -50%.,the maximum choke pressure difference can reach to 1.5MPa. Identified the matching relations of the polymer molecular weight and the reservoir permeability by oil flooding experiments, and found the calculation model of the choke pressure difference and the visco-loss. Pressure regulator to control pressure reached 3.5MPa, single-layer flow control less than 70m3/d, viscosity degradation rate less than 8%.
     The technology has used in 114 wells by the end of 2008. After dual injection, compared with the normal separated polymer injection well, The use ratio of thickness increased from 85.9% to 94.9%. The decrease range of water content in dual injection well is 7% higher than response well in all region. Compared with general polymer injection well, water content decreased 14.5%, the daily crude output increased 3.5t, oil production accumulativel increased 2.6×10~5 tons.
引文
[1]张晓芹.大庆油田二类油层聚合物驱注入参数的优选[J].大庆石油学院学报,2005,29(4):30-32.
    [2]闫亚茹,李瑞升,吴蔚.萨中地区二类油层聚合物驱油试验的几点认识[J].大庆石油地质与开发,2004,23(4):87-80.
    [3]姜言里.聚合物驱油中合理注入浓度及用量选择[J].大庆石油地质与开发,1992,11(2):35-41.
    [4]蒲万芬,彭彩珍,杨清彦等.聚合物溶液在孔隙介质中的蠕变回复和驱油效率[J].西南石油学院学报,2000,22(2):62-66.
    [5]夏惠芬,王德民,侯吉瑞等.聚合物溶液的粘弹性对驱油效率的影响[J].大庆石油学院学报,2002,26(4):9-111.
    [6]徐正顺,牛金刚,廖广志等.大庆油田聚合物驱技术应用的做法与经验[J].大庆石油地质与开发,2000,19(4):13-16.
    [7]王启民,冀宝发,隋军等.大庆油田三次采油技术的实践与认识[J].大庆石油地质与开发,2001,20(2):1-8.
    [8]王玉普.大型砂岩油田高效开采技术[M].北京:石油工业出版社,2006,45-67
    [9]姜喜庆.影响油层聚合物驱效果的地质因素[J].大庆石油地质与开发,1999,18(1):37-39.
    [10]王启民.聚合物驱油技术的实践与认识[J].大庆石油地质与开发,1999,18(4):1-5.
    [11]咚斯琴,刘春梅,刘秀明.考虑粘弹效应的聚合物溶液地下流动压力动态[J].大庆石油地质与开发,2000,19(4):29-31.
    [12]刘洪岩,王渝明,徐延平,等.杏十三区聚合物驱受效特点分析[J].大庆石油地质与开发,2001,20(2):122-124.
    [13]吴文祥,白玉,宋考平.聚合物驱分子量优选研究[M].北京:石油工业出版社,1996.
    [14]王新海,韩大匡,郭尚平.聚合物驱油机理和应用[J].石油学报,1994,l5(l):83-91.
    [15]王新海.聚合物驱数值模拟主要参数的确定[J].石油勘探与开发,1990,17(3):70-75.
    [16]卢祥国,高振环,陈静惠,宋付权.聚合物驱油过程中聚合物滞留及残余油分布的数值模拟研究[J].油田化学,1994,11(3):230-233.
    [17]田根林,孙立群等.聚合物驱油粘性流体渗流的分形研究[J].石油学报,1998,19(4):73-76.
    [18]黄彦,毕颖丽,甄开吉,王国甲.聚丙烯酚胺在油砂岩芯中的不可及孔隙体积[J].吉林大学自然科学学报,1998,(4):78-80.
    [19]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51.
    [20]王德民.粘弹性流体的特殊性对油藏工程地面工程及采油工程的影响[J].大庆石油学院学报,2001,25(3):46-52.
    [21]夏惠芬.粘弹性聚合物溶液在油藏中的流动及提高微观驱油效率的机理[D].大庆石油学院,2001.
    [22]唐金星,陈铁龙,何劲松等.聚合物驱相对渗透率曲线实验研究[J].石油学报,1997,l8(1):81-84.
    [23]叶仲斌,彭克宗,吴小玲等.克拉玛依油田三元复合驱相渗曲线研究[J].石油学报,2000,21(1):49-54.
    [24] J.T.Fredrich. Commerical polymer injection in the country field[C].SPE 28601,1994.
    [25] J.S.Song. Polymer gels formulated with a combination of high and low moleculary-weight polymer provide improved performance for water shutoff treatments of fracture[C].SPE 89402,2005.
    [26] Shahin, G.T., Thigpen, D.R.. Injecting polyacrylamide into Gulf coast sands:the white castle Q sand polymer-injectivity test[J].SPE Reservoir Engineering,1996,11(3):174-180.
    [27] J.Can.Pet. The effect of polymers on the displacement of Nubia crude oil[J](October feield),1997,19(8):152-159.
    [28] Hisham K. Zubari, V.C.. Single well tests to determine the efficiency of alkaline-surfactant injection in a highly oil-wet limestone reservoir[C].SPE 81464,2004.
    [29] White,P.D, Moss.J.T. Thermal Recovery methods[M].enn well Publishing Company Tulsa,OK-lahoma.1983.
    [30] Prats M. First Printing.Society of Petroleum Engineers of AIME[J].1984,15(4):55-62.
    [31] Zhongyang Zhao,Mingyue Cui. plwety of The Rheology of Chinese XD and ZW Borate Crosslinked Fracturing Fluids andTheir Propp:antTransport Capability[C].SPE 29991,1995.
    [32] Swulius.T.M. Porosity Calibration of Neutron Deflection logs[C].SCAROC Unit.59th Annu.Fall Meet,Soc. Pet. Eng of AIME,Houston,Texas,SPE13289,1984.
    [33] Lerma, M.K., Giuliani, M.A.. Cost-effective methods of profile control in mature waterflood injectors[C].SPE 27849,1994.
    [34] Dayvault,G.P..Injection profile control in a multizone Los Angeles basin waterflood[C].SPE 20044,1990.
    [35] Duerksen,J.H.. Simulation of a single-well injection / production steamflood(SWIPS)process in an Athabasca tar sand[C].SPE 20017,1990.
    [36] PattonT. Flow and Pigment Dispersion. A Rheological Approach to Coating and Ink Technology·2nd Ed.New York[J].Wiley-interscience,1979,8(6):112-13.
    [37] Doscher,7.M and Wise,F.A. Enhanced crude oil recovery potential-an estimate[J].J Pet. Technol,SPE 5800,1976,28(5):796-780.
    [38] Filtrates John,W.Powell,Mike P.Stephens,et al.Minimization of Formation Damage,Filter Cake Deposition,& Stuck Pipe Potential In Horizontal Wells Through The Use of Time-Independent ViscoelasticYield Stress Fluids[C].ADC/SPE 29408,1995.
    [39] Wang Demin,Cheng Jiecheng,Yang Qingyan,et al.Viscous-Elastic Polymer Can Increase Microscale Displacement Efficiency in Cores[C].SPE 63227,2000.
    [40] Van Pollen.H.K. Fundamentals of Enhanced oil Recovery[J].Penn Well Books,Tulsa,Okla,1995,59(2):191-213.
    [41] Sehneider F N,Owens W W. Steady-state measurements of relative permeability for Permeability for Polymer/oilsystems[C].SPE 9408,1982.
    [42] R.D.Hester,L.M.Flesher,C.L.Meeormiek,Polymer Solutions Extension Viscosity Effeets During Reservoir Flooding[C].SPE 27823,1994.
    [43] Southwiek J G,Molecular Degradation,Injectivity,and Elastic Properties of Polymer solutions[J].SPE Reservoir Eng.1988,3(4):1198-1200.
    [44] W.B.Gogarty,G.L.Levy,V.G.Fox,Viseoelastie effete in Polymer flow through Porous media,Society of Petroleum Engineers of AIME,Dallas[C].SPE 4025,1972.
    [45] R.S.Serigh,The effects of meehanieal degradation and viseoelastie behavior on injeetivity of Polyaerylamide solutions[C].SPE 9072,1980.
    [46] J.T.Patton , K.H.Coats , G.T.Colegrove , Prediction of Polymer Flood Performance[C].SPE 2546,1971.
    [47] P.L.Bondor,G.J.Hirasaki,M.J.Tham,Mathematical simulation of Polymer flooding in complex reservoirs[C].SPE 3524,1972.
    [48] Sorbie KS et al. Gel Placement in Heterogeneous Systems With Crossflow[C].SPE 24192,1992.
    [49] Cohen Y,Menizner A B. Slip phenomena in polymeric solutions flowing through small channels[C].AICHE Symposium Series,1982.
    [50] Mack J C,Smith J E.In-Depth Colloidal Dispersion Gels Improve Oil Recovery Efficiency[C].SPE/DOE 27780,1994.
    [51]裴晓含,宋兴良,王研,梁福民,崔海清.聚丙烯酰胺水溶液在内管带有等距环槽的同心环空中流动的压降[J].石油学院学报,2006,30(2):1-4.
    [52]李飞,姜海翔,蓝钢华,冯定.聚合物在环形空间中雷诺数和临界流速、流量的计算[J].江汉石油学院学报,2002,24(4):76-78.
    [53]郑俊德.聚合物产出液在抽油泵的缝隙中流动[J].石油学报,2000,21(1):71-75
    [54]马亮,聂建军.含运动杆及接箍的管流流动的数值模拟研究[J].水动力学研究与进展,2003,18(1):1-7.
    [55]马广彦.聚丙烯酞胺驱替中的粘弹效应和油藏压力分布[J].油田化学,1996,13(4):353-356.
    [56]石京平,李凤琴,曹维改等.非稳态法测定聚合物驱相对渗透率曲线[J].大庆石油地质与开发,2001,20(5):53-64.
    [57]汪伟英.确定聚合物/油体系相对渗透率曲线的新方法[J].江汉石油学院学报,1995,17(2):65-68.
    [58]祝仰文,张以根,刘坤.HPAM溶液驱油过程中弹性作用的探讨[J].西南石油学院学报,2002,24(6):64-67.
    [59]程杰成,王德民,吴军政.驱油用聚合物的分子量优选[J],石油学报,2000,21(l):102-106.
    [60]崔海清,刘希圣.非牛顿流体偏心环形空间螺旋流的速度分布[J].石油学报,1996,17(2):76-83.
    [61]李振纲,周长云,张国荣,孙楠等.分层注聚工艺技术试验及应用[J].江汉石油学院学报,2003,6(25):124-125.
    [62]崔海清,孙智,高涛.非Newton流体在内管做轴向往复运动的偏心环空中非定常流的速度分布[J].水动力学研究与进展A辑,2003,18(6):712-715.
    [63]杨子强,谢朝阳,梁福民,付志红.聚合物驱多层分注技术研究[J].大庆石油地质与开发,2001,20(2):83-85.
    [64]朱文辉,刘慈群,二阶非牛顿流体环管流动解析[J].应用数学和力学,1993,14(3):195- 201.
    [65]陈鹏.中、低渗透率油层聚合物相对分子质量的确定方法[J].大庆石油地质与开发,2005,24(2):3-5.
    [66]杨子强,王研,梁福民.聚合物驱2-3层分注技术[J].大庆石油地质与开发,2001,22(1):28-29.
    [67]陈章清,李霖,叶佳根.聚合物分层注入相关问题探讨[J].西南石油大学学报,2007,29(3):100-103.
    [68]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社,1997,279-278.
    [69]张继芬等.提高石油采收率基础[M].北京:石油工业出版社,1997,38-54.
    [70]刘合,袁涛,李金玲.聚合物驱井下单管分注技术[J].石油学报,1999,(6):17-19.
    [71]马宏伟,单晶,申秀丽.聚合物低剪切井下配注器的研制及应用[J].石油机械,2005,33(8):33-34.
    [72]韩振国,胡胜国,潘国华.聚合物单管多层滑套开关配注器研制[J].大庆石油地质与开发,2005,24(6):66-68.
    [73]陈晓红,段宏.聚合物单管多层分注技术原理及应用[J].大庆石油地质与开发,2004,23(4):53-54.
    [74]陈会军,武力强,张军等.聚合物溶液流经不同孔径水嘴前后的粘度损失[J].大庆石油学院学报,1999,23(3):23-24.
    [75]徐兆永.聚合物驱常规配制工艺与新型聚合物性能的适配[J].油田地面工程,2005,26(3):1-50.
    [76]曹正权.孤岛油田聚合物驱见聚特征及影响因素[J].石油天然气学报(江汉石油学院学报),2005,20(27):35-42.
    [77]由庆.聚合物驱产出液中聚合物分子量和水解度的准确测定.石油钻采工艺,2005,27(2):21-24.
    [78]沈君芳.3ZP型注聚合物泵[J].石油机械,2001,29(6):30-31.
    [79]刘青松,朱一斌,谢金莉等.防返吐偏心配水管柱的研制与应用[J].河南石油,2005,19(1):67-68.
    [80]裴晓含,段宏,崔海清.聚合物驱偏心分质注入技术[J].大庆石油地质与开发,2006,25(5):64-65.
    [81]谢晓清,刘家恒.聚合物驱地面配注工艺优化研究[J].河南石油,2001,15(6):41-43.
    [82]单晶,马宏伟,袁云,段福民,申秀丽,王学宏.聚合物驱井下单管多层分注工艺[J].石油钻采工艺,2005,27(3):35-37.
    [83]戚连庆.聚合物驱油实用工程方法[M].北京:石油工业出版社,1995,20-56.
    [84]黄延章.聚合物驱油微观机理研究[J].北京:油田化学,1990,20(1):23-25.
    [85]庄清泉,宗大庆,张淑敏.聚合物驱简化分注工艺技术[J].油气田地面工程,1999,19(6):40-43.
    [86]王平,韩振兴等译.流体力学大全[M].北京:北京航空航天大学,1991,73-79.
    [87]韩洪升,崔海清.石油工程非牛顿流体力学[M].哈尔滨:哈尔滨工业大学,1993,62-69.
    [88]金毓荪.油田分层开采[M].北京:石油工业出版社,1985,46-51.
    [89]张玉亮,李彩虹,王晓明,胡靖邦.多孔介质中聚合物溶液粘弹性效应[J].大庆石油学院学报,1994,18(2):139-143.
    [90]陈克城.流体力学实验技术[M].北京:机械工业出版社,1983,43-48.
    [91]黄皖苏,李学京.计算机工程绘图[M].北京:机械工业出版社,1998,68-84.
    [92]蒋汉青,赵子刚,胡靖邦·采油工艺实践[M].哈尔滨:黑龙江科学技术出版社,1996,66-84.
    [93]成大先.机械设计手册[M].北京:化学工业出版社,1997,107-159.
    [94]张振华,程杰成,李林.聚合物驱油现场先导试验技术[M].北京:石油工业出版社,1996.25-38.
    [95]王香增.多管柱井口研制[J].石油矿场机械,1997,18(4):45-47.
    [96]韩显卿.提高采收率原理[M].北京:石油工业出版社,1991.103-114.
    [97]徐婕,詹士昌,田晓岑.量纲分析的基本理论及其应用[J].大学物理,2004,23(5):54-57.
    [98]徐婕,詹士昌.量纲分析的基础及其应用研究[J].科技通报,2004,20(1):51-54.
    [99]吴去非,刘学行.长度量纲的特殊处理及其应用[J].渝州大学学报(自然科学版),1996,13(3):4-10.
    [100]刘爱萍,宋伟.量纲分析的进一步细化[J].山东工业大学学报,2001,31(6):544-548.
    [101]吴学勇.量纲分析法应用研究[J].甘肃高师学报,2000,5(2):40-43.
    [102]张良然.量纲分析及其在水力学中的应用[J].江西水利科技,1999,23(1):44-46.
    [103]郑洽馀,鲁钟琪.流体力学[M].北京:机械工业出版社,1979,112-120.
    [104]王克亮,王凤兰,李群等.改善聚合物驱油技术[M].北京:石油工业出版社,2000,58-78.
    [105] [苏]谢多夫著.力学中的相似方法与量纲理论[M].北京:科学出版社,1982,71-84.
    [106]孙振东.因次分析原理[M].北京:人民铁道出版社,1979,44-69.
    [107]崔海清,韩洪升.工程流体力学[M].北京:石油工业出版社,1995,89-97.
    [108]陈家琅.水力学[M].北京:石油工业出版社,1980,107-130.
    [109]刘华鎣,吴雅娟.计算方法[M].哈尔滨:哈尔滨工程大学出版社,2001,60-69.
    [110]邱绪光.实用相似理论[M].北京:北京航空学院出版社,1988,30-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700