用户名: 密码: 验证码:
功能性超分子配合物的制备及在苯乙烯的催化乳液聚合中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用过渡金属离子与多官能团的配体通过配位键、氢键和π-π作用等分子间的作用力构筑高级有序的超分子配合物已成为当前配位化学、超分子化学和材料化学研究中的热点领域。将多功能配体通过自组装使其与过渡金属离子反应得到新颖的超分子配合物成为这些领域非常活跃且十分重要的研究方向,不仅因为其新颖的拓扑结构,更重要的是这些化合物在催化、分子导体、光学、磁学等方面有着广泛的潜在的应用前景。
     本学位论文的主要创新点有以下几点:
     (1)设计、合成和表征了1,10 -邻菲咯啉(1,10-phen)、α,α’-联吡啶(α,α’-bipy)、2,6-吡啶二羧酸(H_2PDA)、Dawson结构的杂多阴离子等五种含P、N、O配体相互之间以及与过渡金属离子铜(Ⅱ)、镉(Ⅱ)形成的超分子化合物: [Cu(2,2’-bipy)_3]3(P_2W_(18)O_(62)) 2H_2O、[Cu(phen)_3][{Cu(phen)2}{Cu(phen)2}(P_2W_(18)O_(62))]·2H_2O、[Cd3(PDA)_3(2,2’-bipy)_3·2H_2O] CH_3OH 6.5H_2O、[4,4’-bipyH_2][4,4’-bipyH]2.5(P_2W_(18)O_(62))[4,4’-bipyH1.5] 2H_2O。
     对这4个新的超分子配合物进行了晶体和分子结构解析,探讨了它们的电化学性质及光学性质,为具有拓扑结构的分子基材料的制备提供了新的理论与实践。
     (2)设计、合成、表征了未见文献报道的锕系元素U(Ⅵ)配合物UO2Cl4(Hphen)2和H4UO2(CO3)_3。研究表明配合物UO2Cl4(Hphen)2及其膜具有很好的荧光性能。
     (3)合成了含磷、氧配体和镍的配合物,以此为催化剂,乳液中催化聚合得到了间规聚苯乙烯,并对其进行了配位催化乳液聚合动力学的初步研究。
     本论文主要研究内容和结论概括如下:
     1.设计、合成与表征了1, 10 -邻菲咯啉、α,α’-联吡啶与Dawson结构的杂多阴离子两种混配型具有新颖结构的配合物:[Cu(phen)_3][{Cu(phen)2}{Cu(phen)2}(P_2W_(18)O_(62))]·2H_2O和[Cu(2,2’-bipy)_3]3(P_2W_(18)O_(62)) 2H_2O。由单晶X-射线衍射表明两者有不同的堆积方式。配合物[Cu(phen)_3][{Cu(phen)2}{Cu(phen)2}(P_2W_(18)O_(62))]·2H_2O中阴离子[Cu(phen)2Cu(phen)2 (P_2W_(18)O_(62))]2–通过氢键作用连接起来形成了一维链,这些一维链又通过分子间错位的π-π相互作用连接起来形成二维超分子结构;金属铜离子有两种配位数,其中两个铜离子分别与两个1,10-邻菲咯啉及杂多阴离子上的一个端基氧形成五配位的三角双锥,另一个铜离子与三个1,10-邻菲咯啉形成六配位八面体。配合物[Cu(2,2’-bipy)_3]3(P_2W_(18)O_(62)) 2H_2O与前者不同的是,杂多阴离子未参与配位,仅只作为抗衡离子存在,三个铜离子均存在不同程度的姜-泰勒变形。电化学循环伏安曲线揭示了这两个配合物的氧化还原行为是由配体杂多阴离子主导。配合物[Cu(phen)_3][{Cu(phen)2}{Cu(phen)2}(P_2W_(18)O_(62))]·2H_2O中W(Ⅵ)的还原分三步进行,每步得失2个电子,共6个;配合物[Cu(2,2’-bipy)_3]3(P_2W_(18)O_(62)) 2H_2O中W(Ⅵ)的还原分四步进行,共得失7个电子。
     2.水热法合成了混配型三核超分子配合物[Cd3(PDA)_3(2,2’-bipy)_3 2H_2O] CH_3OH 6.5H_2O (PDA=2,6-吡啶二羧酸根),单晶X-射线衍射结果表明该配合物存在三种配位环境不同的Cd,其结构都是配位数为7的变形五角双锥,羧基起桥联作用。羧基O原子和水的H原子形成氢键,水分子之间亦形成氢键,两种氢键组成了交替的五元环和六元环,并沿a,b轴方向构成了2D网状结构。电子吸收光谱表明两种配体存在π→π*跃迁,并相互影响形成一宽峰。在室温和325nm紫外光激发下,三核配合物在DMSO溶液中呈现出归属于H_2PDA的较强的π*→n跃迁,同时在418 nm还出现了强的荧光发射,归属于从配体到金属的荷移跃迁(LMCT)。在室温下,Cd配合物在固态的发射光谱完全不同于溶液中的光谱,在325nm紫外光激发下,只产生了一个主发射峰460nm,与溶剂中的发射峰相比,固态下的发射峰产生了较大的红移。说明相邻两个2,2’-联吡啶分子间有很强的π-π相互作用。
     3.设计、合成了稀土铀的两个超分子配合物UO2Cl4 (Hphen)2和H4UO2(CO3)_3。单晶X-射线衍射表明配合物UO2Cl4 (Hphen)2中的1,10 -phen是质子化的,且未与金属U发生配位,晶胞内两个未配位的phen分子相互交错平行。氢键将1,10-phen与[UO2Cl4]2-联系起来形成2D结构,在此基础上,通过1,10-phen分子间强烈的π-π相互作用将整个晶体组成了沿c轴方向含菱形通道的3D超分子结构。光电子能谱(XPS)数据表明UO2Cl4 (Hphen)2配合物中的铀主要以六价形式存在。室温时,在351 nm激发光作用下,UO2Cl4 (Hphen)2水溶液在422 nm处有强而宽的发射峰,这归属于配合物分子内phen到phen的π-π*荷移跃迁和溶剂效应。与溶剂中的发射峰相比,配合物PVA膜的发射峰位置产生了较大的红移,这是因为在固态时,phen间的π-π相互作用增强。单晶X-射线衍射表明H4UO2(CO3)_3配合物通过氢键作用连接起来形成两种一维链,这些一维链相互交错、共用顶点形成2D网状结构。三个CO32 -离子不是简单的静电引力和铀酰阳离子结合,而是都参与了配位,每个CO32 -离子的两个氧配位后形成四元环,三个四元环共平面。U的大半径在某种程度上减小了四元环的张力,使得四元环稳定。
     4.合成了一种新的含水链的多金属氧酸盐超分子化合物[4,4’-bipyH_2][4,4’-bipyH]2.5(P_2W_(18)O_(62))[4,4’-bipyH1.5] 2H_2O,单晶X-射线衍射表明化合物中4个4,4’-联吡啶分子都不同程度地发生了质子化,它们通过氢键及分子间弱作用力把两个杂多阴离子[P_2W_(18)O_(62)]6–连接起来形成一维链状结构,又通过分子间弱相互作用连接起来形成二维网状结构。水分子通过分子间强的相互作用以ABAB的形式连接成四聚体(H_2O)4,这些四聚体组成的四边形串连起来形成了水链,水链像胶水一样把二维网状结构粘起来形成了稳定的三维超分子结构。循环伏安测定结果显示化合物在-0.8~0.3V电势范围内分别出现了四对可逆的氧化还原峰,表现出良好的氧化还原性能。
     5.以Ni(COD)2和含磷、氧配体为催化剂,利用乳液聚合法合成了间规聚苯乙烯。对产物进行了13CNMR、1HNMR、IR、GPC、TEM、TG等表征。在此反应体系下,最佳聚合条件为:乳化剂用量为1.50g。[St]0=1.79 mol-L-1,T= 60℃,t= 2h,[Ni(COD)2]=1.102 mmol-L-1,产率达78%,催化剂活性为662.14gPS (gNi h)-1。粒度分析与TEM表明乳胶粒大小为100~120nm。GPC分析表明重均分子量M可达1.64×106,数均分子量Mn可达9.79×105,分子量分布为1.6。在376℃下,聚苯乙烯具有很好的热稳定性。13CNMR、1HNMR及IR证实了产物的间规结构。通过对聚合反应热力学的初步研究,得到了聚合反应的表观活化能Ea为20.76KJ/mol,速率方程: Rp=1.687×[St]0.241[Ni(COD)2] 0.542([St]≤1.79mol-L-1时), Rp=0.03683×[St]-0.187[Ni(COD)2] 0.542 ([St]>1.79mol-L-1时)。未见文献报道此催化剂用于苯乙烯催化乳液聚合研究。
Constructing organic inorganic supramolecular complexes with the higly ordered structure by the reaction of multi dentate ligands with transition metal ions via coordinative bonds, hydrogen bonds andπ-πinteractions has become the hot research field in coordination chemistry, supramolecular chemistry and material chemistry. Design and syntheses of novel multi functional ligands, and research on their supramolecular complexes through the self assembly approach have been the very attractive and important aspect due to their intriguing structural diversity and potential application on catalysis for chemical transformation, molecular conductivity, magnetism, luminescence, photochromism and electrochromism, etc.
     The innovative points of this work are as follow:
     (1)By using hydrothermal method, four new supramolecular compounds from five ligands: 1,10 phen,α,α’-bipy, 2,6 H_2PDA, and heteropolymetallate of Dawson structure with P, N, O as coordinating atoms, and transition metal ions: Cu(II) and Cd(II), were designed, synthesized and characterized. They are: [Cu(2,2’-bipy)_3]3(P_2W_(18)O_(62)) 2H_2O, [Cu(phen)_3][{Cu(phen)2}{Cu(phen)2}(P_2W_(18)O_(62))]·2H_2O, [Cd3(PDA)_3(2,2’-bipy)_3·2H_2O] CH_3OH 6.5H_2O, [4,4’-bipyH_2][4,4’-bipyH]2.5(P_2W_(18)O_(62)) [4,4’-bipyH1.5] 2H_2O.
     Their single crystals were obtained and resolved, their electrochemical and optical properties were explored. A new theory and practice is provided for the synthesis of the molecule based material with topology.
     (2) Two supramolecular complexes UO2Cl4 (Hphen)2 and H4UO2(CO3)_3 of U(VI) from actinide series, were designed, synthesized and characterized. No literature report has been appeared, as to our knowledge. The compound UO2Cl4(Hphen)2 and its film all have strong fluorescence.
     (3) A ligand containing P and O and a nickel complex were synthesized using similar method reported in literature, they were used as catalyst in the catalytic polymerization in emulsion, syndiotactic polystyrene was obtained, and the reaction kinetics of the above process was studied.
     The main results of the current studies are:
     1. Two mixed ligand complexes of 1,10-phen, 2,2’-bipy with heteropolymetallate of Dawson structure, [Cu(phen)_3][{Cu(phen)2}{Cu(phen)2}(P_2W_(18)O_(62))]·2H_2O and [Cu(2,2’-bipy)_3]3 (P_2W_(18)O_(62)) 2H_2O, were synthesized and characterized. The single crystal X ray diffraction results show interestingly different packing modes. The anion, [Cu(phen)2Cu(phen)2 (P_2W_(18)O_(62))]2–, of the [Cu(phen)_3][{Cu(phen)2}{Cu(phen)2}(P_2W_(18)O_(62))]·2H_2O complex forms a one dimensional chain through hydrogen bonds, these 1D chains form two-dimensional supramolecular structure by alternativeπ-πinteractions; there exists two different coordination numbers for Cu(II) in the complex, two of the Cu(II) ions form trigonal bipyramidal structure by coordinating with two 1,10-phen and the terminal O from the heteropolymetallate anion, while the other Cu(II) forms octahedral geometry with three 1,10-phen molecules. The major difference of the structure of the other complex, [Cu(2,2’-bipy)_3]3(P_2W_(18)O_(62)) 2H_2O, is that the heteropolymetallate anion does not participate in the coodination, but as counter anion, and there exists Jahn-Teller distortion for all of the three Cu(II) cations. The redox behavior of the two complexes was dominated by the heteropolymetallate anions from the results of cyclic voltammetry, the reduction of W(VI) from [Cu(phen)_3][{Cu(phen)2}{Cu(phen)2}(P_2W_(18)O_(62))]·2H_2O has three steps, gaining two electrons in each step, while that from [Cu(2,2’-bipy)_3]3(P_2W_(18)O_(62)) 2H_2O has four steps, gaining a total of 7 electrons instead of 6 of the previous compound.
     2. A trinuclear supramolecular complex with mixed ligand, [Cd3(PDA)_3(2,2’-bipy)_3 2H_2O] CH_3OH 6.5H_2O, was synthesized using hydrothermal method, the results from single crystal X-ray diffraction demonstrate that there exists three different coordination environments for Cd, all of them have distorted pentagonal bipyramidal geometry with coordination number of 7, where the carboxylate anion is used as bridging ligand. The O atom from carboxylate and H from water forms hydrogen bond, there are also H bond between water molecules, these two types of H bonds form an alternative arrangement of 5- and 6-membered ring, extending to a 2D network structure along a and b axis. The electronic spectroscopy of the complex shownπ→π* transitions, forming a broad band. Under excitation of 325 nm UV light at ambient temperature, relatively strong transition ofπ*→n was observed in DMSO solution, which originates from H_2PDA, strong fluorescent emission was observed at 418 nm, which can be attributed to ligand to metal charge transfer. The emission spectra of the Cd complex in solid state is totally different from that in solution state at room temperature, on the excitation at 325 nm, there is only one band appears at 460 nm, a relative large red shift comparing with that in solution, this result demonstrates that there exists strongπ-πinteractions between neighboring 2,2’-bipy molecules.
     3. Two supramolecular complexes of uranium, UO2Cl4 (Hphen)2 and H4UO2(CO3)_3, were designed and synthesized. The data from single crystal X-ray diffraction suggest that 1,10-phen was protonated and not coordinating with U in the complex, the two phen molecules without coordination in the cell were parallel at alternative positions. A 2D structure formed through H bond between 1,10-phen and [UO2Cl4]2- anion, the strongπ-πinteraction between 1,10-phen molecules helps the formation of a 3D supramolecular structure with rhombic channel along c direction. XPS data show that uranium exists as U(VI) in UO2Cl4 (Hphen)2 complex. At room temperature, A strong and broad emission band at 422 nm was observed for the UO2Cl4 (Hphen)2 water solution on the excitation at 351 nm, this can be attributed toπ-π* charge transfer transition between phen from the complex and the protonated phen, as well as solvent effects. The emission band red-shifts for the complex in PVA film comparing with that in solution because of the strongπ-πinteractions between phen molecules in solid state. The single crystal X-ray diffraction results of H4UO2(CO3)_3 complex demonstrate that there are two types of 1D chain formed through H-bond, the intercrossing of them forms 2D network. Three CO32 - anions all coordinate with UO2(II), each anion forms a 4-membered ring through the coordination of two O atoms, and the three 4-membered rings formed are coplanar. The reason of stable 4-membered ring formation is because of the relative large size of U, which reduces strain effectively.
     4. A novel heteropolymetallate containing water chain, [4,4’-bipyH_2][4,4’-bipyH]2.5 (P_2W_(18)O_(62))[4,4’-bipyH1.5] 2H_2O, was synthesized, the single crystal X-ray diffraction results suggest partial protonation of different degrees for all of the four 4,4’-bipy molecules, H bond and weak intermolecular forces arrange heteropolymetallate anions as 1D chain, 2D network is also formed through weak intermolecular forces. The water molecules form an ABAB type tetramer (H_2O)4 through H-bond, the serial connection of tetragons formed by these tetramers helps the formation of water chain, which stabilizes the 3D supramolecular structure like glue. Cyclic voltammetry results show four pairs of redox bands in the range of -0.8~0.3V, indicating good redox properties of the complex.
     5. Using Ni(COD)2 and ligand containing P and O as catalyst in the catalytic emulsion polymerization, syndiotactic polystyrene was obtained, and the reaction kinetics of the above process was studied. The product was characterized with 13CNMR、1HNMR、IR、GPC、TEM、TG etc. The best polymerization condition for this reaction system was found to be: emulsifier 1.50g。[St]0=1.79mol-L-1,T=60℃,t=2h,[Ni(COD)2]=1.102mmol-L-1, the yield was 78%. The activity of the catalyst is 662.14gPS (gNi h)-1. The emulsion particle size was 100~120nm by the results of particle size analysis and TEM techniques. The GPC analysis results show that: the weight average molecular weight Mw is 1.64×106, while the number-average molecular weight Mn 9.79×105, width of molecular weight distribution 1.6. Very good thermal stabilities are observed in the temperature range of ambient temperature up to~376℃, the 13CNMR、1HNMR and IR analysis results proved the syndiotactic structure. Preliminary study on the kinetics of the polymerization indicates that: the apparent activation energy Ea is 20.76KJ/mol, the rate laws are: Rp=1.687×[St]0.241[Ni(COD)2]0.542(when [St]≤1.79mol-L-1), Rp=0.03683×[St]-0.187[Ni(COD)2]0.542 (when [St]>1.79mol-L-1).
     No literature report has been appeared for the emulsion polymerization of styrene by the catalyst, as to our knowledge.
引文
[1] Liao Y., Eichinger B E., Firestone K A., et al. Systematic study of the structure property relationship of a series of ferrocenyl nonlinear optical chromophores[J]. J. Am. Chem. Soc., 2005, 127: 2758-2766.
    [2] Weinstein J A., Tierney M T., Davies E S., et al. Probing the electronic structure of Platinum(Ⅱ) chromophores: Crystal structures, NMR structures, and photophysical properties of six new bis and di phenolate/thiolate Pt(Ⅱ)diimine chromophores[J]. Inorg. Chem., 2006, 45: 4544-4555.
    [3] Margeat O., Lacroix P G., Costes J P., et al. Synthesis, structures, and physical properties of Copper(Ⅱ) Gadolinium(Ⅲ) complexes combining Ferromagnetic coupling and quadratic nonlinear optical properties[J]. Inorg Chem, 2004,43: 4743-4750.
    [4] Michael S., Anja K., Sabine S., Helical, nonracemic inorganic organic hybrid polymers of cadmium halides with pentadentate bis(oxazoline) ligands[J]. J. Am. Chem. Soc., 2004, 126, 11426-11427.
    [5] Lehn J M., Supramolecular chemistry conceptand perspectives[M]. Gerrnany: VCH, 1995: l-9.
    [6] Jeffrey G A., An introduction to hydrogen bonding[M]. Oxford: Oxford University Press, 1997.
    [7] Swamy K C K., Kumaraswamy S., Kommana P., Very strong C-H O, N-H O, and O-H O hydrogen bonds involving a cyclic phosphate[J]. J. Am.Chem. Soc., 2001, 123: 12642-12649.
    [8] Demeshko S., Dechert S., Meyer P., Very strong C-H O, N-H O, and O-H O hydrogen bonds involving a cyclic phosphate[J]. J. Am. Chem. Soc., 2004, 126: 4508-4509.
    [9] Faraoni R., Castellano R K., Gramlich V., et al. H-bonded complexes of adenine with Rebek imide receptors are stabilized by cation pinte ractions and destabilized by stacking with perfluoroaromatics Electronic supplementary information( ESI) available: Protocols for the synthesis of la i; description of 1HNMR binding titrations, determination of dimmerisation constants, van’t Hoff analysis and Job plot analysis; crystal structure data for complexes 1c-2, 1d-2 and 4[J]. Chem. Commun., 2004, 370-371.
    [10] Vilar R., Anion-templated Synthesis. Angew. Chem. Int. Ed. 2003, 42: 1460-1477.
    [11] Murata K., Mitsuoka K., Hirai T., et al. Structural determinants of water permeation through a quaporin-1[J]. Nature, 2000, 407: 599- 605.
    [12] Ruta V., Jiang Y X., Lee A., et al. Functional analysis of an archaebacterial voltage dependent K+ channel[J]. Nature, 2003, 422: 180-185.
    [13] Desiraju G R., Comprehensive Supramolecular Chemistry[M]. Oxford: Pergamon Press, 1997.
    [14] Andrew J G., James D C., Bosnich B., Supramolecular recognition: use of cofacially disposed bis terpyridyl square plannar complexes in self assembly and molecularrecognition[J]. Helv. Chim. Acta, 2001, 84: 2971-2978.
    [15] Beobide G., Castillo O., Luque A., et al. Supramolecular architectures and magnetic properties of coordination polymers based on pyrazinedicarboxylato ligands showing embedded water clusters[J]. Inorg. Chem., 2006, 45(14): 5367-5382.
    [16] Moghimi A., Alizadeh R., Shokrollahi A., et al. First anionic 1,10-phenanthroine-2, 9-dicarboxylate containing metal complex obtained from a novel 1:1 proton transfer compound: synthesis, characterization, crystal structure and solution studies[J]. Inorg. Chem., 2003, 42(5): 1616-1624.
    [17] Sun W Y., Fei B L., Shu M H., et al. Synthesis and structure of a novel supramolecular complex with 1 D twisted structure[J]. Chemical Journal of Chinese Universities, 2000, 21: l8-20.
    [18] Sakai K., Tomita Y., Ue T., et al. Syntheses, antitumor activity, and molecular mechanics studies of cis PtCl2(pzH)2 (pzH=pyrazole) and related complexes. Crystal structure of a novel Magnus type double salt [Pt(pzH)4][PtCl4][cis PtCl2(pzH)2]2 involving two perpendicularly aligned 1D chains[J]. Inorg. Chim. Acta, 2000, 297(1): 64-71.
    [19] García Zarracino R., H-pfl H., A 3D hybrid network containing large spherical cavities formed through a combination of metal coordination and hydrogen bonding[J]. Angew. Chem. Int. Ed, 2004, 43: 1507-1511.
    [20] Humberto O S., Yu P., Olivier K., et al. A molecular based magnet with a fully interlocked three-dimensional structure[J]. Science, 1993, 261: 447-449.
    [21] Tong M L., Kitagawa S., Chang H C., Temperature controlled hydrothermal synthesis of a 2D ferromagnetic coordination bilayered polymer and a novel 3D network with inorganic Co3(OH)2 ferrimagnetic chains[J]. Chem. Commun., 2004, 418-419.
    [22] Benjamin A. Horenstein, Quantum mechanical analysis of anαcarboxylate substituted oxocarbenium ion. Isotope effects for formation of the sialyl cation and the origin of an unusually large secondary 14C isotope effect[J]. J. Am. Chem. Soc., 1997, 119: 1101-1107.
    [23] Rosi N L., Eddaoudi M., Kim J., et al. Infinite secondary building units and forbidden catenation in metal organic frameworks[J]. Angew. Chem. Int. Ed, 2002, 41: 284-287.
    [24] Lu W G., Su C Y., Lu T B., et al. Two stable 3D metal-organic frameworks constructed by nanoscale cages via sharing the single layer walls[J]. J. Am. Chem. Soc., 2006, 128: 34-35.
    [25] Gomez Lor B., Gutiérrez Puebla E., Iglesias M., et al. In2(OH)3(BDC)1.5 (BDC = 1,4 benzendicarboxylate): An In(III) supramolecular 3D framework with catalytic activity [J]. Inorg. Chem., 2002, 41(9): 2429-2432.
    [26] Wu C D., Lu C Z., Lin X., et al. A novel left handed double helicate constructed from L tartrate bridged molybdenum(VI) and gadolinium(III) atoms[J]. Chem. Commun., 2003, 1284-1285.
    [27] Li H L., Eddaoudi M., O’Keeffe M., et al. Design and synthesis of an exceptionally stable and highly porous metal organic framework[J]. Nature, 1999, 402: 276-279.
    [28] Cheng J W., Zhang J., Zheng S T., et al. Lanthanide transition metal sandwich frameworkcomprising {Cu3} cluster pillars and layered networks of {Er36} wheels[J]. Angew. Chem. Int. Ed, 2005, 45: 73-77.
    [29] Qiu L G., Xie A J., Zhang L D., Encapsulation of catalysts in supramolecular porous frameworks: size and shape selective catalytic oxidation of phenols[J]. Adv. Mater., 2005, 17: 689-692.
    [30] Pilkington NH and Robson R., Complexes of binucleating ligands. III. Novel complexes of a macrocyclic binucleating ligand [J]. Aust. J. Chem., 1970, 23: 2225 2236.
    [31] Miller T. R., Dance G., Reactions of dithiolene complexes with amines. II. The formation and properties of mixed ligand dithiolene and diimine complexes of nickel[J]. J. Am. Chem. Soc., 1973, 95: 6970-6979.
    [32] Vogler A., Kunkely H., Hlavatsch J., et al. Mixed-ligand (1,2-diimine) (ethylene-1, 2-dithiolate) complexes of nickel, palladium and platinum[J]. Inorg. Chem., 1984, 23: 506-509.
    [33] Ma J F., Yang J., Zheng G L., A porous supramolecular architecture from a copper(II) coordination polymer with a 3D four connected 86 net[J]. Inorg. Chem., 2003, 42(23): 7531-7534.
    [34] Devereux M., McCann M., Leon V., et al. Synthesis and fungitoxic activity of manganese(II) complexes of fumaric acid: X ray crystal structures of [Mn(fum)(bipy)(H2O)] and [Mn(Phen)2(H2O)2](fum) 4H2O (fumH2=fumaric acid; bipy=2,2’bipyridine; phen=1,10 phenanthroline) [J]. Polyhedron, 2000, 19: 1205-1211.
    [35] Kitagawa S., Kitaura R., Noro S., Functional porous coordination polymers[J]. Angew. Chem. Int. Ed, 2004, 43: 2334-2375.
    [36] Yaghi O M., Li G M, Mutually interpenetrating sheets and channels in the extended structure of [Cu(4,4’-bpy)Cl] [J]. Angew. Chem. Int. Ed, 1995, 34: 207-209.
    [37] Yaghi O M., Li H L., Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. J. Am. Chem. Soc., 1995, 117(41): 10401-10402.
    [38] Yaghi O M., Li H L., T Shaped molecular building units in the porous structure of Ag(4,4’bpy) NO3 [J]. J. Am. Chem. Soc., 1996, 118(1): 295-296.
    [39] Madalan A M., Paraschiv C., Sutter J P., et al. Construction of tube and ladderlike copper(II) coordination polymers based on the nicotinato tecton[J]. Crystal Growth & Design, 2005, 5 (2): 707–711
    [40] Li X., Cao R., Sun Y Q., et al. Syntheses and characterizations of coordination polymers constructed from 4-pyridylacetic acid[J]. Crystal Growth & Design, 2004, 4(2): 255–261.
    [41] Wang R H., Zhou Y F., Sun Y Q., Syntheses and crystal structures of copper(II) coordination polymers comprising discrete helical chains[J]. Crystal Growth & Design, 2005, 5(1): 251–256.
    [42] Valeur B., Molecular fluorescence: principles and applications[M]. Weinheim: Wiley-VCH, 2002.
    [43] Barnett S A., Blake A J., Champness N R., et al. Structural isomerism in CuSCN coordination polymers[J]. Chem. Commun., 2002, 1640-1641.
    [44] Chiang W., Vanegen D., Thompson M E., Second order non linear optical properties of Fe(SALEN) complexes[J]. Polyhedron, 1996, 15: 2369-2376.
    [45] Chiang W., Ho D M., Vanegen D., et al. Synthesis and structures of polar coordination polymers: [(Salen)MnO2CCH2D B:]n (D = NH, S; B: = 4 pyridyl, 4 cyanophenyl) [J]. Inorg. Chem., 1993, 32: 2886-2893.
    [46] Coe B J., Chamberlain M C., Essex Lopresti J P., et al. Large molecular quadratic hyperpolarizabilities in donor/acceptor substituted trans tetraammineruthenium(II) complexes[J]. Inorg. Chem., 1997, 36: 3284-3292.
    [47] Bourgault M., Baum K., Bozec H Le, et al. Synthesis and molecular hyperpolarisabilities of donor–acceptor bipyridyl metal complexes (M=Re, Zn, Hg) [J]. New. J. Chem., 1998, 22: 517-522.
    [48] Singer K D., Sohn J E., King L A., et al. Second order nonlinear optical properties of donor and acceptor substituted aromatic compounds[J]. J. Opt. Soc. Am. B, 1989, 6(7): 1339-1350.
    [49] Ghosh A K., Ghoshal D., Ribas J., et al. Hydrogen bonded assembly of water and chloride in a 3D supramolecular host[J]. Crystal Growth & Design, 2006, 6(1): 36–39.
    [50] Liu C. M., Zhang D. Q., Song Y. L., et al. Synthesis, Crystal structure and third order nonlinear optical behavior of a novel dimeric mixed ligand zinc(Ⅱ) complex of 1, 3 dithiole 2 thione 4, 5 dithiolate[J]. Eur. J. Inorg. Chem., 2002, 1591-1594.
    [51]姚天明,谢建军,傅成武,等. [Ni(NN)(SS)]混配配合物的合成与性质[J].无机化学学报, 2001, 17(1): 108-112.
    [52] Fujita M., Kwon Y J., Washizu S., et al. Preparation, clathration ability, and catalysis of a two dimensional square network material composed of cadmium(II) and 4,4’bipyridine[J]. J. Am. Chem. Soc., 1994, 116(3): 1151-1152.
    [53] Seo J S., Whang D., Lee H., et al. A homochiral metal organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404: 982-986.
    [54] Gardner G B., Venkataraman D., Moore J S., et al. Spontaneous assembly of a hinged coordination network[J]. Nature, 1995, 374: 792-795.
    [55] Richter M M., Electrochemiluminescence[J]. Chem. Rev., 2004, 104, 3003-3036.
    [56] Sacnger W., Principles of nucleic acid structure[M], New York: Springer Verlag, 1984: 132-140.
    [57] Allen F H., Hoy V J., Howard J A K., Crystal engineering and correspondence between molecular and crystal Structures. Are 2 and 3 aminophenols anomalous- [J]. J. Am. Chem. Soc., 1997, 119, 3477-3480.
    [58] Aullón G D., Bellamy A, Orpen G L., et al. Metal bound chlorine often accepts hydrogen bonds[J]. Chem. Commun., 1998, 653-654.
    [59] Braga D., Crystal enginering: from molecules and crystals to material[M], Dordrecht: Kluwer Academic Publishers, 1999: 287-312.
    [60] Adams H., Hunter C A., Lawson K R., et al. A Supramolecular System for Quantifying Aromatic Stacking Interactions[J]. Chem. Eur. J., 2001, 7: 4863-4877.
    [61] Munakata M., Ning G L., Suenaga Y., et al. A One dimensional metallocyclophane with columnar aromatic stacking: The silver(i)η2 coordination complex of 1,2 benztriphenylene [J]. Angew. Chem. Int. Ed, 2000, 39: 4555-4557.
    [62] Luque A., Sertucha J., Castill O., et al. Crystal packing and physical properties of pyridinium tetrabromocuprate(II) complexes assembled via hydrogen bonds and aromatic stacking interactions New J. Chem., 2001, 25: 1208-1214.
    [63] Coates G W., Dunn A R., Henling L M., et al. Phenyl-perfluorophenyl stacking interactions: topochemical [2+2] photodimerization and photopolymerization of olefinic compounds [J]. J. Am. Chem. Soc., 1998, 120, 3641-3649.
    [64]郭文勇二硫纶和邻菲咯啉过渡金属配合物及锂镍钴氧化物电池材料的研究[D].武汉:武汉大学,2004: 25-63.
    [65]孔令涛.有机—无机杂化材料的制备及催化活性研究[D].合肥:安徽大学,2006.
    [66] Zheng Y Q., Lin J L., Kong Z P., Syntheses and crystal structures of new suberato bridged Mn(II) phen complexes: {[Mn(phen)2]L2/2}2 H2L 8H2O, {[Mn(phen)(H2O)3]2L}L 2H2L 4H2O and {[Mn(phen)2(HL)]2L} H2L (H2L=HOOC(CH2)6COOH) [J]. Polyhedron, 2003, 22: 2699-2708.
    [67]钮东方,徐承天,张丽,等.电催化活化二氧化碳合成苯氨基甲酸乙酯[J].催化学报, 2007, 28(10): 880-884.
    [68] Blake A J., Hill S J., Hubberstey P., Rectangular grid two dimensional sheets of copper(Ⅱ) bridged by both co ordinated and hydrogen bonded 4,4’-bipyridine (4,4’-bipy) in [Cu( -4,4’-bipy)(H2O)2(FBF3)2] 4,4’-bipy[J]. J. Chem. Soc., Dalton Trans., 1997, 6: 913-914.
    [69]房江华,胡敏杰,王家荣,等. Fe(acac)3-Al(i Bu)3-α,α’-联吡啶催化丙烯腈与苯乙烯共聚合[J].分子催化, 2006, 20(4): 335-338.
    [70]林庆斌,曾锡瑞,倪春林,等.两种三齿多吡啶铜(Ⅱ)配合物的合成、表征及其与DNA的作用[J].无机化学学报, 2007, 23(8): 1341-1346.
    [71] Ranganathan A., Pedireddi V. R., Sanjayan G., et al. Sensitive dependence of the hydrogen bonded assemblies in cyanuric acid–4,4’bipyridyl adducts on the solvent and the structure of the parent acid[J]. J. Mol. Struct., 2000, 522: 87-94.
    [72] Roitershtein D., Domingos -., Pereira L C J., et al. Coordination of 2,2’Bipyridyl and 1,10 Phenanthroline to Yttrium and Lanthanum Complexes Based on a Scorpionate Ligand[J]. Inorg. Chem., 2003, 42(23): 7666-7673.
    [73]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997,125-133.
    [74]胡长文,黄如丹.多金属氧酸盐化学研究进展与展望[J].无机化学学报,2003, 19(4): 337-344.
    [75] Ouahab L., Bencharif M., Grangjean D Acad C R., New organic mineral materials obtained with organic donors derined from tetrathia(selena) fulvalene(TIF) and polyoxomeetalates. First solids where mixed valence state coexist on the organic and inorganic entities: Preparation and Structure data of (TTF)6PW12O40(Et4N)2[J]. Sci. Paris SerieⅡ, 1988,307:749-752.
    [76] Dumas E., Sevov S.C., Synthesis and characterization of Cs5P[Mo4O14(OH)]2 2H2O: a new molybdophosphate cluster with face sharing MoO6 octahedra[J]. Inorg. Chem., 2002, 41: 144-146.
    [77] Kortz U., Nellutla S., Stowe A. C., et al. Structure and magnetism of tetracopper (II) substituted heteropolyanion [Cu4K2(H2O)8(αAsW9O33)2]8–[J]. Inorg. Chem., 2004, 43: 144-154.
    [78] Kortz U., Nellutla S., Stowe A. C., et al. Sandwich type germanotungstates: structure and magnetic properties of the dimeric polyoxoanions [M4(H2O)(GeW9O34)2]12– (M=Mn2+,Cu2+,Zn2+,Cd2+)[J]. Inorg. Chem., 2004, 43: 2308-2317.
    [79]许林,王恩波,胡长文.多金属氧酸盐作为构筑块自组装合成新型功能性分子材料[J].无机化学学报, 2000, 16(2): 218-228.
    [80] Clemente Juan J. M., Clementel Leon M., Coronado E., et al. Magnetic clusters and coducting molecular materials from polyoxometalates[J]. C. R. Acad. Sci. Paris, Serie II Chem., 1998, 1(5): 305-317.
    [81] Yamase T., Photo and electrochromism of polyoxometalates and related material[J]. Chem. Rev., 1998, 98: 307-325.
    [82] Pope M. T., Muller A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines[J]. Angew. Chem. Int. Ed. Engl., 1991, 30: 34-48.
    [83] H-lscher M., Zibrowius B., H-lderich W F., et al. (H3N(CH2)6NH3)4[W18P2O62] 3H2O, a microporous solid from Dawson anions and 1,6 diaminohexane[J]. Angew. Chem. Int. Ed. Engl., 1995, 33(23 24): 2491-2493.
    [84] Chen Q., Salta J., Zubieta J., Synthesis and structural characterization of binuclear vanadium oxo organophosphonato complexes: building blocks for oxovanadium organophosphonate solids[J]. Inorg. Chem., 1993, 32 (21): 4485–4486.
    [85] Duraisamy T., Ramanan A., Vittal J J., et al. New inorganic organic hybrid materials based on polyoxovanadates: [Morp]6[VO4 V14O32(OH)6] 2H2O, [Morp]VO3, [HMTACH3]4[H2V10O28] 5H2O, and [HMTA H][HMTA CH2OH]2[H5V10O28] 6H2O[J]. Chem. Mater., 1999, 11: 2339-2349.
    [86] Reinoso S.,Vitoria P.,Lezama L.,et al. A novel organic-inorganic hybrid based on a dinuclear copper complex supported on a Keggin polyoxometalate[J]. Inorg. Chem,2003,42: 3709–3711
    [87] Cui X B., Xu J Q., Li Y., et al. Hydrothermal synthesis and characterization of (enH2)3.5[As8V14O42(PO4)] 2H2O[J]. J. Mol. Struct., 2003, 655: 207–213.
    [88] Upreti S., Ramanan A., Structure directing role of hydrogen bonded dimers of phenylenediammonium cations: supramolecular assemblies of octamolybdate based organic-inorganic hybrids[J]. Crystal Growth & Design, 2005, 5 (5): 1837–1843.
    [89] Upreti S., Ramanan A., Role of hydrogen bonded interactions in the crystal packing of phenylenediammonium phosphomolybdates[J]. Crystal Growth & Design, 2006, 6(9): 2066–2071.
    [90] Fan L L., Xiao D R., Wang E B., et al. An unprecedented fivefold interpenetrating network based on polyoxometalate building blocks[J]. Crystal Growth & Design, 2007, 7(4): 592–954.
    [91] Burgard M., Sansonetti P., Vitteeoqetal D., et al. Lack of HPA 23 antiviral activeity in HIV infected patients without AIDS[J]. AIDS, 1989, 3(10): 665-668.
    [92]刘术侠,王春梅,李德慧,等.一个新的超分子化合物(C10H18N) As2Mo18O62 6CH3CN 8H2O的合成、结构及性质[J].化学学报, 2004, 62 (14): 1305-1310.
    [93]蒋维,莫桂娣,金烈,等.铈杂多配离子水滑石超分子层柱材料ZnAl Ce(PMoV)2的插层组装、表征及催化性能[J].中国稀土学报, 2007, 25(1): 33-38.
    [94]康振辉,王恩波,王轶博.多金属氧酸盐纳米线的制备表征及独特性质[J].东北师大学报(自然科学版), 2001, 33(3): 60 63.
    [95] Dong S., Liu M J. Electrochemical and electrocatalytic properties of iron(III) substituted Dawson type tungstophosphate anion[J]. Electroanal. Chem., 1994, 372: 95 100.
    [96] Bartis J., Dankova M., Lessmann J J., Lanthanide complexes of the 1 isomer of the [P2W17O61]10– heteropolytungstate: preparation, stoichiometry, and structural characterization by 183W and 31P NMR spectroscopy and europium(III) luminescence spectroscopy[J]. Inorg. Chem., 1999, 38(6): 1042 1053.
    [97] Delaney P A., Jonstone R A W., Etres B L., et al. Formation of stable Langmuir Blodgett multilayers from oxiran carboxylic acids[J]. Thin Solid Films, 1985, 123: 353 360.
    [98] Wang S F., Du Dan, Zou Q C., Electrochemical properties of L-cysteine self assembled monolayers modified gold electrode of phosphomolytungstenbdic anion [J]. Acta Phys. Chim. Sin.(Wuli Huaxue Xuebao), 2001, 17(12): 1102-1106.
    [99]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社, 2004: 128-158.
    [100] Zhao B., Cheng P., Chen X., et al. Design and synthesis of 3d-4f metal based Zeolite type materials with a 3D nanotubular structure encapsulated“water”pipe[J]. J. Am. Chem. Soc., 2004, 126, 3012-3013.
    [101] Forster P M., Cheetham A K., Open framework nickel succinate, [Ni7(C4H4O4)6(OH)2 (H2O)2]2H2O: a new hybrid material with three dimensional Ni-O-Ni connectivity[J]. Angew. Chem. Int. Ed. Engl., 2002, 41(3): 457-459.
    [102]蒋琪英,邓洪权,胡亚敏,等.新型二维异核配位聚合物[NdBi(cydta) (NO3)2(H2O)4] 2.5H2O}n的晶体结构与热分解[J].化学学报, 2008, 66: 1429-1434.
    [103] Stavila V., Davidovich R. L., Gulea A., et al. Bismuth(III) complexes with amino polycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure[J]. Coord. Chem. Rev., 2006, 250: 2782-2810.
    [104] Lu Y., Xu Y., Li Y G., et al. New polyoxometalate compounds built up of lacunary Wells-Dawson anions and trivalent lanthanide cations[J]. Inorg. Chem., 2006, 45(5): 2055 2060.
    [105] Salmon L., Thuéry P., Rivière E., et al. Structure and magnetism of the first strictly dinuclear compound containing paramagnetic 3d and 5f metal ions. Major influence of the CuII ion coordination on the exchange CuII–UIV interaction[J]. Chem. Commun. 2003, 6:762-763.
    [106] Johnson J K., Killian C M., Brookhart M., New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene andα-olefins[J]. J. Am. Chem. Soc., 1995, 117: 6414-6415.
    [107] Barnhart R W., Bazan G C., Synthesis of branched polyolefins using a combination of homogeneous metallocene mimics [J]. J. Am. Chem. Soc., 1998, 120: 1082-1083.
    [108] Rolf M-lhaupt, Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler’s catalysts[J]. Macromol. Chem. Phys., 2003, 204: 289-327.
    [109] Brookhart M S , Johnson J K, Killian C M., et al. Highly branched olefin polymers and their uses: US, 5880241[P], 1999.
    [110] Britovsek G J P, Dorer B A, Gibson V C, et al. Nitrogen containing transtion metal polymerization catalysts for olefins: WO, 9912981[P], 1999.
    [111]金国新,周光远,刘长坤,等.“茂后”烯烃聚合催化剂[J].应用化学, 1999, 16(1): 1-5.
    [112] Braca G., Galletti M D., Raspolli Galletti A M., et al. Organometallic nickel catalysts bound to polymeric matrices in the oligomerization and/or polymerization of olefins with a replica of the support morphology[J]. J. Mol. Cat., 1992, 74: 421-431
    [113]闫卫东,杨敏,刘盘阁,等.合成间规聚苯乙烯的双核β-二酮类催化剂及其制备方法. CN., 216083C[P], 2005, 8.
    [114] Ulrich K., Steven D. I., Nickel catalysis for ethylene homo and co-polymerization[J]. J. Mol. Catal., 1987, 41: 123-134.
    [115] OstojaStarzewski K A., Witte J., Reichert K H., et al. Transition metal catalyzed polymerizations– Ziegler Natta and metathesis polymerization[M], Berlin: Springer, 1988: 349-360.
    [116] Soula R., Broyer J P., Llauro M F., et al. Very active neutral P,O-chelated nickel catalysts for ethylene polymerization[J]. Macromolecules, 2001, 34: 2438–2442.
    [117] Bauers F M., Chowdhry M M., Mecking S, Catalytic polymerization of ethylene in aqueous emulsion with a simple in situ catalyst[J]. Macromolecules, 2003, 36: 6711–6715.
    [118] Wang C., Friedrich S., Younkin T R., et al. Neutral nickel(II) based catalysts for ethylene polymerization[J]. Organometallics, 1998, 17: 3149–3151.
    [119] Killian C M., Johnson L K., Brookhart M., Preparation of linearα–olefins using cationic nickel(II)αdiimine catalysts[J]. Organometallics, 1997, 16: 2005–2007.
    [120] Schellenberg J., Effect of catalyst transition metal and ancillary ligand on syndiospecific polymerization of styrene[J]. European Polymer Journal, 2006, 42: 487–494.
    [121] Pellecchia C., Zambelli A., Syndiotactic specific polymerization of propene with a Ni based catalyst[J]. Macro. Rapid Commun., 1996, 17: 333–338.
    [122] Eckstein A., Lobbrecht A., Spitz A., et al. Comparison of the viscoelastic properties of syndiotactic and isotactic polypropylenes[J]. Acta Polym., 1997, 48: 41–46.
    [123] Eckstein A., Suhm J., Friedrich C., et al. Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts[J]. Macromolecules, 1998, 31: 1335–1340.
    [124]Kolb L, Monteil V, Thomann R, et al. Aqueous Dispersions of extraordinarily smallpolyethylene nanoparticles[J]. Angewandte Chemie, 2005, 44: 429-432.
    [125] Yan C E, Cheng S Y, Feng L X., A New kinetic model of emulsifier free emulsion polymerization[J]. Macromol. Symp., 2000, 150: 127-134.
    [126] Soula R, Novat C, Tomov A, et al. Catalytic polymerization of ethylene in emulsion[J]. macromolecules, 2001, 34: 2022-2026.
    [127]Held A, Kolb L, Zuideveld M A, et al. Aqueous polyketone latices prepared with water insoluble palladium(II) catalysts[J]. Macromolecules, 2002, 35: 3342-3347.
    [128]Yan C E, Cheng S Y, Feng L X., Kinetics and mechanism of emulsifier free emulsion copolymerization: styrene methyl methacrylate acrylic acid system[J]. J. Polym. Sci. Part A: Polym. Chem., 1999, 37: 2649-2656.
    [129]Yan C E., Xu Z H., Cheng S Y., Effect of amount of emulsifier added in the second stage on morphology of composite latex particles[J]. J. Appl. Polym. Sci., 1998, 68: 969-975.
    [130] Qiu J., Charleux B., Matyjaszewski K., Prog Polym Sci, 2001, 26: 2083-2134.
    [131] Cunningham M F., Prog Polym Sci, 2002, 27: 1039-1067
    [132] Cornils B., Herrmann W A., Aqueous phase organometallic catalysis[M], Weinheim: Wiley VCH, 1998.
    [133] Sinou D., Metal catalysis in water and modern solvent systems in organic synthesis[J]. Top Curr. Chem, 1999, 206: 41–59.
    [134] Mecking S., Held A., Bauers F M., Aqueous catalytic polymerization of olefins[J]. Angew. Chem. Int. Ed. Engl., 2002, 41(4): 544–561.
    [135]Tomov A, Broyer J P, Spitz R, Emulsion polymerization of ethylene in water medium catalysed by organotransition metal complexes[J]. Macromol. Symp., 2000, 150: 53–58.
    [136] Soula R., Nova C T., Tomov A., et al. Catalytic polymerization of ethylene in emulsion[J]. Macromolecules, 2001, 34: 2022–2026.
    [137] Bauers F M, Mecking S, High molecular mass polyethylene aqueous latexes by catalytic polymerization[J]. Angew. Chem. Int. Ed. Engl., 2001, 40(16): 3020–3022.
    [138] Bauers F M., Mecking S., Aqueous homo–and copolymerization of ethylene by neutral nickel(II) complexes[J]. Macromolecules, 2001, 34: 1165–1171.
    [139] Held A., Mecking S., Coordination polymerization in water affording amorphous polyethylenes. Chem. Eur. J, 2000, 6: 4623–4629.
    [140] Held A., Bauers F M., Mecking S., et al. Coordination polymerization of ethylene in water by Pd(Ⅱ) and Ni(Ⅱ) catalysts[J]. Chem. Commun., 2000, 4: 301–302.
    [141] Mecking S., Olefin polymerization by late transition metal complexes - a root of Ziegler catalysts gains new ground[J]. Angrew. Chem. Int. Ed, 2001, 40: 534-540.
    [142] Soula R., Sailllard B., Spitz R., et al. Catalytic copolymerization of ethylene and polar and nonpolarαolefins in emulsion[J]. Macromolecules, 2002, 35: 1513–1523.
    [143]Held A., Kolb L., Zuideveld M A., et al. Aqueous polyketone latices prepared with water insoluble palladium(II) catalysts[J]. Macromolecules, 2002, 35: 3342 3347.
    [144] Bauers F M., Thomann R., Mecking S., Submicron polyethylene particles from catalytic emulsion polymerization[J]. J. Am. Chem. Sci., 2003, 125: 8838–8840.
    [145]Manders B., Sciandrone L., Hauck G., et al. No polymerization with metallocenes in water- A prejudice is refuted[J]. Angrew. Chem. Int. Ed., 2001, 40: 4006 4007.
    [146] Ono H., Kato T., Stereoregular emulsion polymerization of butadiene[J]. J. Polym. Sci., Part A: Polym. Chem., 2000, 38: 1083-1089.
    [147] Claverie J P., Viala S., Maurel V., et al. Ring opening metathesis polymerization in emulsion[J]. Macromolecules, 2001, 34: 382-388.
    [148] Marton A A., Polymerzation of styrene with Alfin catalysts[J]. Ind. Eng. Chem., 1950, 42: 1488-1492.
    [149] Ludmila K., Vincent M., Ralf T., et al. Aqueous dispersions of extraordinarily small polyethylene nanoparticles[J]. Angew. Chem. Int. Ed. 2005, 44: 429-432.
    [150]Wang X., Sudol E D., El Aasser M S. Emulsion polymerization of styrene using a reactive surfactant and its polymeric counterpart: kinetic studies[J]. Macromolecules, 2001, 34: 7715-7723.
    [151]Hesek D., Inoue Y., Everitt S R L., et al. Novel synthetic routes to several new, differentially substituted ruthenium tris(4,4’-disubstituted-2,2-bipyridine)complexes[J]. Inorg. Chem., 2000, 39: 308-316.
    [152] Fu H., Chen W L., Wang E b., et al. Three new multidimensional organic inorganic hybrids based on polyoxometalates and copper coordination polymers with 4,4’bipyridine ligands[J]. Inorg. Chim. Acta, 2009, 362(5): 1412 1420.
    [153]Feliz M R., Ferraudi G., Contrasting Intrastrand Photoinduced Processes in Macromolecules Containing Pendant-Re(CO)3(1,10 phenanthroline)+: Electron versus Energy Transfer[J]. Inorg. Chem., 2004, 43(4): 1551-1557.
    [154]Freisinger E., Rother I B., Lu M S., et al. Bioinorganic chemistry special feature: Canonical and unconventional pairing schemes between bis(nucleobase) complexes of trans-a2PtII: Artificial nucleobase quartets and C-H N bonds[J]. Proc. Natl. Acad. Sci., 2003, 100: 3748-3753.
    [155]Ranganathan A., Pedireddi V. R., Sanjayan G., et al. Sensitive dependence of the hydrogen bonded assemblies in cyanuric acid–4,4’bipyridyl adducts on the solvent and the structure of the parent acid[J]. J. Mol. Struct., 2000, 522: 87-94.
    [156]Kokil A., Yao P., Weder C., Organometallic Networks Based on 2,2’-Bipyridine- Containing Containing Poly(p-phenylene ethynylene)s[J]. Macromolecules, 2005, 38(9): 3800–3807.
    [157]彭慧,沈艳华,柯勇.水介质中可控/活性自由基聚合的研究进展[J].高分子通报, 2003, 1: 43-52.
    [158] Ziegler K, Holzkamp E, Martin H, et al. Das mülheimer normaldruck-poly-thylen- verfahren[J]. Angewandte Chemie, 1955, 67: 541-547.
    [159] Natta G., Stereospezifische katalysen und isotaktische polymere[J]. Angewandte Chemie, 1956, 68: 393-403.
    [160]Sinn H, Kammisky W, Vollmer H J, et al.“Living polymers”on polymerization with extremely productive Ziegler catalysts[J]. Angrew. Chem. Int. Ed, 1980, 19: 390-392
    [161] Zuideveld M A, Wehrmann P, Pohr C, et al. Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(II) complexes[J]. Angrew. Chem. Int. Ed, 2004, 43, 869-873.
    [162] Mathers R T, Coates G W., Cross metathesis functionalization of polyolefins[J]. Chem. Commun, 2004, 422-423.
    [163]王娟,彭慧,程时远.后过渡金属烯烃聚合催化剂的研究进展[J].石油化工, 2004, 33(11): 1088-1094.
    [164] Hill C L., Introduction: polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problems[J]. Chem. Rev., 1998, 98(1): 1-2.
    [165] Müller A., Shah S Q N., Bogge H., et al. Molecular growth from a Mo176 to a Mo248 cluster[J]. Nature, 1999, 397: 48-50.
    [166] Branytska O V., Neumann R J., An efficient, catalytic, aerobic, oxidative iodination of arenes using the H5PV2Mo10O40 polyoxometalate as catalyst[J]. Org. Chem., 2003, 68(24): 9510-9512.
    [167] Coronado E., Galán Mascarós J R., Giménez Saiz C., et al. Metallic conductivity in a polyoxovanadate radical salt of bis(ethylenedithio)tetrathiafulvalene(BEDT TTF): synthesis, structure, and physical characterization ofβ’’(BEDT TTF)5[H3V10O28] H2O[J]. Adv. Mater., 2004, 16: 324-327.
    [168] Coronado E., Clemente León M., Galán Mascarós J R., et al. Design of molecular materials combining magnetic, electrical and optical properties[J]. Chem. Soc., Dalton Trans., 2000, 21: 3955-3961.
    [169]Yamase T., Polyoxometalates for molecular devices: antitumor activity and luminescence [J]. Mol. Eng., 1993, 3: 241-262.
    [170]Tian A X., Han Z G., Peng J., et al. Two novel hybrid inorganic organic compounds based on Wells Dawson polyanion and transition metal(TM) complex with onedimensional structure: hydrothermal synthesis and characterization[J]. Mol. Struct., 2007, 832: 117-123.
    [171] SMART, version 5.624, Brüker AXS, Inc.: Madison, WI, 2002.
    [172] SAINT, version 6.36 A, Brüker AXS, Inc.: Madison, WI, 2002
    [173] G. Sheldrick, SADABS, version 2.10, University of G-ttingen: G-ttingen, Germany, 2003
    [174] Sheldrick G M., SHELXTL SHELXTL 97: Program for crystal structure refinement. University of G-ttingen, Germany, 1997.
    [175] Niu J Y., Guo D J., Zhao J W., et al. Exploitation of the hydrogen bond—recent developments in the context of crystal engineering[J]. New J. Chem., 2004, 28: 980–983.
    [176] Soumahoro T., Burkholder E., Ouellette W., et al. Organic–inorganic hybrid materials constructed from copper organoimine subunits and molybdoarsonate clusters[J]. Inorg. Chim. Acta, 2005, 358: 606–616.
    [177] Brown I D., Altermatt D., A program for calculating bond valences[J]. Acta Crystallogy, Sect. B, 1985, 41: 244–247.
    [178] Zhou Y S., Peng J., Wang E B., A novel optical charge transfer complex between an organic substrate and a polyoxometalateαH6P2W18O62 10H2O[J]. Transition Met. Chem.,1998, 23: 125-128.
    [179]林郑忠,张汉辉,杨融生,等.具有Keggin结构的多元杂多化合物的合成与光谱研究[J].光谱学与光谱分析, 2000, 5: 593-597.
    [180] Lis S., Applications of spectroscopic methods in studies of polyoxometalates and their complexes with lanthanide(III) ions[J]. Alloys Compounds, 2000, 300-301: 88-94.
    [181] Zheng S T., Zhang J., Yang G Y., New solids from old cluster: syntheses and structural characterization of [Zn(2,2' bipy)3]2[As8V14O42(H2O)] 4H2O and [Zn(2,2' bipy)(dien)]2[As8V14O42(H2O)] 2H2O[J]. Mol. Struct., 2005, 752: 25-31.
    [182] Zhao J W., Yu L., Wang J P., et al. Dawson结构杂多化合物[4,4' bipyH]2H4(P2W18O62) [4, 4'-bipy]1.5 4H2O的水热合成及晶体结构[J]. Chin. Applied Chem., 2005, 22: 1324-1328.
    [183]彭正合,潘庆才,任小明,等.二氰基二硫纶和邻菲啰啉二酮的镍(Ⅱ)、铜(Ⅱ)、锌(Ⅱ)配合物的合成与性质[J].无机化学学报, 1997, 13: 351-354.
    [184]Zhang K L., Synthesis, characterization and crystal structure of a novel coordination compound based on the mixed N and O donor ligands exhibiting the metal ion bridged ligand–ligand interaction: [Zn(2,2′bipy)(Phmal)(H2O)] 2H2O[J]. Mol. Struct., 2005, 779, 11–15.
    [185]Zhang H Y., Characterization of supramolecular (H2O)18 water morphology and water methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host[J]. Alloys Compounds, 2008, 464: 277–281.
    [186]Sadakane M., Steckhan E., Electrochemical properties of polyoxometalates as electrocatalysts[J]. Chem. Rev., 1998, 98(1): 219-238.
    [187] Pope M T., Papaconstantinou E., Heteropoly blues II. Reduction of 2:18 tungstates[J]. Inorg. Chem., 1967, 6(6): 1147-1152.
    [188] Prenzler P D., Boskovic C., Bond A M., et al. Coupled electron and proton-transfer processes in the reduction ofα-[P2W18O62]6– andα-[H2W12O40]6– as revealed by simulation of cyclic voltammograms[J]. Anal. Chem., 1999, 71(17): 3650-3656.
    [189] Papadakis A., Souliotis A., Papaconstantinou E., Functionalization of electrodes with polyoxometalates P2Mo18O626– and P2W18O626 [J]. Electroanal. Chem., 1997, 435: 17-21.
    [190]Baker L C W., Glick D C., Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation[J]. Chem. Rev., 1998, 98: 3-50.
    [191] Müller A., Peters F., Pope M T., et al. Polyoxometalates: Very large clusters nanoscale magnets[J]. Chem. Rev., 1998, 98: 239-271.
    [192]王敬平,赵俊伟,牛景杨. Dawson结构多金属氧酸电荷转移化合物[CH3NH2CH3]2[CH3NHCH3]4H4[P2W18O62] H2O[J].应用化学,2004, 21(6): 383-387.
    [193]Mallah T., Thiébaut M., Verdaguer, et al. High Tc molecular based magnets: ferrimagnetic mixed valence chromium(III) chromium(II) cyanides with Tc at 240 and 190 Kelvin [J]. Science, 1993, 262: 1554-1557.
    [194]程鹏,廖代正,阎世平,等.外源桥和互变异构对-酚氧Schiff碱双核铜(Ⅱ)配合物磁性的影响[J].中国科学(B缉), 1996, 26(2): 97-104.
    [195]Nakatani K., Bergerat P., Codjovi E., et al. Optimization of a molecular based [manganese copper] magnet: MnCu(pbaOH)(H2O)2 (pbaOH = 2 hydroxy 1,3 propylenebis(oxamato)) with Tc = 30 K[J]. Inorg. Chem., 1991, 30(21): 3977-3978.
    [196]Biradha K., Domasevitch K V., Moulton B., et al. Covalent and noncovalent interpenetrating planar networks in the crystal structure of {[Ni(4,4’-bipyridine)2(NO3)2 2pyrene}n[J]. Chem. Comm., 1999, (14): 1327-1328.
    [197] Biradha K., Fujita M., Co ordination polymers containing square grids of dimension 15×15 -[J]. J. Chem. Soc., Dalton Trans., 2000, (21): 3805-3810.
    [198]Yaghi O M., O'Keeffe M., Ockwig N., Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705-714.
    [199] Pan L., Ching N., Huang X Y., et al. Reactions and reactivity of co-bpdc coordination polymers (bpdc = 4,4’biphenyldicarboxylate) [J]. J. Inorg. Chem. 2000, 39: 5333-5340.
    [200] Kitaura R., Fujimoto K., Noro S., et al. A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc=pyrazine 2,3 dicarboxylate; dpyg=1,2 di(4 pyridyl)glycol) [J]. Angew. Chem. Int. Ed., 2002, 41: 133-135.
    [201] Sekiya R., Nishikiori S., Design and structural extension of a supramolecular inclusion compound host made by the formation of dimers of isonicotinic acid and thiocyanato coordinating bridges [J]. Chem. Eur. J. 2002, 8(20): 4803-4810.
    [202] Lu W G., Su C Y., Lu T B., et al. Two stable 3D metal-organic frameworks constructed by nanoscale cages via sharing the single layer walls [J]. J. Am. Chem. Soc., 2006, 128: 34-35.
    [203] Zou R Q., Zhang R Q., Du M., et al. Highly thermostable metal–organic frameworks (MOFs) of zinc and cadmium 4,4’(hexafluoroisopropylidene)diphthalates with a unique fluorite topology [J]. Chem. Commun., 2007, 2467-2469.
    [204] Zhang L Y., Zhang J P., Lin Y Y., et al. Syntheses, structures, and photoluminescence of three coordination polymers of cadmium dicarboxylates[J]. Cryst. Growth Des., 2006, 7: 1684-1689.
    [205]Basak S., Sen S., Marschner C., et al. Synthesis, crystal structures and fluorescence properties of two new di and polynuclear Cd(II) complexes with N2O donor set of a tridentate Schiff base ligand[J]. Polyhedron. 2008, 27: 1193-1200.
    [206] Hao N., Shen E H., Li Y G., et al. Novel cadmium(II) adipate coordination polymers with structural transformation via oxalate ligand: syntheses, structures and fluorescence properties[J]. Eur. J. Inorg. Chem., 2004, 4102-4107.
    [207]Liu G X., Huang Y Q., Chu Q., et al. Effect of N donor ancillary ligands on supramolecular architectures of a series of zinc(II) and cadmium(II) complexes with flexible tricarboxylate[J]. Cryst. Growth Des., 2008, 8: 3233-3245.
    [208] Zou R Q., Bu X H., Du M., et al. A hydrogen bonded 3D coordination network of CuII nitrate with pyridine 2,6 dicarboxylic acid and 3 (2 pyridyl)pyrazole: hydrothermalsynthesis, characterization and crystal structure[J]. J. Mol. Struct., 2004, 707: 11-15.
    [209]Duan L Y., Li Y G., Liu F C., et al. Hydrothermal synthesis and crystal structures of two novel rare earth coordination polymers based on pyridine 2,6 dicarboxylic acid[J]. J. Mol. Struct., 2004, 689: 269-274.
    [210]Wang X L., Qin C., Wang E B., et al. A novel three dimensional supramolecular network containing one dimensional trapezoid channels based on nickel and mixed organic ligands assembly[J]. J. Mol. Struct., 2004, 692: 187-193.
    [211]LüJ., Shen E H., Li Y G., et al. A novel pillar layered organic-inorganic hybrid based on lanthanide polymer and polyomolybdate clusters: new opportunity toward the design and synthesis of porous framework[J]. Cryst. Growth Des., 2005, 5: 65-67.
    [212]Ghosh S K., Ribas J., Bharadwaj P K., Characterization of 3 D metal-organic frameworks formed through hydrogen bonding interactions of 2 D networks with rectangular voids by CoII and NiII pyridine 2,6 dicarboxylate and 4,4’bipyridine or 1,2 di(pyridyl)ethylene[J]. Cryst. Growth Des., 2005, 5: 623-629.
    [213]Chen W., Wang J Y., Chen C., et al. Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates[J]. Inorg. Chem., 2003, 42: 944-946.
    [214]Zhang L Y., Liu G F., Zheng S L., et al. Helical ribbons of cadmium(II) and zinc(II) dicarboxylates with bipyridyl like chelates - syntheses, crystal structures and photoluminescence[J]. Eur. J. Inorg. Chem., 2003, 2965-2971.
    [215]Fan J., Zhu H F., Okamura T., et al. Three dimensional photoluminescent pillared metal organic framework with 4.82 topological channels obtained from the assembly of cadmium(II) acetate and trimellitic salt[J]. New J. Chem., 2003, 27: 1409-1411.
    [216] Dai J C., Wu X T., Fu Z Y., et al. Synthesis, structure, and fluorescence of the novel cadmium(II)-trimesate coordination polymers with different coordination architectures[J]. Inorg. Chem., 2002, 41: 1391-1396.
    [217]Tamai N., Yamazaki T., Yamazaki I., Two dimensional excitation energy transfer between chromophoric carbazole and anthracene in Langmuir Blodgett monolayer films[J]. J. Phys. Chem. 1987, 91: 841-845.
    [218]Guo W Y., Peng Z H., Li D C., et al. Synthesis and structural characterization of zinc(Ⅱ) and cadmium(Ⅱ) complexes with 2 oxo 1, 3 dithiole 4, 5 dithiolate and 1, 10 phenanthroline[J]. Polyhedron, 2004, 23: 1701-1707.
    [219]Thuéry P., Villiers C., Jaud J., et al. Uranyl based metallamacrocycles: tri and tetranuclear complexes with (2R,3R,4S,5S) tetrahydrofurantetracarboxylic acid[J]. J. Am. Chem. Soc., 2004, 126: 6838-6839.
    [220] Sars-eld M J., Steele H., Helliwell M., et al. Uranyl bis iminophosphorane complexes with in and out of plane equatorial coordination[J]. J. Chem. Soc., Dalton Trans., 2003, (7): 3443-3449.
    [221]Rose D., Chang Y D., Chen Q., et al. Reactions of uranyl thiolate complexes with molecular oxygen: syntheses and crystal and molecular structures of the uranyl thiolate peroxo species (HNEt3)2[(UO2)2(O2)(SC4N2H3)4] and (HNEt3)[H(UO2)2(O2)(SC4N2H2Me)4].cntdot.Me2CO.cntdot.0.5Et3N and of the Uranyl Thiolate Oxo Cluster (HNEt3)2[(UO2)4(O)2(SC5NH4)6].cntdot.Me2CO[J]. Inorg. Chem., 1994, 33: 5167-5168.
    [222] Cotton F A., Wilkinson G., Advanced Inorganic Chemistry, 5th ed., New York: Wiley, 1988: 992-106.
    [223] Frisch M., Cahill C L., Syntheses, structures and fluorescent properties of two novel coordination polymers in the U–Cu–H3pdc system[J]. J. Chem. Soc., Dalton Trans., 2005, (8): 1518-1523.
    [224] Bean A C., Peper S M., Albrecht Schmitt T E., Structural relationships, interconversion, and optical properties of the uranyl iodates, UO2(IO3)2 and UO2(IO3)2(H2O): a comparison of reactions under mild and supercritical conditions[J]. Chem. Mater., 2001, 13: 1266-1272.
    [225] Duval P B., Burns C J., Clark D L., et al, Synthesis and structural characterization of the first uranium cluster containing an isopolyoxometalate core[J]. Angew. Chem., Int. Ed. Engl., 2001, 40(18): 3357-3361.
    [226]Salmon L., Thuéry P., Rivière E., et al, Versatility of the nature of the magnetic Cu(II)–U(IV) interaction. Syntheses, crystal structures and magnetic properties of Cu2U and CuU compounds[J]. J. Chem. Soc., Dalton Trans., 2003, 2872-2880.
    [227]McCleskey T M., Burns C J., Tumas W., Uranyl photochemistry with alkenes: distinguishing between H atom abstraction and electron transfer[J]. Inorg. Chem., 1999, 38: 5924-5925.
    [228] Hutching G J., Heneghan C S., Hundson I D., et al, Uranium oxide based catalysts for the destruction of volatile chloro organic compounds[J]. Nature, 1996, 384: 341-343.
    [229]Janiak C., A critical account onπ–πstacking in metal complexes with aromatic nitrogen containing ligands[J]. J. Chem. Soc., Dalton Trans. 2000, 3885-3896.
    [230]中本一雄.无机和配位化合物的红外和拉曼光谱[M].第4版.北京:化学工业出版社,1991: 288 - 290.
    [231]Rabinowitch E., et al, Spectroscopy and photochemistry of uranyl compounds[M]. Oxford, 1964.
    [232] Gup R., Kirkan B., Synthesis and spectroscopic studies of mixed ligand and polymeric dinuclear transition metal complexes with bis acylhydrazone tetradentate ligands and 1,10-phenanthroline[J]. Spectrochimica Acta: A, 2006, 64: 809-815.
    [233]Jiang Y S., Yu Z T., Liao Z L., et al, Syntheses and photoluminescent properties of two uranyl containing compounds with extended structures[J]. Polyhedron, 2006, 25: 1359-1366.
    [234]Xie Y R., Zhao H., Wang X.S., et al, 2D chiral uranyl(VI) coordination polymers with second harmonic generation response and ferroelectric properties[J]. Eur. J. Inorg. Chem., 2003, 3712-3715.
    [235]Frisch M., Cahill C L., Syntheses, structures and fluorescent properties of two novel coordination polymers in the U–Cu–H3pdc system[J]. J. Chem. Soc., Dalton Trans., 2005, 1518-1523.
    [236]Addleman R S., Wai C M., Luminescence quenching of UO2(NO3)2 2TBP in supercriticalfluid CO2 [J]. Phys. Chem. Chem. Phys., 1999, 1: 783-790.
    [237] Leung A F., Hayashibara L., Spadaro J., Fluorescence properties of uranyl nitrates[J]. J. Phys. Chem. Solids, 1999, 60: 299-304.
    [238]Moulder J F., Stickle W F., Sobol P E. et al, Handbook of x ray photoelectron spectroscopy[M], USA: Perkin Elmer Corporation, 1992: 213-217.
    [239]Baker L C W., Glick D C., Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation[J]. Chem. Rev., 1998, 98: 3-50.
    [240] Müller A., Reuter H., Dillinger S., Supramolecular inorganic chemistry: small guests in small and large hosts[J]. Angew. Chem. Int. Ed. Engl., 1995, 34: 2328-2361.
    [241] Vanpelt C E., Crooks W J., Choppin G R. Stability constant determination and characterizationn of the complexation of trivalent lanthanides with polyoxometalates[J]. Inorg. Chim. Acta, 2003, 346: 215 222.
    [242] Wang J P., Wei M L., Niu J Y. Synthesis, crystal structure and characterization of a novel cerium(III) coordination compound based on the Dawson cluster[J]. Trans. Met. Chem., 2004, 29: 81-85.
    [243] Khenkin A M., Neumann R., Oxygen transfer from sulfoxides: oxidation of alkylarenes catalyzed by a polyoxomolybdate [PMo12O40]3–[J]. Am. Chem. Soc., 2002, 124: 4198-4199.
    [244] Misono M., Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten[J]. Catal. Rev. Sci. Eng., 1987, 29: 269-321.
    [245] Wang E B, Zhou Y S. Synthesis, characterization and studies on the third order optical non linearities of novel charge transfer heteropoly complexes (C8H12N2)5H7PMo12O40 and (C8H12N2)3H3PMo12O40 5H2O[J]. Transition Met. Chem., 1996, 21: 447-450.
    [246] Vera F., Tejedor R M., Romero P., et al. Light driven supramolecular chirality in propeller like H bonded complexes showing columnar mesomorphism[J]. Angew. Chem. Int. Ed., 2007, 46: 1873-1877.
    [247] Mizuno N., Misono M., Heterogeneous catalysis[J]. Chem. Rev., 1998, 98: 199-217.
    [248] Besserguenev A V., Dickman M H., Pope M T., Robust, alkali stable, triscarbonyl metal derivatives of hexametalate anions, [M6O19{M’CO)3}n](8 n)–(M=Nb, Ta; M’=Mn, Re; n=1, 2)[J]. Inorg. Chem., 2001, 40: 2582-2586.
    [249] Braga D., Grepioni F., Desiraju G R., Crystal engineering and organometalic architecture chemical reviews[J]. Chem. Rev., 1998, 98: 1375-1405.
    [250] Quiocho F A., Wilson D K., Vyas N K., Substrate specificity and affinity of a protein modulated by bound water molecules[J]. Nature, 1989, 340: 404-407.
    [251] Wolde T., Frenkel D., Enhancement of protein crystal nucleation by critical density fluctuations[J]. Science, 1997, 277: 1975-1978.
    [252] Raghuraman K., Katti K K., Barbour L J., Characterization of supramolecular (H2O)18 water morphology and water methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host[J]. Am. Chem. Soc., 2003, 125(23): 6955-6961.
    [253] Ludwig R., Water: von clustern in die flüssigkeit[J]. Angew. Chem., 2001, 113(10): 1856-1876.
    [254] Nauta K., Miller R E., Formation of cyclic water hexamer in liquid helium: the smallest piece of ice[J]. Science, 2000, 287: 293-295.
    [255] Cheng L., Lin J B., Gong J Z., et al. Encapsulation of water cluster, meso helical chain and tapes in metal organic frameworks based on double stranded Cd(II) helicates and carboxylates[J]. Crystal Growth Design, 2006, 6(12): 2739-2746.
    [256]Hu N H., Li Z G., Xu J W., et al. Self assembly of a water chain with tetrameric and decameric clusters in the channel of a mixed valence CuICuII complex[J]. Crystal Growth Design, 2007, 7(1): 15-17.
    [257]Ghosh S K., Bharadwaj P K., Supramolecularly assembled pentameric and octameric water clusters stabilized by a mixed complex of Ni(II)[J]. Inorg. Chim. Acta, 2006, 359: 1685-1689.
    [258]Wei M L., He C., Hua W J., et al. Large protonated water cluster H+(H2O)27 in a 3D metal-organic framework[J]. Am. Chem. Soc., 2006, 128: 13318-13319.
    [259]Fletcher N H., The chemical physical physics of ice, Cambridge, Cambridge University Press, 1970.
    [260] Gregory J K., Clary D C., Liu K., et al. The water dipole moment in water clusters[J]. Science 1997, 275: 814-817.
    [261]Matsumoto M., Saito S., Ohmine I., Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing[J]. Nature, 2002, 416: 409-413.
    [262] Weinhold F., Quantum cluster equilibrium theory of liquids: General theory and computer implementation[J]. J. Chem. Phys., 1998, 109: 367-372.
    [263] Ugalde J M., Alkorta I., Elguero J., Water clusters: towards an understanding based on first principles of their static and dynamic properties[J]. Angew. Chem., Int. Ed. 2000, 39: 717-721.
    [264]Wang J P., Guo D J., Niu J Y., Dawson结构聚金属氧酸盐有机无机复合物[{Y(DMSO)5(H2O)3}{Y(DMSO)8}][P2W18O62] 2DMSO 2H2O的合成、性质及晶体结构[J]. Chin. Inorg. Chem., 2003, 19: 579-584.
    [265] Zhao J W., Yu L., Wang J P., et al. Dawson结构杂多化合物[4,4’-bipyH]2H4(P2W18O62) [4, 4’-bipy]1.5 4H2O的水热合成及晶体结构[J]. Chin. Applied Chem., 2005, 22: 1324-1328.
    [266]Moreira A B., Oliveira H P M., Atvars T D Z., et al. Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy[J]. Anal. Chim. Acta, 2005, 539: 257-261.
    [267]Dong B X., Peng J., Zhang P P., et al. Hydrothermal synthesis and crystal structure of anovel Keggin polyoxoanion templated multichain coordination polymer with a flexiblebis(imidazole) ligand[J]. Inorg. Chem. Commun., 2007, 10(7): 839-842.
    [268]Hu J., Zhou L., Han X., et al. The complex morphologies of Ti-MCM-41 templated by Gemini surfactant[J]. Materials Research Bulletin, 2007(42): 102-112.
    [269]Rajabi Hamane M., Engell S., Time optimal production of a specified particle size distribution in emulsion polymerization[J]. Chem. Eng. Sci., 2007, 62: 5282– 5289.
    [270]Jose Ramos, Jacqueline Forcada, Which are the mechanisms governing in cationic emulsion polymerization-[J]. European Polymer Journal, 2007, 43: 4647–4661.
    [271]Thickett S C., Gilbert R G., Emulsion polymerization: state of the art in kinetics and mechanisms[J]. Polymer, 2007, 48: 6965-6991.
    [272]Ma Z., Sun W H., Zhu N., Preparation of silica supported late transition metal catalyst and ethylene polymerization[J]. Polym. Int., 2002, 51: 349-352.
    [273] Claverie J P., Soula R., Catalytic polymerizations in aqueous medium[J]. Prog. Polym. Sci., 2003, 28: 619–662.
    [274] Yohei O., Yasuhiro U., Highly efficient heterogeneous aqueous Kharasch reaction with an amphiphilic resin supported ruthenium catalyst[J]. Adv. Synth. Catal., 2008, 350: 1771–1775.
    [275]刘金辉,李效玉,焦书科.以阳离子乳化剂进行丙烯酸丁酯-苯乙烯乳液共聚的动力学研究[J].高分子学报, 1995, 4: 472 476.
    [276] Hamper B C., Direct synthesis ofβketo methylenetriphenylphosphoranes from readily available phosphonium salts[J]. J. Org. Chem., 1988, 53: 5558-5562.
    [277]Nakaoki T., Kobayashi M., Local conformation of glassy polystyrenes with different stereoregularity[J]. Journal of Molecular Structure, 2003, 655: 343–349.
    [278]Longo P., Grassi A., Oliva L., et al. Some 13CNMR evidence on isotactic polymerization of styrene[J]. Makromol. Chem., 1990, 191: 237-242.
    [279]Kawamura T., Toshima N., Matsuzaki K., Comparison of 13CNMR spectra of polystyrenes having various tacticities and assignment of the spectra[J]. Macromol. Rapid Commun., 1994, 15: 479-486.
    [280]Ishihara N., Seimiya T, Kuramoto M, et al. Crystalline syndiotactic polystyrene[J]. Macromolecules, 1986, 19: 2464-2465.
    [281] Chen T K., Harwood H J., Quaternary aromatic carbon resonance spectra of epimerized isotactic polystyrene[J]. Macromol. Rapid Commun., 1983, 4(7): 463-468.
    [282] Nakaoki T., Tashiro K., Kobayashi M., Formation of regular conformational sequences in the gels of atactic polystyrenes with various stereoregularities[J]. Macromolecules, 2000, 33: 4299-4300.
    [283]Kobayashi M., Nakaoki T., Ishihara N., Polymorphic structures and molecular vibrations of syndiotactic polystyrene[J]. Macromolecules, 1989, 22: 4377-4382.
    [284]Johnson J K., Killian C M., Brookhart M., et al. Palladium(II) and nickel(II) catalyzed olefin polymerization[J]. Polym. Prepr., 1996, 37: 254-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700