用户名: 密码: 验证码:
提取冷水凝固潜热的换热理论与装置
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水和地表水中蕴含有极大量的热能可作为热泵供暖空调的低位冷热源。但在开发过程中,人们发现有两个限制可被称为瓶颈。一是在我国秦岭淮河以北广大的地区冬季水面封冻,冰面以下水温接近冰点,可开发的显热空间很小,而且普通换热器还存在冻裂破坏的危险。二是利用城市污水热能为建筑物供暖空调时经常遇到建筑物附近水量不足的问题。本文从节能减排的总体目标出发,提出突破冰点,获取冷水凝固潜热的新思路与新方法,建立相关理论,开发技术与设备,将曾经不可用的地表水和不够用的城市污水纳入水源热泵的低位冷热源范围内,变为可用与够用,极大地拓宽利用热泵为建筑物供热空调的应用范围。
     论文简介了提取冷水凝固潜热的热泵系统,指出了凝固换热装置是该系统的关键设备,也是本文的研究目标。要开发凝固换热装置,必须解决冻结起始点的判定问题、凝固换热的计算问题、换热器的热工设计问题、冰层的清除问题、除冰装置的机械实现问题,因此论文的主要工作为:
     1、从形核理论出发,着重研究了粗糙换热面上的锥尖、锥坑的形核功变化,给出了临界锥坑的概念及冰核长出锥坑的条件,分析了换热面的异质形核过程以及换热面的表面能和粗糙度对异质形核的影响,结论指出采用高能表面及表面粗糙化处理可以减小冷水冻结的过冷度。通过对比均质形核速率、换热面异质形核速率、悬浮微粒形核速率,指出接近0℃条件下,冷水只在换热表面形核并冻结。推导了冰核生长速率方程和冰相面积扩张速率方程,与文献数据进行对比分析,验证了其正确性,在此基础上给出了冷水在普通钢表面发生冻结的最小过冷度,并将之作为冻结判据。
     2、论述了连续除冰条件下凝固换热的准稳态假设的合理性,建立了两侧对流主导条件下的相界面能量守恒方程,通过无因次化解析分析,分别得到了平面冻结、内环面冻结、外环面冻结三种情况下的冰层厚度、生长速率和极限冻结厚度的准则公式和冰层生长规律;定义了凝固传热系数,并以无因次冰层厚度为基础,推导给出了凝固换热在壁面法线方向上的瞬时与时均换热计算准则关联式。结论指出,三种冻结方式的冻结过程和特点是各不相同,而且凝固换热量不仅与换热总温差、总热阻有关,还与温差和热阻在相界面两侧的分配方式有关。
     3、对换热器进行合理而必要的准稳态简化后,以冻结判据和法向时均换热准则关联式为基础,根据冻结判据给出了冻结起始点的参数公式,并以之为边界条件建立了冰浆换热的内热源模型和冷媒侧的温度-热流密度耦合方程,提出了温度-热量迭代算法。着重分析了顺流、逆流、冷媒定温、给定蒸发器参数四种已知条件下的设计和校核方法,通过编制的适用于计算和校核、不同冻结方式、不同流动换热形式、不同计算条件等30种组合的通用程序FHEDesign,分析了凝固换热装置的换热性能与特点,结论指出与其它相变换热器类似:流动换热形式和相变侧(冷水侧)参数变化对换热总量影响较小,具有很好的流量稳定性和温度稳定性。冻结过冷度和清冰周期是影响换热总量的主要因素。
     4、通过建立应力平衡方程并进行应力状态分析,分别建立了垂直刮削、倾斜刮削条件下的冰层脱附模型和脆裂模型,依据材料强度理论分析得到了冰层清除所必需的外力及其影响因素,并进一步求解得到了机械刮削除冰的能耗预测公式,为刮冰机构的电机选型提供了依据。结论指出,倾斜刮削可极大地减小除冰能耗,40o倾斜角具有最小刮削力和能耗,冰层剥离能耗约为FHE换热量的1‰到1%,说明机械除冰具有很好的经济可行性。
     5、发明了一种可用于提取冷水凝固潜热的拉环式凝固换热装置,介绍了其工作原理和技术措施,给出了主动绞轮和拉索直径的设计计算方法,并举例设计了实验用样机。通过样机在热泵供暖空调系统实验台上的实验,验证了上述凝固换热理论和凝固换热装置的设计校核方法、除冰能耗预测公式的正确性,同时验证了这种新型换热装置的可靠性和技术可行性。通过对热泵系统综合性能的测试,说明凝固潜热型热泵机组具有较好性能系数。通过本文的研究工作,完成了提取冷水凝固潜热换热装置的理论研究和设计开发,并实验验证了其理论和方法的正确性及凝固潜热型热泵的可行性,为地表水和污水热能资源化找到了新的途径。
There is a great lot of energy in urban sewage and surface water that can be used as lower heating or cooling source of heat pump for heating and air conditioning. In the process of exploitation there were two restrictions. First, in north china beyond Qinling mountain range and Huaihe River, surface water would be frozen in winter. Water under ice layer is 0℃, there is almost no sensible heat, and conditional heat exchanger would be frosted crack and destroyed. Second, the around sewage flux is always inadequate for building heating or air conditioning. This dissertation started from energy conservation and environment protection, has indicated the idea and method that is breaking through freezing point and obtaining freezing latent heat. Some correlative theory and technology had established, and the special heat exchanger has developed. So the unusable surface water and insufficient sewage would be usable and enough for heat pump. This new technology would greatly enlarge the application scale of water source heat pump. To develop the Freezing Heat Exchanger (FHE), there were several questions must be solved, such as judgment of freeze, freezing heat transfer, design of FHE, clear of ice layer, realization of mechanism. So the main work and produce of the dissertation are as following.
     (1) Used nucleation theory, the changes of nucleated work on cone pit and cone tip of rough surface had been researched. The concept of critical cone pit and condition of nucleus growth out had been given. The process of hetero-nucleation and influence to hetero-nucleation by surface energy and roughness had been analyzed and indicated that the high-energy surface and coarsening treatment can reduce the frozen degree of supercooling. Contrasted the velocities of homo-nucleation, hetero-nucleation and suspend particle nucleation, discovered that cold water can only be frozen on surface in low temperature. Deduced the growth velocity of ice phase and spread velocity of ice area, proved their correction by results in literatures. At last through experiment data, the minimum supercooling degree of water frozen on real steel surface, and it’s the judgment of freezing.
     (2) On the basis of quasi-steady assumption, the energy conservation differential equation of phase interface under double dominative convection conditions has been established. By analysis of non-dimensional analytic method, the non-dimensional criteria formula of ice thickness, growth velocity and limited frozen thickness had been all given out. Through integral average of time, the calculated criteria formula of freezing heat transfer under continuously de-icing. Analyzed results indicated that the three modes freezing had different process and characteristics, and the quantity of freezing heat transfer was not only related to total temperature difference and total thermo-resistance, it’s also related to the ratio of temperature distribution and ratio of thermo-resistance.
     (3) On the basis of freezing judgment and time-averaged heat transfer criteria formula, calculated method of freezing start point has been given. Established the internal heat source model of ice-slurry meltage and equation of cooling medium temperature, in order to solve them, the iterative method of temperature and heat has been created. The design method of parallel-flow, counter-flow and constant temperature of cooling medium had analyzed. Through the general program for FHE design and check called FHEDesign, the heat transfer performance and characteristics of FHE had been analyzed; results indicated that FHE is similar to other phase-changing heat-exchanger, such as evaporator or condenser. The flow mode and change of parameters of cold water had very little influence to total transferred heat, and FHE had very good stability of flux and temperature. The freezing degree of supercooling and period of de-icing is the most important factor to total transferred heat of FHE.
     (4) Through the establishment of stress balance equation and analysis of stress status, de-icing model and brittle fracture model under the conditions of vertical scraping and tilt scraping are presented respectively. According to material strength theory, the thesis analyses necessary external force to eliminate ice layer and its influencing factors, and then gains energy consumption forecast formula of mechanical scraping deicing, which provides the basis for motor selection of ice-scraping mechanism. Conclusion shows that tilt scraping can greatly reduce deicing energy consumption, that the smallest scraping force and energy consumption are obtained with tilt angle of 40o and that energy consumption of scraping ice is less than 1‰to 1% of heat exchange amount, which shows mechanical deicing owns economic feasibility.
     (5) Invents a kind of pulling-scraper online surfaces clean heat exchanger and heat exchanger to extract freezing latent heat of cold water, introduces its work principle and technical measures, presents design and calculation method of the initiative wring wheel and the cable diameter and designs the experimental prototype as an example. Through experiments on the heat pump heating and air conditioning system test-bed, validates the correctness of above freezing phase change heat exchange theory, the design and verification methods of FHE and deicing energy consumption forecast formula, at the same time validates reliability and technical feasibility of new heat exchange device. Through testing comprehensive properties of heat pump system, shows that heat pump of freezing latent heat has good technical and economic feasibility.
     Through the work of dissertation, the theoretical research and design development of Freezing Heat Exchanger to extract freezing latent heat of cold water had been done, and validated their correctness and feasibility of freezing latent heat source heat pump, which leads a new approach for heat energy utilization of surface water and sewage.
引文
[1]秦雁霞.我国能源消费分析.科技信息.2008(3):190-191.
    [2]严陆光.我国能源体系发展的主要趋势与特点.电网与水力发电进展.2008,24(1):1-2.
    [3]随建才,杜云贵,徐明厚,刘艺.我国媒燃烧研究发展现状与趋势.热能动力工程.2008,23(2):111-116.
    [4]龙惟定.试论我国暖通空调业的可持续发展.暖通空调.1999,29(3):25-30.
    [5]江亿.建筑节能——实现可持续发展的必由之路.科技潮.2005,18(6):1~3.
    [6]焦红光,胡正彬.浅谈我国燃煤污染危害及其防治.选煤技术.2004,(2):3-7.
    [7]范存养,林忠.住宅环境设备的现状与发展.暖通空调.2002,32(4):34-42.
    [8]孙德兴,吴荣华,张承虎,刘志斌.开发水源技术解决热泵发展的瓶颈问题.中国勘察设计.2006,21(5):30~32.
    [9]翟家瑞.凌汛期水库的优化调度.黄河网.2005,http://www.yellowriver.gov.cn.
    [10]梁伟臻,吴大为等.污水处理厂集水量的确定方法.中国给水排水.2003,19(12):72-74.
    [11]张晓建,王占生.温州城市人均综合供水、排污的预测指标.中国给水排水.2003,19(5):20~24.
    [12]尹军,陈雷编著.城市污水的资源再生及热能回收利用.北京:化学工业出版社,2003.
    [13]吴荣华.城市原生污水源热泵系统研究与工程应用.哈尔滨工业大学博士学位论文.2005,22-23.
    [14]Funamizu N, Iisa M. Reuse of heat energy in wastewater: implementation examples in Japan. Water Science and Technology, 2001, 43(10): 277~286.
    [15]大迫健一.全国初の下水(未处理)を利用した地域冷暖房.建筑设と偏配管工时,1993.
    [16]Funamizu N, Ogoshi M. Reuse of water and heat energy in wastewater inJapan.21世纪国际城市污水处理及资源化发展战略研讨会与展览会会议论文.北京,2001.
    [17]曲云霞,方肇洪,张林华等.地表水源热泵系统的设计[J].可再生能源.2003,(3):30~32.
    [18]Trelease W S. Water source heat pump evaluation [J]. HPAC, 1980.
    [19]蒋能照.空调用热泵技术与应用.北京:建筑工业出版社,1997,9~10.
    [20]刁子生.热泵吸收河水热能的热水供应系统[J].城市管理与科技,1996 (1):32-36.[2I]刘光远,陈兴华.俄罗斯热泵新技术简介.能源研究与利用.2001(3):17-19.
    [22]李永安,李继志,王先玉等.湖水水源热泵综合能源利用设计与实践[J].低温建筑技术,2003,(5):78~79.
    [23]陈晓,张国强.南方地区开式湖水源热泵的应用[C].2005年制冷空调学术年会论文集.2005:370~374.
    [24]吕悦,杨立平,周沫.国内地源热泵应用情况调查报告[J].工程建设与设计.2005,(6):5~10.
    [25]谢有君.潜水式地源热泵系统设计方案及运行费用分析[J].中国建设信息(供热制冷专刊).65~67.
    [26]于立强.青岛东部开发区建设以海水作冷热源大型热泵站可行性分析.全国暖通空调制冷1996年学术年会论文集.428-432.
    [27]Kavanaugh S P, Pezent M C. Lake water applications of water-to-air heatpumps [J]. ASHRAE Transactions, 1990, 96(1): 813-820.
    [28]ASHRAE. Systems and equipment handbook (SI).Atlanta: American Societyof Heating, Refrigerating, and Air-Conditioning Engineers, Inc. 1992,173-176.
    [29]Kavanaugh S P. Design of water-to-air heat pumps with high coolingefficiency for ground-coupled applications [J]. ASHRAE Transactions, 1991,97(1): 889-894.
    [30]Kavanaugh S P, Woodhouse J G. Test results of water-to-air heat pumps withhigh cooling efficiency for ground-coupled applications [J]. ASHRAETransactions, 1991, 97(1): 895-901.
    [31]Buyiikalaca O, Eklnci F, Yimaz T. Experimental investigation of SeyhanRiver and Dam Lake as heat source-sink for a heat pump [J]. Energy, 2003,28: 157-169.
    [32]Antero A M. Lakes as a heat source in cold climate. International Congress of Refrigeration. Washington D C, 2003: 1-8.
    [33]秦红,文远高,张文华.空调系统的地表水利用及其节能和环境影响分析[C].全国暖通空调制冷1998年学术年会论文集.北京:中国建筑工业出版社,1998.
    [34]陈焰华,祈传斌.武汉地区水源热泵系统应用前景分析[C].全国暖通空调制冷2002年学术年会论文集.北京:中国建筑工业出版社,2002.
    [35]陈晓,张国强.利用湖水的水源热泵系统应用分析[C].全国暖通空调制冷2004年学术年会论文集.北京:中国建筑工业出版社,2004.
    [36]何满潮,李学元.混合水源联动运行空调技术及工程应用[J].矿业研究与开发.2004,24(1):30~33.
    [37]Sari O, Vuarnoz D, Meili F. Visualization of ice slurries and ice slurry flows[C]. Proceedings of the Second Workshop. France: Ice Slurries of theInternational Institute of Refrigeration. 2000. 68-81.
    [38]Davies, T W. Slurry ice as a heat transfer fluid with a large number ofapplication domains [J]. International Journal of Refrigeration, 2005, 28(1):108-114.
    [39] Wang M J, Kusumoto N. Ice slurry based thermal storage in multifunctionalbuildings [J]. Heat and Mass Transfer. 2001, 37 (6): 597-604.
    [40]Peter W. Egolf, Michael Kauffeld. From physical properties of ice slurries toindustrial ice slurry applications [J]. International Journal of Refrigeration,2005, 28(1): 4-12.
    [41]曲凯阳,江亿.日本过冷水动态制冰研究开发现状[J].暖通空调.1998,28 (3):31-36.
    [42]守屋充,谷野正幸,菊池栄.過冷却水を利用した氷蓄熱システム第1報:過冷却の安全制御と製氷[C].日本冷冻协会论文集.1995,253~262.
    [43]稻叶英男,武谷健吾.静止水の过冷却现象に及ぼす诸因子の影响[C].日本机械学会论文集.1993,3557~3564.
    [44]稲葉英男,宮原里支,武谷健吾.流動過冷却有機水溶液の管内凍結発生限界に及ぼす諸因子の影響[C].日本冷冻协会论文集.1995,73~83.
    [45]稻叶英男,武谷健吾,野津滋.流动过冷却水によろ连に阌する基础研究[C].日本机械会论文集.1992,15~17.
    [46]稻叶英男,武谷健吾.流动过冷却水および水溶液の管内冻结生限界に及ぼす诸因子の影响[C].日本机械学会论文集.1994,3440~3447.
    [47] Hideo Inaba, Takaaki K, Nozu S. Fundamental Study on Continuous Ice Making Using Flowing Super cooled Water [J]. JSME International J Series B. 1994, 37(2): 385-393.
    [48]大平昭義.ダイナミック式氷蓄熱システム[C].日本冷冻协会论文集.2004,285~297.
    [49]斎藤彬夫,大河誠司,小金沢新治.水の過冷却凝固に関する研究[C].日本冷冻协会论文集.1990,213~223.
    [50]寺岡喜和,斎藤彬夫,大河誠司.過冷却水中を成長する氷結晶の形状と成長速度の異方性[C].日本冷冻协会论文集.2003,193~198.
    [51]Yoshikazu T, Akio S, Seiji O. Ice crystal growth in super cooled solution [J]. International Journal of Refrigeration, 2002, 25(2): 218-225.
    [52]斎藤彬夫,大河誠司,石井剛人.流動過冷却水の非定常凝固現象[C].日本冷冻协会论文集.1998,203~212.
    [53]斋藤彬夫,大河诚司,宇根浩.过冷却水の凝固に影响を及ぼす外的要因に阌する研究[C].日本冷冻协会论文集.1991,141~150.
    [54]鈴木洋.界面活性剤添加による氷スラリーの凝集防止抵抗低減効果[J].冷凍.2005,80(2): 34~39.
    [55]Hideo Inaba, Takaaki Inada, Akihiko Horibe. Preventing agglgrowth of ice particles in water with suitable additives [J]. International Journal of Refrigeration, 2005, 28(1): 20~26.
    [56]陶乐仁.水溶液冻结过程的显微实验研究[D].上海:上海理工大学,2000.
    [57]曲凯阳.过冷水制取的基础与应用研究[D].北京:清华大学,2000.
    [58]王军,张定才.过冷却水制冰蓄冷性能的实验研究[J].制冷学报.2002,(3):45-47.
    [59]何国庚,吴锐,柳飞.冰浆生成技术研究进展及实验初探.建筑热能通风空调.2006,25(4):22~34.
    [60]章学来.二元冰技术的最新进展.制冷空调与电力机械.2006,27(3):1-7.
    [61]Kim B S, Shina H T, Lee Y P. Study on ice slurry production by water spray[J], International Journal of Refrigeration, 2001, 24 (2): 176-18.
    [62] Shina H T, Leea Y P. Spherical-shaped ice particle production by sprayingwater in a vacuum chamber [J]. Applied Thermal Engineering, 2000, 20(5): 439-454.
    [63]袁竹林.制取流体冰新方法及高效冰蓄冷研究.能源研究与利用.2004 (4):36-40.
    [64]Wijeysundera N E, Hawlader M N A, Andy C W B. Ice-slurry production using direct contact heat transfer [J]. International Journal of Refrigeration, 2004, 27(5): 511-519.
    [65]樊栓狮,梁德青,杨向阳.储能材料与技术[M].北京:化学工业出版社,2004
    [66]Wobst E, Vollmer D. Ice slurry generation by direct evaporation of refrigerant [C]. Proceedings of the First Workshop on Ice Slurries of the International Institute of Refrigeration. Switzerland. 1999. 126~132.
    [67]Chuard M, Fortuin coldeco J P. A new technology system for production and storage of ice [C]. Proceedings of the First Workshop on Ice Slurries of the International Institute of Refrigeration. Switzerland. 1999. 140-146.
    [68]刘道平,李瑞阳,陈之航.直接接触固液相变制冰及冰蓄冷系统的研究进展[J].华东工业大学学报.1996,18(3):27~36.
    [69]Stamatioua E, Meewisseb J W, Kawaji M. Ice slurry generation involving moving parts [J]. International Journal of Refrigeration, 2005, 28(1): 60-721.
    [70]Meewisse J W. Fluidized Bed Ice Slurry Generator for Enhanced Secondary Cooling Systems [D]. DELFT: Delft University of Technology, 2004.
    [71]杜建通,宋垚臻,吕金虎.商业制冰机的的结构及影响其效率的因素.制冷与空调.200l,1(2):52-56.
    [72]马捷,何方正,张翔等.海淡水两用制冰机的总体方案和热力循环设计.渔业现代化.2001,(5):40~42.
    [73]马捷,何方正,张翔等.海水制冰机的制冰筒计算与设计.渔业现代化.2001,(6):36~38.
    [74]尾形省三.制冰机.冷冻.2000,65(753):720~727.
    [75]池鲤鲋悟等.过冷却水の传热面におけゐ不均质核生成.日本冷冻协会论文集.1995,(1):115~122.
    [76]池鲤鲋悟等.过冷却水の异质粒子によゐ不均质核生成.日本冷冻协会论文集.1996,(1):49~55.
    [77]斋藤杉夫等.传热面上におけゐ过冷却解消过程に关すゐ基础研究.日本冷冻协会论文集.1998,(2):65~75.
    [78]大河诫司等[78].过砖却水の凝固に及ほす传热面性状の定量的评价.日本冷冻协会论文集.1997,(3):295~301.
    [79]刘道平,陈之航.冰蓄冷技术相关固液相变传热现象的研究进展.华东工业大学学报.1996,18(4):29~38.
    [80]曲凯阳、江亿.均质形核结冰随机性及形核率的研究.物理学报,2000,49(11):2214-2219.
    [81]曲凯阳、江亿.圆管内流动水发生结冰的影响因素研究.太阳能学报,200l,22(3):250-255.
    [82]曲凯阳,江亿.各种因素对过冷水发生结冰的影响.太阳能学报,2003,24(6):814-821
    [83]平田哲夫,田中邦章.过冷却を伴う管内流水の冻结开始条件.第28回日本热シンボジウマ讲演论文集,1991:325~327.
    [84]Ingersoll L R, Zobel O J, Ingersoll A C. Heat Conduction with Engineering,Geological and other Applications. Madison: The Univ of Wisconsin Press,1954:190-199.
    [85]London A L. Seban R A. Rate of ice formation. Trans ASME. 1943, 65:771-776.
    [86]Seban R A. London A L. Experimental confirmation of predicted waterfreezing rates. Trans ASME. 1945, 67: 39-44.
    [87]连之伟,张寅平,陈宝明编.热质交换原理与设备[M].北京:中国建筑工业出版社,2004.70-80.174-177.
    [88]张寅平,胡汉平,孔祥冬.相变贮能一理论和应用[M].合肥:中国科学技术大学出版社,1996.113-167.
    [89]Dumore J M, Merk H J, Prins J A. Heat transfer from water to ice by thermalconvection. Nature. 1953, 172: 460-461.
    [90] Saitoh T. Natural convection heat transfer from a horizontal ice cylinder.Appl Sci Res. 1976,32: 429-451.
    [91]Bendell S, Gebhart B. Heat transfer and ice melting in ambient water near itsdensity extremum. Int. J Heat & Mass Transfer, 1976, 19:1080-1087.
    [92]Fukusako S, Togo M, Yamada M, et al. Melting heat transfer from ahorizontal ice cylinder immersed in quiescent saline water. Traps ASME, JHeat Transfer. 1992, 114: 34-40.
    [93] White D A. Melting of ice and freezing of water around a horizontal cylinder: [M S Thesis], Indiana: Purdue Univ, 1984.
    [94]斋藤武雄.密度反转领域におけゐろ水平圆管まわりの二次元冻结の试验.冷冻.1978,53(612):1~6.
    [95]Cheng K C, Sabhapathy P. An experimental investigation of ice formation over an isothermally cooled vertical circular cylinder in natural convections. ASME Paper No.85-HT-l,1985.
    [96]岸浪絃机.垂直圆外表面への水冻结现象.冷冻.1976,51(582):1~12.
    [97]岸浪絃机.垂直圆外表面への水冻结现象(第2报).冷冻.1978,53(610):11~22.
    [98]Okada M, Katayama K, Terasaki K, et al. Freezing around a cooled pipe incrossflow. Bull JSME. 1978, 21(160): 1514-1520.
    [99]Matsumoto K, Okada M, Kawagoe T, Kang C. Ice storage system with water-oil mixture formation of suspension with high IPF [J]. Int. J. Refrigeration,2000, 23(5): 336-344.
    [100] Cheng K C, Inaba H, Gilpin R, et el. An experimental investigation of iceformation around an isothermally cooled cylinder in crossflow. Trans ASME,J Heat Transfer. 1981, 103: 733-738.
    [101] Hirata T, Matsui H. Ice formation and heat transfer with water flow aroundisothermally cooled cylinders in arranged in line. Traps ASME, J. HeatTransfer. 1990, 112: 707-713.
    [102] Cao Y, Faghri A. A study of thermal energy storage systems with conjugateturbulent forced convection. Journal of heat transfer, 1992,1014-1019.
    [103]Bareiss M. An analytical solution of the heat transfer process duringmelting of an unfixed solid phase change material inside a horizontal tube.Int. J. Heat Mass Transfer,1984,27(5):739-743.
    [104]Mashena M. An integral solution of moving boundary problems. Int. J.Heat Mass Transfer, 1986,29(2):317-321
    [105] Kang Y B, Zhang Y P, Jiang Y, Zhu Y X. A general model for analyzing thethermal characteristics of a class of latent thermal energy storage systems [J].Journal of Solar Energy Engineering, 1999, 121(4): 185-193.
    [106]康艳兵,张寅平,江亿.板式相变贮能换热器传热模型和热性能分析[J].太阳能学报.2000, 21(2): 121-127.
    [107]江邑,张寅平,徐继军,江亿,康艳兵.板式相变储换热器储换热性能实验研究[J].太阳能学报.2000, 21(4): 358-363.
    [108]江邑,张寅平,江亿,康艳兵.板式相变储换热器的储换热准则[J].清华大学学报.1999,39(11):86-89.
    [109] Douglas G G, Stewart W E, Chandrasekharan J. Modeling the ice fillingprocess of rectangular thermal energy storage tanks with multiple ice makers.Trans ASHRAE, 1995, 101(1): 56-65.
    [110] Stewart W E, Douglas G G, Chandrasekharan J, et al Modeling of themelting process of ice storage in rectangular thermal energy storage tankswith multiple ice opening. Trans ASHRAE, 1995, 101(1): 66-78.
    [111]Stewart W E, Douglas G G, Saunders C. Ice melting and melt waterdischarge temperature characteristics of packed ice beds for rectangularstorage tanks. Trans ASHRAE, 1995, 101(1): 79-89.
    [112] Stewart W E, Douglas G G, Saunders C, et al. Development of a designprocedure for thermal storage tanks utilizing technology that separate themanufacture of ice from the storage of ice. Trans ASHRAE, 1995, 101(1):1335-1338.
    [113] Stewart W E. Development of improved ice-making techniques for storageheat pumps. Trans ASHRAE, 1988, 94(1): 419-429.
    [114]Stovall T K, Tomlinson J J, Laboratory performance of a dynamic icestorage system. Trans ASHRAE, 1991, 97(1): 1179-1185.
    [115]Knebel D E. Predicting and evaluating the performance of ice harvestingthermal energy storage systems. ASHRAE J, May, 1995: 22-30.
    [116] Andrej kitanovski. Concentration distribution and Viscosity of ice slurry inheterogeneous flow. Inter J. of Refrigeration, 2002, 25: 827-835.
    [117]Ayel V, Lottin O, Peerhossaini H. Rheology, flow behaviour and heattransfer of ice slurries: a review of the state of the art Int J Refrigeration,2003,26:95-107
    [118]Civan, Fraruk. Unfrozen water in freezing and thawing soil: kinetics andcorrelation. Journal of Cold Regions Engineering. 2000, 14:146-156.
    [119]Yong E C, Harold I C, Lorsch G. Forced Convention heat transfer withphase-change-material slurries: turbulent flow in a circular tube. Int. J. Heatand Mass Transfer. 2001, 44: 2277-2285.
    [120]何国庚,王忠衡.冰浆流体流动与换热研究综述席制冷学报[J].2005,26 (4):1-5.
    [121]Knodel B D, France D M. Heat transfer and pressure drop in ice-water slurries. Applied Thermal Engineering. 2000, 20: 671-685.
    [122]Sanjay K R, Branko L A. Turbulent heat transfer with phase change material suspensions. Int. J. Heat and Mass Transfer. 2001, 44: 2277-2285.
    [123] Ure Z. Slurry ice based cooling system. Australian Refrigeration Air conditioning & Heating. 2001, 55(9): 24-27.
    [124]明岗,陈沛瀮.冰浆中冰晶与携流体的传热研究.华东电力.2001,2:24~25.
    [125]明岗,陈沛瀮.冰浆管内流动的絮网结构设想及阻力计算模型.同济大学学报.2001,29(3):347~351.
    [126]Doron P, Barnea D. Flow pattern map of solid-liquid flow in pipes. Int. J.Multiphase Flow, 1996, 22(2): 273-283.
    [127]Doron P, Barnea D. Three-layer model for solid-liquid flow In horizontalpipes. Int J. Multiphase Flow, 1993, 19: 1029-1043.
    [128]刘永红,陈沛瀮.水平管道中冰浆流动的摩阻特性的实验研究.力学与实践.1997,(6):36~38.
    [129]明岗,陈沛瀮.冰浆在180度弯管内流动特性的实验研究.力学与实践.2001,(23):5l~52.
    [130]魏娟,章学来.冰浆传热与压降的研究进展.能源技术.2005,26(2):52-54.
    [131]2000年中国水资源公报[N].http://www.hwcc.com.cn.
    [132]贺平,孙刚.供热工程[M].北京:中国建筑工业出版社,2001,120- 124.
    [133]陆亚俊,马最良,邹平华.暖通空调[M].北京:中国建筑工业出版社,2002,345-350.
    [134]奚士光,吴味隆,蒋君衍.锅炉房及锅炉房设备[M].北京:中国建筑工业出版社,2004,24-38.
    [135]陆耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社,1993,244-268.
    [136]宫秀敏.相变理论基础及应用.武汉:武汉理工大学出版社.2004.
    [137]周公度.浅谈水的结构化学.大学化学,2002,17(1):54-63.
    [138]姜兆华,孙德智,邵光杰.应用表面化学与技术.哈尔滨:哈尔滨工业大学出版社,2000.
    [139]颜肖慈,罗明道.界面化学.北京:化学工业出版社.2005.1-5.
    [140]Drew Myers(阿根廷)著,吴大诚,朱普新等译.表面、界面和胶体——原理及应用.北京:化学工业出版社,2005.95-107.
    [141] Wood G R, Walton A G. Study of the stability of supercooled water in anice generator. J. Appl. Phys.. 1970, 41: 3207-3031.
    [142]Taborek P. An investigation of the freezing of supercooled liquid in forcedturbulent flow inside circular tubes. Phys. Rev.. 1985, B32:5902-5908.
    [143]Hagen D E, Anderson R J, Kassner J L. Fundamental research on externalfactors affecting the freezing of supercooled water. J. Atoms. Sci.. 1981,38:1236-1242.
    [144]Demott P J, Rogers D C. Fundamental study on continuous ice makingusing flowing supercooled water. J. Atmos. Sci.. 1988, 47:1056-1061.
    [145]Bertolini D, Cassettari M, Salvetti G. On the freezing process withsupercooling measurements of the cooling rate affecting the freezingtemperature of supercolled water. Phys. Scripta. 1988, 38: 404-413.
    [146]Sassen K. Experimental and numerical analysis of the temperaturetransition of a suspended freezing water droplet. J. Atmos. Sci.. 1988,45:1357-1361.
    [147] Fleming M C. Solidification Processing. New York, McGraw-Hill, 1974.
    [148]李志军、孟广琳、隋吉学.辽东海湾海冰单轴压缩长期强度的初步分析.海洋学报,1991,13(4):571-575.
    [149]任晓辉.冰的韧脆转变行为研究.大连理工大学硕士学位论文.2005,12-36.
    [150]张明元,孟广琳,隋吉学,李志军.黄海北部庄河附近海域海冰物理力学特性.海洋通报,1995,14(4):11-18.
    [151]孟广琳、张明远、李志俊、隋吉学.黄河口低盐度海冰与黄河冰的抗压强度.海洋环境科学,1994,13(3):73-80.
    [152]李志军,Devinder S S,卢鹏.渤海海冰工程设计参数分布.工程力学,2006,23(6):167-172.
    [153]杨晓东,金敬福.冰的粘附机理与抗冻粘技术进展.长春理工大学学报,2002,25(4):17-19.
    [154]尚广瑞,杨晓东,金敬福,丛茜.几种典型材料与冰的冻粘系数.长春理工大学学报,2004,27(1):77-79.
    [155]金敬福.材料冻粘特性与矿车冻粘规律实验研究.吉林大学硕士学位论文.2004,22-35.
    [156]李志军,张明元,孟广琳等.海冰与建筑材料冻结附着强度的试验研究.海洋环境科学,1992,1 1(2):79-83.
    [157]Jellinek H H G Adhesive properties ofice.Journal ofcolloid science,1959,(14):268-280.
    [158]张少实.新编材料力学.北京:机械工业出版社,2003.
    [159]东北工学院机械零件设计手册编写组.机械零件设计手册.北京:冶金工业出版社,1980.
    [160]张绪祥.一种摩擦系数计算方法.机械设计与制造,2006,25(1):44-45.
    [161]Christensen K G, Kauffeld M. Heat transfer measurements with ice slurry. International Institute of Refrigeration, IIF/IIR. International Conference on Heat Transfer Issues on Natural Refrigerants. 1997:48-59.
    [162]李新,侯予,张兴群.冰浆流动及传热特性研究进展.制冷与空调,2007,7(4):15-18.
    [163]吴嘉峰,郝英立,施明恒.相变微胶囊功能流体相变区间的影响因素和变化趋势分析.热科学与技术,2006,5(4):320—326.
    [164]W.M.凯斯,A.L.伦敦著.宣益民等译,紧凑式热交换器.北京:科学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700