用户名: 密码: 验证码:
铋酸盐超导体的熔盐制备技术以及掺杂效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在探索制备高稳定性铋酸盐超导材料的新技术以及研究铋酸盐超导体的化学掺杂效应,为在该体系继续探索超导新材料提供依据。论文涉及主要研究内容如下:微观形貌可控的BaPb_(1-x)Bi_xO_3(BPBO)样品的熔盐制备技术,性能高度稳定的Ba_(1-x)K_xBiO_3(BKBO)样品的熔盐制备技术,BKBO和BPBO超导体系中的绝缘体-金属转变机理研究,La和Pr掺杂对Ba_(0.6)K_(0.4)BiO_3样品超导电性的影响,Hg掺杂对BaPb_(0.75)Bi_(0.25)O_3样品超导电性的影响,以及Hg掺杂对MgB_2超导性能的影响。
     论文第三章开发出一种BPBO熔盐制备新技术。通过调整制备工艺,可控制样品的晶粒形貌和尺寸等,实现BPBO超导体的可控生长。本章最后,对制备BPBO超导体熔盐反应机理进行分析研究,突出体现了熔盐法制备BPBO样品的优越性。此为论文创新点之一。另一方面,利用固相反应法,溶胶凝胶法和高温高压法制备BaPb_(0.75)Bi_(0.25)O_3超导体,并与熔盐法制备样品相比较,发现熔盐法制备样品的超导转变温度明显高于其它样品。熔盐法的成功应用为BPBO超导体的制备提供了一个新的途径,也为可控新型高温超导材料的研究提供了有价值的参考。
     在BKBO的制备过程中,开发出了一种新的熔盐制备技术。通过改良传统熔盐法,并研究反应原料配比,熔盐量,反应温度和反应时间对样品组分和超导电性的影响,成功制备出性能高度稳定的系列单相BKBO超导体。此为论文创新点之二。此研究解决了BKBO化学稳定性差和单相BKBO样品制备困难的问题,为大规模制备BKBO超导体奠定了基础。
     此后,将熔盐法应用于YBa_2Cu_3O_7和Na_xCoO_2超导前驱体的制备,为高效低成本地制备这类氧化物超导材料提供了一个新的途径。此为论文创新点之三。熔盐法只需单步反应即可完成,操作简单方便,制备温度低,所需设备少且对设备要求较低,适合应用于大规模生产,推动BKBO及更多超导材料在实际生产中的应用进程。进一步改进熔盐法可用于制备单晶材料,为理论研究提供高品质样品。
     第五章和第六章分别研究掺杂对BKBO和BPBO样品晶体结构及超导电性的影响。其中La和Pr的掺杂在不同程度上抑制了Ba_(0.6)K_(0.4)BiO_3的超导电性。Hg掺杂则导致BaPb_(0.75)Bi_(0.25)O_3样品超导电性的“再入”现象,即随着掺杂浓度的增加,体系的超导转变经历以下过程:超导电性被抑制到完全消失然后再次进入超导相,使得超导相图中出现两个超导区。文中通过电子结构模型的构建,对这一现象的机理进行解释。此为论文创新点之四。
     针对BKBO和BPBO系统,分别从能带理论出发分析其绝缘体—金属转变机理,并定性分析其超导电性与宏观晶格畸变的关系,建立简单钙钛矿结构化合物中的超导模型。此为论文创新点之五。此理论的提出为在该体系中探索新超导材料提供了有价值的参考。
     论文最后一部分研究Hg掺杂对MgB_2样品超导电性及性能的影响。高压条件下合成的Mg_(1.05-x)(HgO)_xB_2样品临界电流密度显著提高。HgO与反应原料中的镁结合形成MgHg合金相,高温高压条件下,MgHg合金呈液态,均匀分布在MgB_2基体中,一方面抑制晶粒长大,另一方面使氧化物杂质在MgB_2样品中均匀分布,有效提高样品的临界电流密度,其机理与其它氧化物掺杂提高临界电流密度机制有本质的区别。与其它掺杂样品相比较,利用高温高压技术合成的Hg掺杂MgB_2样品,杂相承载能力增强并有效提高了样品的应用性能,降低了制备过程中对反应原料纯度相当高的要求,有利于工业生产应用。此为论文创新点之六。若进一步对反应初始原料配比及反应条件进行优化,可能得到性能更为优越的产品,从而为Hg掺杂MgB_2超导体提供更为有利的应用前景。
In this dissertation, it aims at exploring new techniques of preparing superconducting bismuthate with high stability and the doping effet on BaPb_(1-x)Bi_xO_3 (BPBO) and Ba_(1-x)K_xBiO_3 (BKBO) systems. These reseaches will provide for the further exploration of new superconductors. The main contents involved are presented as follows: molten salt method preparation of BPBO with controllable microstructures and BKBO with high stabibility, Insulator-Metal transition model in bismuthate, La or Pr doping effect on the superconductivity of Ba_(0.6)K_(0.4)BiO_3, Hg doping effect on BaPb_(0.75)Bi_(0.25)O_3 and MgB_2.
     In Chapter 3, a new molten salt technique is developed in preparing BPBO. In this process, the crystal configuration and size can be controlled by accommodating the reaction conditions which lead to the controllable growth of crystals. At the last part, the molten salt mechanism of synthesizing BPBO is studied which have gave predominance to the advantages of molten salt method in preparing BPBO samples with high quality. This can be recognized to be the first innovative point. On the other hand, BaPb_(0.75)Bi_(0.25)O_3 superconductors have been synthesized by solid state reaction, sol-gel and high temperature high pressure methods. Compared with the samples synthesized by above methods, it possesses obvious higher superconducting transition temperature for the sample prepared by molten salt method. The successful application of molten salt method not only provides a new route for BPBO preparation, but also refers to the development of new controllable high temperature superconductors.
     In the process of preparing BKBO, a new molten techniqure is also developed. We have optimized the traditional molten salt method by accommodating the raw materials, molten salts, sintering temperature and time to investigate the effects on the components and superconductivity of BKBO. Finally succeed in synthesizing single phase BKBO samples with high stability. This can be recognized to be the second innovative point. This research has successfully sovled the problems of low stability in BKBO and the difficulties in preparing single phase BKBO samples which become to the groundwork for industrial production of BKBO superconductors.
     The molten salt method is then successfully popularized into other superconductors, such as YBa_2Cu_3O_7和NaCoO_2. A newly preparation route has been presented in such oxide superconductors. This can be recognized to be the third innovative point. Considerable merits of molten salt method can be summarized as follows: accomplish at one step, easy to operate, synthesize at low temperatures and low facility request. These are beneficial to commercial production which will promote the practical applications of both BKBO and more superconductors. Besides, High quality single crystals can be offered to theoretical researches if this molten salt technique would be further modified.
     In chapter 5 and 6, the doping effects on crystal structures and superconductivity of BKBO and BPBO samples are studied. La or Pr doping suppress the superconductivity of Ba_(0.6)K_(0.4)BiO_3 differently. Hg doping leads to the phenomenon of superconductivity reentrant in BaPb_(0.75)Bi_(0.25)O_3 samples. That means the superconductivity is first suppressed to vanish and then recovered with the doping level increased which lead to the appearance of two superconducing areas in the phase diagram. Explarations of this phenomenon have been illustrated with the electronic structure model. This can be recognized to be the forth innovative point.
     For BKBO and BPBO, analyses on the Insulator-Metal transition mechanism of these two systems are also carried out from the energy band point of view. Qualitative analysis suggests that the superconductivity of bismuthate and the distortion of structures are closely correlated which might be exists in the compounds with simple provskite structure. This can be recognized to be the fifth innovative point. This theory on superconductivity might guide the exploration of new bismuthate superconductors.
     The last part of this dissertation focuses on the doping effect of Hg in MgB_2. At high temperature and high pressure, the critical current density of the samples is definitely enhanced. HgO reacts with the raw materials in MgB_2 which lead to the formation of MgHg alloy which presented to be liquid at high temperature and high pressure. In this case, MgHg alloy will restrain the growth of MgB_2 crystals and make large amount impurity particles homogeneously dispersed in the MgB_2 matrix which would act as new normal point defects and enhance the critical current density effectively. For the mechanism of critical current enhancement, there are intrinsic differences between Hg doping and other element doping. Hg doped MgB_2 samples synthesized at high pressure could not only enhance properties in application but also carry more impurities which would reduce the requirements of high purities in the synthesizing process which is favorable in commercial production. This can be recognized to be the last innovative point. Further accomodation of the mercury addition level might optimize the performance of MgB_2 which would turn into a potential technique to prepare MgB_2 bulks and wires with high quality on an industrial scale.
引文
[1]H.K.Onnes,The resistance of pure mercury at helium temperature,Comm.Phys.Lab.Univ.Leiden,1911,120b:122b
    [2]W.Meissner and R.Ochsenfeld,Ein neuer Effekt bei Eintritt der Supraleitfahigkeit,Naturwiss,1933,21:787-788
    [3]I.A.Parinov,Microstructure and Properties of High-Temperature Superconductors,springer,2007,18
    [4]B.T.Matthias,T.H.Geballe,R.H.Willens,E.Corenzwit and G.W.Hull,Superconductivity of Nb_3Ge,Phys.Rev.,1965,139:A1501-A1503
    [5]M.K.Wu,R.L.Meng,S.Z.Huang and C.W.Chu,Superconductivity in BaPb_(1-x)Bi_xO_3near the metal-semiconductor phase boundary under pressure,Phys.Rev.B,1981,24:4075-4078
    [6]R.J.Cava,B.Batlogg,J.J.Krajewski,R.Farrow,L.W.Rupp Jr.,A.E.White,K.Short,W.F.Peck and T.Kometani,Superconductivity near 30 K without copper:the Ba_(0.6)K_(0.4)BiO_3 perovskite,Nature(London),1988,332:814-816
    [7]J.G.Bednorz and K.A.Muller,Possible high T_c superconductivity in the Ba-La-Cu-O system,Physica B,1986,64:198-193
    [8]M.K.Wu,J.R.Ashburn,C.J.Torng,R.L.Meng,P.H.Hor,L.Gao,Z.J.Huang,Y.Q.Wang and C.W.Chu,Superconductivity at 93K in a new mixed phase Y-Ba-Cu-O compound,Phys.Rev.Lett.,1987,58:908-910
    [9]赵忠贤,陈立泉,杨乾声,黄玉珍,陈赓华,唐汝明,刘贵荣,崔长庚,陈烈,王连忠,郭树权,李山林,毕建清,Ba-Y-Cu氧化物液氮温区的超导电性,科学通报,1987,32:412-414
    [10]H.Maeda,Y.Tanaka,M.Fukutomi and T.Asano,A New High-T_c Oxide Superconductor without a Rare Earth Element,Jpn.J.Appl.Phys.,1988,27:L209-L210
    [11]Z.Z.Sheng and A.M.Hermann,Bulk superconductivity at 120K in the T1-Ca/Ba-Cu-O system,Nature,1988,332:138-139
    [12]A.Schilling,M.Cantoni,J.D.Guo and H.R.Ott,Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system,Nature,1993,363:56-58
    [13]J.Nagamatsu,N.Nakagawa,T.Muranaka,Y.Zenitani and J.Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature, 2001, 410: 63-64
    [14] J.H. Sch(?)n, C. Kloc and B. Batlogg, Superconductivity at 52K in hole-doped C_(60),Nature, 2000, 408: 549-552
    [15] Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L.Sun, F. Zhou and Z. X. Zhao, Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O_(1-x)F_x]FeAs, Chin. Phys. Lett., 2008, 25:2215-2216
    [16] X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen and D. F. Fang, Superconductivity at 43K in SmFeAsO_(1-x)F_x, Nature, 2008, 453: 761-762
    [17] H.Q. Luo, Z.S. Wang, H. Yang, P. Cheng, X.Y. Zhu and H.H. Wen, Growth and characterization of A_(1-x)K_xFe_2As_2 (A = Ba, Sr) single crystals withx = 0-0.4, Supercond.Sci. technol., 2008, 21: 125014-125018
    [18] F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P. M. Wu, Yong-Chi Lee,Yi-Lin Huang, Yan-Yi Chu, Der-Chung Yan, and Maw-Kuen Wu,Superconductivity in the PbO-type structure a-FeSe, Proc. Natl. Acad. Sci. USA, 2008,105: 14262-14264
    [19] M. Tegel, S. Johansson, V. Wei, I. Schellenberg, W. Hermes, R. Pottgen, and D.Johrendt, Synthesis, crystal structure and spin-density-wave anomaly of the iron arsenide-uoride SrFeAsF, 2008, arXiv:cond-mat/0810.2120
    [20] Ivan A. Parinov, Microstructure and Properties of High-Temperature Superconductors,springer, 2007, 2
    [21] H. H. Wen , Developments and Perspectives of Iron-based High-Temperature Superconductors, Advanced materials, 2008, 20: 3764 - 3769
    [22] A.W. Sleight, J.L. Gillson and P.E. Bierstedt, High-temperature superconductivity in the BaPb_(1-x)Bi_xO_3 system, Solid State Commun., 1975, 17: 27-28
    [23] R.J. Cava, B. Batlogg, J.J. Krajewski, R. Farrow, L.W. Rupp Jr.,A.E. White, K. Short,W.F. Peck and T. Kometani, Superconductivity near 30 K without copper- The Ba_(0.6)K_(0.4)BiO_3 perovskite, Nature(London), 1988, 332: 814-816
    [24] S.M. Kazakov, C. Chaillout, P. Bordet, J.J. Capponni, M. Nunez-Requeiro, A. Rysak,J.L. Tholence, P.G. Radaelli, S.N. Putilin and E.V. Antipov, Discovery of a second family of bismuth-oxide-based superconductors, Nature, 1997, 390: 148-150
    [25] N.R. Khasanova, A. Yamamoto, S. Tajima, X.J. Wu and K. Tanabe, Superconductivity at 10.2 K in the K-Bi-0 system, Physica C, 1998, 305: 275-280
    [26]N.R.Khasanova,F.Izumi,T.Kamiyama,K.Yoshida,A.Yamamoto and S.Tajima,Crystal Structure of the K_(0.87)Bi_(0.13)BiO_3 Superconductor,J.Solid State Chem.,1999,144:205-208
    [27]周午纵,梁维耀,高温超导电性基础,上海科学技术出版社,1999,16
    [28]L.F Mattheiss and D.R.Hamann,Electronic- and crystal-structure effects on superconductivity in the BaPb_(1-x)Bi_xO_3 system,Phys.Rev.B,1982,26:2686-2689
    [29]G.K.Wertheim,J.P.Remeika,and D.N.E.Buchanan,Electronic structure of BaPb_(1-x)Bi_xO_3,Phys.Rev.B,1982,26:2120 - 2123
    [30]L.F.Mattheiss and D.R.Hamann,Electronic structure of BaPb_(1-x)Bi_xO_3,Phys.Rev.B,1983,28:4227-4241
    [31]S.Pei,J.D.Jorgensen,B.Dabrowski,D.G.Hinks,D.R.Richards,A.W.Mitchell,J.M.Newsam,S.K.Sinha,D.Vaknin,and A.J.Jacobson,Structural phase diagram of the Ba_(1-x)K_xBiO_3 system,Phys.Rev.B,1990,41:4126-4141
    [32]梁敬魁,车广灿,陈小龙,新型超导体系相关系和晶体结构,科学出版社,498
    [33]L.F.Mattheiss,E.M.Gyorgy and D.W.Johnson,Superconductivity above 20 K in the Ba-K-Bi-O system,Phys.Rev.B,1988,37:3745-3746
    [34]D.Y.Jung,P.Han,S.R.Wilson,and D.A.Payne,Electrochemistry synthesis of single-crystal(Ba_(0.05)K_(0.95))BiO_(3-δ)·6H_2O with the KSbO_3 structure,Materials Research Bulletin,1998,33:1195-1205
    [35]P.D.Han,L.Chang,and D.A.Payne,Top-seeded growth of superconducting Ba_(1-x)K_xBiO_3 crystals by an electrochemical method,J.Crystal Growth,1993,128:798-803
    [36]K.Iwano,Four-step scenario for the phase changes in Ba_(1-x)K_xBiO_3 Melting of a three-dimensional CDW,Synthetic Metals,1999,103:2606-2607
    [37]M.Xie and L.Z.Zhao,Chemical stability of Ba-K-Bi-O superconductor,Chinese Journal of Applied Chemisty,1996,13:49-51
    [38]L.Z.Zhao,The base character of superconducting oxides,Physica C,1993,209:549-552
    [39]M.C.Chang,J.M.Wu,S.Y.Cheng and S.Y.Chen,The effect of ball-milling solvent on the decompositon properties of Ba(Pb_(1-x)Bi_x)O_3,Materials Chemistry and Physics,2001,69:226-229
    [40]W.T.Fu and D.J.W.Ijdo,Crystal structur of superconducting BaPb_(0.7)Bi_(0.15)Sb_(0.15)O_3,Solid State Commun.,2001,118:291-294
    [41] M. Suzuki, Y. Enomoto, T. Murakami and T. Inamura, Preparation and properties of superconducting BaPb_(1-x)Bi_xO_3 thin film by sputtering, Journal of applied physics,1982,53: 1622-1630
    [42] K. Kakimuma and K. Fueki, Composition and superconductivity of BP_xB_yO_z, Solid State Commun., 1998, 105:173-177
    [43] A.Yamamoto, T. Ono, T. Tatsuki, T.Tamura and S.Tajima, La-substitution effects on transport peroperties of APbO_(3-δ) (A = Ba, Sr and Ca), Mat. Res. Bull., 1999,34:1935-1942
    [44] S. Jin, T.H. Tiefel, R.C. Sherwood, A.P. Ramirez, E.M. Gyorgy, G.W. Kammlott, and R.A. Fastnacht, Transport measurement of 32 K superconductivity in the Ba-K-Bi-O system, Appl. Phys. Lett., 1988, 53: 1116-1118
    [45] D.G. Hinks, B. Dabrowski, J.D. Jorgensen, A.W. Mitchell, D.R. Richards, S.Y. Pei and D.L. Shi, Synthesis, structure and superconductivity in the Ba_(1-x)K_xBiO_(3-y) system,Nature, 1988,333:836-838
    [46] J.P. Wignacourt, J.S. Swinnea, H. Steinfink J.B. Goodenough, Oxygen atom thermal vibration anisotropy in Ba_(0.87)K_(0.13)BiO_3, Appl. Phys. Lett., 1988, 53: 1753-1755
    [47] N.L. Jones, J.B. Parise, R.B. Flippen, A.W. Sleight, Superconductivity at 34 K in the K/Ba/Bi/O system, Solid State Chem., 1989, 78: 319-321
    
    [48] M.L. Norton, Electrodeposition of Ba_(0.6)K_(0.4)BiO_3, Mat. Res. Bull., 1989, 24: 1391-1397
    [49] M.L. Norton and H.Y. Tang, Superconductivity at 32 K in electrocrystallized barium potassium bismuth oxide, Chem. Mater., 1991, 3: 431-434
    [50] J.M. Rosamilia, S.H. Glarum and R.J. Cava, Anodic synthesis and characterization of millimeter crystals of Ba_(0.6)K_(0.4)BiO_3, Physica C, 1991, 182: 285-290
    [51] E.S. Hellman, E.H. Hartford, E.M. Gyorgy, Epitaxial Ba_(1-x)K_xBO_3 films on MgO:Nucleation, cracking, and critical currents, Appl. Phys. Lett., 1991, 58: 1335-1337
    [52] R. Hu, A.E. Lee, H.W. Chan and C.L Pettiette-Hall, Superconducting Ba_(1-x)K_xBO_3 thinfilm by in-situ sputtering, IEEE Transactins on Applied Superconductivity, 1993, 3:1556-1558
    [53] R.C. Lacoe, J.P. Wendt and P.M. Adams, Deposition of barium potassium bismuth oxide (BKBO) thin films by laser ablation, IEEE Transactins on Applied Superconductivity,1993, 3:1563-1566
    [54] R.C. Lacoe, J.P. Wendt and P.M. Adams, Deposition of barium potassium bismuth oxide (BKBO) thin films by laser ablation, IEEE T Y. Nagata, A. Mishiro, T. Uchida, M. Ohtsuka and H.Samata,Normal-state transport properties of Ba_(1-x)K_xBiO_3 crystals,J.Phys.Chem.Solids,1999,60:1933-1942.
    [55]S.V.Shiryaev,S.N.Barilo,S.N.Ustinovich,V.V.Fedotova,V.I.Gatalskaya,H.Szymczak,R.Szymczak,M.Baran,Electrochemical growth near the Ba_(1-x)K_xBiO_3(x>0.5)-Ba_(1.7)K_(1.3)Bi_2O_7 boundary and the crystals properties,J.Cryst.Growth,2000,211:471-475.
    [56]D.C.Kim,A.N.Baranov,J.S.Kim,H.R.Kan,B.J.Kim,Y.C.Kim,J.S.Pshirkov,E.V.Antipov and Y.W.Park,High pressure synthesis and superconductivity of Ba_(1-x)K_xBiO_3(0.35<x<1),Physica C,2003,383:343-353
    [57]D.C.Kim,A.N.Baranov,J.S.Kim,H.R.Kang,B.J.Kim,Y.C.Kim,J.S.Pshirkov,E.V.Antipov and Y.W.Park,Superconductivity of Ba_(1-x)K_xBiO_3(0.35<x<1)Synthesized by the High Pressure and High Temperature Technique,Journal of Superconductivity:Incorporating Novel Magnetism,2002,15:331-334
    [58]N.R.Khasanova,K.Yoshida,A.Yamamoto and S.Tajima,Extended range of superconducting bismuthates K_(1-x)A_xBiO_3(A = La,Bi,and Ca),Physica C,2001,356:12-22
    [59]A.N.Baranov,D.C.Kim,J.S.Kim,H.R.Kang,Y.W.Park,J.S.Pshirkov and E.V.Antipov,Superconductivity in the Ba_(1-x)K_xBiO_3 system,Physica C,2001,357-360:414-417
    [60]T.P.Beales,Observation of superconductivity in the Cs-Sr-Bi-Pb-O system,Solid State Commun.,1998,106:673-676
    [61]L.F.Mattheiss and D.R.Hamann,Electronic structure of BaPb_(1-x)Bi_xO_3,Phys.Rev.B,1983,28:4227-4241
    [62]T.M.Rice and L.Sneddon,Real-Space and k→-Space Electron Pairing in BaPb_(1-x)Bi_xO_3,Phys.Rev.Lett.,1981,47:689-692;Physica B,1981,107:661-662
    [63]W.T.Fu,Crystal chemistry of bismuthate-based superconductors:the origin of(local)charge disproportionation Physica C,1995,250:67-74.
    [64]A.P.Menushenkov,On the mechanism of superconductivity in BaBiPbO_3-BaKBiO_3system:analysis of XAFS-spectroscopy data,Nuclear Instruments and Methods in Physics Research A,1998,405:365-369
    [65]A.P.Menushenkov,K.V.Klementev,P.V.Konarev,A.A.Meshkov,S.Benazeth and J.Purans,The double-well oscillating potential of oxygen atoms in perovskite system Ba(K)BiO_3:EXAFS analysis results,Nuclear Instruments and Methods in Physics Research A,2000,448:340-344
    [66]L.Z.Zhao,B.Yin,J.B.Zhang,J.W.Li,C.Y.Xu,M.Xie and S.H.Liu,Synthesis of Ba-K-Bi-O superconductor at 260℃ by direct precipitation from KOH melts,Physica C,1997,723:282-287
    [67]谢刚,熔融盐理论与应用,北京冶金工业出版社,1998,90
    [68]P.Afanasiev and C.Geantet,Synthesis of solid materials in molten nitrates,Coord.Chem.Rev.,1998,178-180:1725-1752
    [69]D.H.Kerridge and Rey.J.Cancela,Molten lithium nitrate-potassium nitrate eutectic:Reaction of some compounds of zinc,J.Inorg.Nucl.Chem.,1975,37:975-978
    [70]D.V.Korolkov,G.P.Kostikova and Y.P.Kostikov,X-ray photoelectron spectra and atom valency distribution in oxide BaPb_(1-x)Bi_xO_3 superconductor,Physica C,2002,383:117-121
    [71]B.A.Baumert,Barium potassium bismuth oxide:A review,J.Supercond.,1995,8:175-181
    [72]J.L.Rehspringer and D.Niznansky,Preparation of Ba_(0.6)K_(0.4)BiO_3 pure superconducting powder,J.Alloys Compd.,1993,195:73-76
    [73]M.H.Miles,Exploration of molten hydroxide electrochemistry for thermal battery applications,J.Appl.Electrochem.,2003,33:1011-1016
    [74]M.H.Shao,P.Liu and R.R.Adzic,Superoxide Anion is the Intermediate in the Oxygen Reduction Reaction on Platinum Electrodes,J.Amer.Chem.Soc.,2006,128:7408-7409
    [75]E.V.Antipov,N.R.Khasanova,J.S.Pshirkov,S.N.Putilin,C.Bougerol,O.I.Lebedev,G.Van Tendeloo,A.N.Baranov and Y.W.Park,The superconducting bismuth-based mixed oxides,Current Applied Physics,2002,2:425-430
    [76]L.F.Mattheiss,Electronic structure of the Ba_(n+1)Pb_nO_(3n+1) homologous series,Phys.Rev.B,1990,42:359-365
    [77]R.J.Cava,P.Gammel,B.Batlogg,J.J.Krajewski,W.F.Peck,Jr.,L.W.Rupp,R.Felder and R.B.van Dover,Nonsuperconducting BaSn_(1-x)Sb_xO_3:The 5s-orbital analog of BaPb_(1-x)Bi_xO_3,Phys.Rev.B,1990,42:4815-4818
    [78]D.E.Cox and A.W.Sleight,Crystal structure of Ba_2Bi~(3+)Bi~(5+)O_6,Solid State Commun.,1976,19:969-973
    [79]冯瑞,金国均,凝聚态物理学(上卷),高等教育出版社,2003,386
    [80]C.Chaillout,A.Santoro,J.P.Remeika,A.S.Cooper,G.P.Espinosa,M.Marezio, Bismuth valence order-disorder study in BaBiO_3 by powder neutron diffraction,1988,Solid State Commun.,65:1363-1369
    [81]梁敬魁,车广灿,陈小龙,新型超导体系相关系和晶体结构,科学出版社,491
    [82]J.G.Bednorz and K.A.Miiller,Possible high T_c superconductivity in the barium-lanthanum-copper-oxygen system,1986,Z.Phys.B,64:189-193
    [83]T.Matsushita,Flux pinning in superconductors,Springer,2007,413
    [84]A.S.Cooper,E.Corenzwit,L.D.Longinotti,B.T.Matthias,and W.H.Zachariasen,Superconductivity:The Transition Temperature Peak Below Four Electrons per Atom,Proc.Natl.Acad.Sci.USA,1970,67:313-319
    [85]D.Kaczorowski,A.J.Zaleski,O.J.Zogal and J.Klamut,Incipient superconductivity in TaB_2,2001,arXiv:cond-mat/0103571
    [86]D.P.Young,P.W.Adams,J.Y.Chan and F.R.Fronczek,Structure and superconducting properties of BeB_2,2001,arXiv:cond-mat/0104063
    [87]R.R.Silva,J.H.S.Torres,and Y.Kopelevich,Indication of Superconductivity at 35 K in graphite-sulfur composites,Phys.Rev.Lett.,2001,87:147001-147004
    [88]M.I.Eremets,V.V.Struzhkin,H.K.Mao and R.J.Hemley,Superconductivity in Boron,Science,2001,293:272-274
    [89]T.He,Q.Huang,A.P.Ramirez,Y.Wang,K.A.Regan,N.Rogado,M.A.Hayward,M.K.Haas,J.S.Slusky,K.Inumaru,H.W.Zandbergen,N.P.Ong,and R.J.Cava,Superconductivity in the non-oxide perovskite MgCNi_3.2001,arXiv:cond-mat/0103296
    [90]C.Buzea and T.Yamashita,Review of the superconducting properties of MgB_2,Supercond.Sci.Technol.,2001,14:R115-R146
    [91]刘心宇,黄蛹,曾中明,MgB_2超导电性研究进展,材料科学与工程学报,2003 21:104-109
    [92]J.Bardeen,L.N.Cooper,and J.R.Schrieffer,Theory of superconductivity,Phys.Rev.,1957,108:1175-1204
    [93]S.L.Bud'ko,G.Lapertot,C.Petrovic,C.E.Cunningham,N.Anderson,and P.C.Canfield,Boron Isotope Effect in Superconducting MgB_2,Phys.Rev.Lett.,2001,86:1877-1880
    [94]D.G.Hinks,H.Claus and Jorgensen;The complex nature of superconductivity in MgB_2as revealed by the reduced total isotope effect,Nature,2001,411:457-460
    [95]L.Jansen,On the nature of superconductivity in magnesium diboride MgB_2:Quantitative analysis on the basis of indirect-exchange pairing,Physica A,2002,315: 583 -600
    [96] S.M. Kazakov, M. Angst and J. Karpinski, Substitution effect of Zn and Cu in MgB_2 on T_c and structure, 2001, arXiv:cond-mat/0103350
    [97] Y. Moritomo and S. Xu, Effects of transition metal doping in MgB_2 superconductor,2001, arXiv:cond-mat/0104568
    [98] M.R. Cimberle, M. Novak, P. Manfrinetti and A. Palenzona, Magnetic characterization of sintered MgB_2 samples: effect of the substitution or doping with Li, Al and Si, 2001,arXivxond-mat/0105212
    [99] J.Q. Li, L. Li, F.M. Liu, C. Dong, J.Y. Xiang and Z.X. Zhao, Superconductivity and aluminum ordering in Mg_(1-x)Al_xB_2, 2001, arXiv:cond-mat/0104320
    [100] T. Takenobu, T. Itoh, D.H. Chi, K. Prassides and Y. Iwasa, Interlayer carbon substitution in the MgB_2 superconductor, 2001, arXiv:cond-mat/0103241
    [101] A. Bianconi, D.Di Castro, S. Agrestini, G. Campi, N.L. Saini, A. Saccone, S.De Negri and M. Giovannini, A superconductor made by a metal hetero-structure at the atomic limit tuned at the "shape resonance": MgB_2, 2001, arXiv:cond-mat/0103211
    [102] J.Y. Xiang, D.N. Zheng, J.Q. Li, L. Li, P.L. Lang, H. Chen, C. Dong, G.C. Che, Z.A.Ren, H.H. Qi, H.Y. Tian, Y.M. Ni and Z.X. Zhao, Study of superconducting properties and observation of c-axis superstructure in Mg_(1-x)Al_xB_2,2001, arXiv:cond-mat/D104366
    [103] J.S. Slusky, N. Rogado, K.A .Regan, M.A. Hayward, P. Khalifah , T. He ,K. Inumaru,S.M. Loureiro , M.K. Haas , H.W. Zandbergen and R.J. Cava, Loss of superconductivity with the addition of Al to MgB_2 and a structural transition in M_(1-x)Al_xB_2, Nature, 2001, 410: 343-345
    [104] B. Lorenz, R.L. Meng, Y.Y. Xue and C.W. Chu, Thermoelectric power and transport properties of pure and Al-doped MgB_2, 2001, arXiv:cond-mat/0104041
    [105] S.Y. Zhang, J. Zhang, T.Y. Zhao, C.B. Rong, B.G. Shen and Z.H. Cheng, Structure and superconductivity of Mg(B_(1-x)C_x)_2 compounds, 2001, arXiv:cond-mat/0103203
    [106] O. de la Pe~na, A. Aguayo, and R. de Coss, Effects of Al doping on the structural and electronic properties of Mg_(1-x)Al_xB_2, 2002, arXiv.cond-mat/0203003
    [107] Y.G. Zhao, X.P. Zhang, P.T. Qiao, H.T. Zhang, S.L. Jia, B.S. Cao, M.H. Zhu, Z.H. Han,X.L. Wang and B.L. Gu, Influence of the starting composition Mg_(1-x)B_2 on the structural and superconducting properties of the MgB_2 phase, Physica C, 2001, 366: 1-5
    
    [108] B. Lorenz, R.L. Meng, Y.Y. Xue, and C.W. Chu, Thermoelectric power and transport properties of Mg_(1-x)Al_xB_2, Phys. Rev. B, 2001, 64: 052513-052516
    [109] J. Karpinski, N.D. Zhigadlo, G. Schuck, S.M. Kazakov, B. Batlogg, K. Rogacki, R.Puzniak, J. Jun, E. M(?)ller, and P. Wagli, R. Gonnelli, D. Daghero, and G.A. Ummarino V.A. Stepanov, Al substitution in MgB_2 crystals: Influence on superconducting and structural properties, Phys. Rev. B, 2005, 71: 174506-174520
    [110] T. Masui, S. Lee, and S. Tajima, Carbon-substitution effect on the electronic properties of MgB_2 single crystals, Phys. Rev. B, 2004, 70: 024504-024510
    [111] R.A. Ribeiro, S.L. Bud'ko, C. Petrovic, and P.C. Canfield, Carbon doping of superconducting magnesium diboride, Physica C, 2003, 384: 227-236
    [112] S.M. Kazakov, R. Puzniak, K. Rogacki, A.V. Mironov, N.D. Zhigadlo, J. Jun, Ch.Soltmann, B. Batlogg, and J. Karpinski, Carbon substitution in MgB_2 single crystals:Structural and superconducting properties, Phys. Rev. B, 2005, 71: 024533-024542
    [113] C.H. Cheng, Y. Zhao, L. Wang, and H. Zhang, Preparation, structure and superconductivity of Mg_(1-x)Ag_xB_2, Physica C, 2002, 378-381: 244-248
    [114] K. Rogacki, B. Batlogg, J. Karpinski, N.D. Zhigadlo, G. Schuck, S.M. Kazakov, P.Wagli, R. Pu(?)niak, A. Wi(?)niewski, F. Carbone, A. Brinkman, and D. van der Marel,Strong magnetic pair breaking in Mn-substituted MgB_2 single crystals, Phys. Rev. B,2006,73: 174520-174527
    [115] A. M'chirgui, F.B. Azzouz, M. Annabi, M. Zouaoui, and M. B. Salem, Structure and superconductivity of Mg_(1-x)Pb_xB_2, Solid State Commun., 2005, 133: 321-325
    [116] Y.G. Zhao, X.P. Zhang, P.T. Qiao, H.T. Zhang, S.L. Jia, B.S. Cao, M. H. Zhu, Z.H.Han, X.L. Wang and B.L. Gu, Effect of Li doping on structure and superconducting transition temperature of Mg_(1-x)Li_xB_2, Physica C, 2001, 361: 91-94
    [117] Y. Zhao, Y. Feng, D.X. Huang, T. Machi, C.H. Cheng, K. Nakao, N. Chikumoto, Y.Fudamoto, N. Koshizuka and M. Murakami, Doping effect of Zr and Ti on the critical current density of MgB_2 bulk superconductors prepared under ambient pressure,Physica C, 2002, 378: 122-126
    [118] K.M. Elsabawy and E.E. Kandyel, Limitation of mercury doping and Raman spectra of doped Mg_(1-x)Hg_xB_2 superconductor, Materials Chemistry and Physics, 2007, 103:211-215
    [119] E.J. Nicol, J.P. Carbotte, Theory of the critical current in two-band model, Phys. Rev. B,2005,71:054501-054518
    
    [120] http://www.magnet.fsu.edu/magnettechnology/research/asc/overview.html
    [121] T. Matsushita, Flux pinning in superconductors, Springer, 2007, 416
    [122] T. Matsushita, Flux pinning in superconductors, Springer, 2007, 414
    
    [123] L. Lyard, P. Samuely, P. Szabo, T. Klein, C. Marcenat, L. Paulius, K.H.P. Kim, C.U.Jung, H.S. Lee, B. Kang, S. Choi, S.I. Lee, J. Marcus, S. Blanchard, A.G.M. Jansen, U.Welp, G. Karapetrov and W.K. Kwok, Anisotropy of the upper critical field and critical current in single crystal MgB_2, Phys. Rev. B, 66: 180502-180505
    [124] M. Fukuda, E.S. Otabe and T. Matsushita, Magnetic characterization of superconducting MgB_2, Physica C, 2002, 378-381: 239-243
    [125] T. Nakane, H. Kitaguchi and H. Kumakura, Improvement in the critical current density of ex situ powder in tube processed MgB_2 tapes by utilizing powder prepared from an in situ processed tape, Appl. Phys. Lett., 2006, 88: 022513-022515
    [126] Y. Yamada, M. Nakatsuka, K. Tachikawa and H. Kumakura, Effect of Carbide Addition and Hot Pressing on Superconducting Properties of In-situ PIT processed MgB_2 Tapes,J. Cryo. Soc. Jpn., 2005, 40: 493-497
    [127] A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, Synthesis of high J_c MgB_2 bulks with high reproducibility by a modified powder-in-tube method,Supercond. Sci. Technol., 2004, 17: 921-925
    [128] K. Togano, T. Nakane, H. Fujii, H. Takeya and H. Kumakura, An interface diffusion process approach for the fabrication of MgB_2 wire, Supercond. Sci. Technol., 2006, 19:L17-L20
    [129] I. Iwayama, S. Ueda, A. Yamamoto, Y. Katsura, J. Shimoyama, S. Horii and K. Kishio,J_c enhancement of high density MgB_2 bulk made by Premix-PICT-Diffusion method,Physica C, 2007, 460-462: 581-582
    [130] K. Tachikawa, Y. Yamada, M. Enomoto, M. Aodai and H. Kumakura, Structure and critical current of Ni-sheathed PIT MgB_2 tapes with In metal powder addition, Physica C, 2003, 392-396: 1030-1034
    
    [131] T. Matsushita, Flux pinning in superconductors, Springer, 2007, 421
    [132] H. Kumakura, H. Kitaguchi, A. Matsumoto and H. Yamada, Upper critical field,irreversibility field, and critical current density of powder-in-tube-processed MgB_2/Fe tapes, Supercond. Sci. Technol., 2005, 18: 1042-1046
    [133] A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, I. Iwayama, S. Horii and K. Kishio,Universal relationship between crystallinity and irreversibility field of MgB_2, Appl.Phys. Lett., 2005, 86: 212502-212504
    [134] W.K. Yeoh, J.H. Kim, J. Horvat, S.X. Dou and P. Munroe, Improving flux pinning of MgB_2 by carbon nanotube doping and ultrasonication, Supercond. Sci. Technol., 2006,19: L5-L8
    [135] A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwayama, S. Horii and K. Kishio, Effects of B4C doping on critical current properties of MgB_2 superconductor, Supercond. Sci.Technol., 2005, 18: 1323-1328
    [136] H. Yamada, M. Hirakawa, H. Kumakura and H. Kitaguchi, Effect of aromatic hydrocarbon addition on in situ powder-in-tube processed MgB_2 tapes, Supercond. Sci.Technol., 2006, 19: 175-177
    [137] A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, Improved critical current properties observed in MgB_2 bulks synthesized by low-temperature solid- state reaction, Supercond. Sci. Technol., 2005, 18: 116-121
    [138] A. Yamamoto, J. Shimoyama, S. Ueda, I. Iwakuma, Y. Katsura, S. Horii and K.Kishio. Relationship between Crystallinity and Critical Current Properties of MgB_2 Bulks, J. Cryo. Soc. Jpn., 2005, 40: 466-472
    [139] M. Kiuchi, H. Mihara, K. Kimura, T. Haraguchi, E.S. Otabe, T. Matsushita, A.Yamamoto, J. Shimoyama and K. Kishio, Critical current characteristics in MgB_2 bulks,Physica C, 2006, 445-448: 474-477
    
    [140] T. Matsushita, Flux pinning in superconductors, Springer, 2007, 422
    [141] Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N.Koshizuka and M. Murakami, High critical current density of MgB_2 bulk superconductor doped with Ti and sintered at ambient pressure, Appl. Phys. Lett., 2001,79: 1154-1156
    [142] Y. Feng, Y. Zhao, Y.P. Sun, F.C. Liu, B.Q. Fu, L. Zhou, C.H. Cheng, N. Koshizuka and M. Murakami, Improvement of critical current density in MgB_2 superconductors by Zr doping at ambient pressure, Appl. Phys. Lett., 2001, 79 : 3983-3985
    [143] J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A.D. Caplin, L.F. Cohen and J.L.MacManus Driscolla, L.D. Cooley, X. Song, and D.C.Larbalestier, High critical current density and improved irreversibility field in bulk MgB_2 made by a scaleable,nanoparticle addition route, Appl. Phys. Lett., 2002, 81: 2026-2028
    [144] C.H. Cheng and Y. Zhao, Significant improvement of flux pinning and irreversibility field of nano-Ho_2O_3 doped MgB_2, Physica C, 2003, 463: 220-224
    [145] H.X. Lu, H.W. Sun, G.X. Li, C.P. Chen, D.L. Yang and X. Hu, Microstructure and mechanical properties of Al_2O_3-MgB_2 composites, Ceramics International, 2005, 31: 105-108
    [146]Y.Zhao,D.X.Huang,Y.Feng,C.H.Cheng,T.Machi,N.Koshizuka and M.Murakami,Nanoparticle structure of MgB with ultrathin TiB grain boundaries,Appl.Phys.Lett.,2002,80:1640-1642
    [147]黎文献,镁及镁合金,中南大学出版社,2005,34
    [148]T.Matsushita,M.Kiuchi,A.Yamamoto,J.I.Shimoyama and K.Kishio,Essential factors for the critical current density in superconducting MgB_2:connectivity and flux pinning by grain boundaries,Supercond.Sci.Technol.,2008,21:015008-015014
    [149]Y.Zhao,D.X.Huang,Y.Feng,C.H.Cheng,T.Machi,N.Koshizuka and M.Murakami,Nanoparticle structure of MgB with ultrathin TiB grain boundaries,Appl.Phys.Lett.,2002,80:1640-1642
    [150]阿·依·巴迪舍夫(著),金属和合金在压力下结晶,张锦升 罗守靖(译),何绍元(校),哈尔滨工业大学出版社,1987,22
    [151]D.Hughes,The role of grain boundaries in determining J_c in high-field high-current superconductors,Philos.Mag.B,1987,55:459-479
    [152]T.Prikhna,W.Gawalek,Y.Savchuk,N.Sergienko,V.Moshchil,S.Dub,V.Sverdun,L.Kovalev,V.Penkin,M.Zeisberger,M.Wendt,G.Fuchs,T.Habisreuther,D.Litzkendorf,P.Nagorny and V.Melnikov,High-pressure-high-temperature synthesis of magnesium diboride with different additions,Physica C,2007,460-462:595-597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700