用户名: 密码: 验证码:
棉花盐胁迫诱导cDNA文库的构建及耐盐基因的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是较耐盐碱的作物之一,对改良和有效利用盐渍地具有重要意义。但棉花的耐盐能力有限,要在盐碱地广泛种植,必须进一步提高棉花的耐盐能力。传统的常规育种方法无法大幅度提高棉花的耐盐性,分子生物学的发展,为大幅度提高棉花的耐盐性提供了新的方法。但要通过转基因技术提高棉花的耐盐性,首先要了解棉花耐盐的分子机制,并解决基因来源问题。而这两个问题解决的基础首先是要克隆到足够多的与棉花耐盐相关的基因。而目前大规模克隆与耐盐相关基因的最有效方法之一就是cDNA文库筛选法。本研究以耐盐棉花品种中棉19号为材料,构建了棉花盐胁迫诱导cDNA文库,对文库的筛选鉴定表明,构建的棉花子叶cDNA文库质量较好。通过反相Northern差异筛选法获得17个与盐胁迫相关的新基因。并选择5号、17号、21号和30号克隆进行功能研究分析。研究发现5号和17号克隆属于棉花金属硫蛋白基因家族成员,30号克隆是PPIC型(PPIC- PPIASE-2)-肽酰脯氨酰顺反异构酶(parvulin-type peptidyl-prolyl cis/trans isomerase),而21号克隆可能是一种紫外线B抑制蛋白。
     金属硫蛋白(Metallothionein,MT)是一类低分子量(6000~9000Da)、高Cys含量、具有金属结合能力的多肽,它具有独特的氨基酸排列顺序,即多肽的N端和C端具有两个富含Cys的金属结合结构域,其中的Cys按CXnC的方式排列。MT基因和蛋白广泛存在于动物、植物、真菌、绿藻中。植物金属硫蛋白按结构特点分为三类。5号克隆编码的GhMT1与17号克隆编码的GhMT2为棉花I类金属硫蛋白。对这两个基因进行序列比较、表达分析和功能鉴定。主要结果如下:
     1. 5号克隆和17号克隆的序列同源性分析表明,二者的核苷酸序列的同源性为91.15%,氨基酸同源性为85.94%,可以断定二者为同一棉花基因家族成员。该基因家族编码蛋白与覆盆子、葡萄、中华猕猴桃、番木瓜等许多植物中的I类金属硫蛋白的同源性为70.1%,具有典型的植物I类金属硫蛋白序列特点,聚类分析表明该棉花基因家族与覆盆子、葡萄、中华猕猴桃、番木瓜等植物的I类金属硫蛋白具有较近的亲缘关系。因此,可以断定二者属于植物I类金属硫蛋白,命名为GhMT1、GhMT2。
     2. Northern杂交分析表明GhMT1受NaCl胁迫诱导表达,在一定的时间范围内其表达水平随NaCl诱导时间的延长而增加,但是在盐胁迫条件下不能被快速诱导。GhMT1也能被CuSO4、ZnSO4、低温、干旱、ABA和乙烯诱导,说明GhMT1具有金属硫蛋白受重金属诱导的功能,也说明对盐胁迫的非专一性,而是受各种非生物胁迫的诱导。同时暗示着GhMT1受ABA和乙烯信号途径的调控,可能是ABA、乙烯信号途径的靶基因。
     3. Northern表达分析还表明在抗氧化剂N-乙酰基-L-半胱氨酸(N-Acetyl-L-cysteine,NAC)存在的条件下,GhMT1不受NaCl、低温、干旱、百草枯(PQ,paraquat)的诱导。对过氧化氢相对水平的测定结果表明,NAC有效的抑制了NaCl、低温、干旱胁迫条件下过氧化氢水平。说明活性氧自由基是非生物胁迫诱导GhMT1及其同源家族表达的重要信号物质。
     4.GhMT1和GhMT2在转基因烟草中过量表达,用GhMT1和GhMT2特异探针进行检测,Northern杂交结果说明GhMT1和GhMT2只在转基因植株中表达。同野生型相比,超表达GhMT1和GhMT2的转基因烟草在200mM NaCl、300mM NaCl条件下以及4℃条件下与25%PEG条件下较好的生长。说明GhMT1及其同源家族能提高植物的抗盐能力,也能提高植物的抗其它主要非生物胁迫的能力。
     5.对转基因烟草生理指标测定结果表明,在盐、4℃、25%PEG胁迫条件下转基因烟草SOD酶活性明显高于野生型烟草。说明GhMT1能够提高植物清除活性氧自由基能力,从而提高植物抗盐、抗低温及抗干旱等非生物胁迫的能力。
     6.对GhMT1体外结合Zn2+能力的测定表明,GhMT1具有金属硫蛋白家族能够结合金属离子的特性,每一分子GhMT1最多能结合5个锌离子。
     肽酰脯氨酰顺反异构酶(peptidyl proline cis/trans isomerase,PPIase)是一种催化肽酰-脯氨酰的肽键顺反异构的一类酶,在进化上高度保守,成员多样,并且分布广泛,在生物体的生理过程中发挥重要的作用。脯氨酰异构酶超家族可以分为FK506结合蛋白(FK506-binding proteins,FKBPs)、亲环素(cyclophilins,Cyp)和Parvulins三个独立的蛋白家族,每个家族又有众多成员。30号克隆编码的GhPPI是Parvulins家族中的肽酰脯氨酰顺反异构酶,对这个基因进行序列比较、表达分析和功能鉴定。主要结果如下:
     1.序列同源比较分析表明,棉花GhPPI具有PPIC- PPIASE-2(PPIC型-肽酰脯氨酰顺反异构酶)保守区,是parvulin家族顺反异构酶中的成员,酶学分类为(EC 5.2.1.8)。同源蛋白聚类分析表明GhPPI和拟南芥AtPIN2以及水稻中的肽酰脯氨酰顺反异构酶具有高达92%以上的同源性,与人的Par14和Par17也有高达55%的同源性。棉花GhPPI除具有顺反异构酶保守区外,N端还具有富含Lys的碱性氨基酸区。通过综合比较分析表明,棉花GhPPI可能是parvulin家族人Par17类型成员。
     2.跨膜区分析表明,棉花GhPPI没有跨膜区。GhPPI-GFP融合蛋白洋葱表皮亚细胞定位表明,GhPPI主要定位于细胞核中,并与染色体结合。核定位信号分析表明,没有明显的核定位信号。前人研究表明Par14和Par17的核定位信号位于N端富含Lys的碱性氨基酸区,并不剪切去,并且N端的碱性氨基酸区是结合DNA所必需的。推测GhPPI与Par14和Par17具有高度同源的N端富含碱性氨基酸区也具有相似功能。
     3.通过原核表达纯化到了棉花GhPPI蛋白,选用N-Succingl-Ala-Ala-Pro-Phe-4- nitroanilides底物,对棉花GhPPI蛋白顺反异构酶活性进行分析测定。结果表明棉花GhPPI蛋白具有较低的顺反异构酶活性。棉花GhPPI蛋白是植物中第一个鉴定的具有顺反异构酶活性的parvulin家族中的成员。
     4.用Northern杂交技术进一步分析棉花GhPPI的内源表达情况。结果显示,GhPPI有一定的本底表达水平,受300mM NaCl诱导后,其表达水平升高,并在一定的时间范围内随NaCl诱导时间的延长而增加。说明GhPPI顺反异构酶活性与植物抗胁迫有一定的关系。
     5.前人将AtPIN2分类到parvulin家族人hPar14类型中,通过对我们实验结果分析讨论发现,AtPIN2与GhPPI同源性高达93%,将两者归类到的parvulin家族人hPar17类型更科学。GhPPI的许多研究结果都暗示GhPPI与hPar17功能类似,推测GhPPI可能也具有hPar17的相似功能。
     6.从拟南芥中克隆到棉花GhPPI在拟南芥中的同源基因AtPIN2基因,构建了AtPIN2基因的超表达、反义表达载体和RNAi干涉载体,并获得相应的转基因植株。发现AtPIN2基因RNAi干涉的T0代拟南芥幼苗生长迅速。转基因拟南芥植株的获得,为通过采用反向遗传学方法研究AtPIN2和GhPPI等parvulin家族基因功能创造了条件。
     高等植物的光受体可分为4种类型:光敏色素(phytochrome)、隐花色素(cryptochrome)、趋光素(phototropin)和超级色素(superchrome)。其中,隐花色素和趋光素都能吸收蓝光,属于蓝光受体。21号克隆GhUVB1可能编码一种紫外线B抑制蛋白。对GhUVB1进行初步的结构与功能鉴定分析,结果如下:
     1.氨基酸序列多重对比分析表明棉花GhUVB1编码蛋白在第60个氨基酸到第114个氨基酸的区域内具有“aaaxxxxmxxpxxaxaaxxxxxpslknfllsixxggxvxxxixgxvxxvsnfdpvk”高度保守区域,与之同源性较高的蛋白多数属于紫外线B抑制蛋白。进一步同源分析比较表明,棉花GhUVB1与光系统II的X亚基(PsbX类似蛋白)也有一定的同源性,也可能是PsbX类似蛋白。
     2.跨膜区分析表明,棉花GhUVB1没有跨膜区。GhUVB1-GFP绿色荧光融合蛋白洋葱内表皮亚细胞定位研究发现,GhUVB1主要定位于细胞膜上,而细胞核等部位也发现有绿色荧光的存在,但分布不均匀,推测GhUVB1也定位于细胞核膜上。这与GhUVB1蛋白的跨膜区理论分析相吻合。
     3.构建了棉花GhUVB1蛋白的超表达载体,并转化到拟南芥中超表达,结果发现超表达棉花GhUVB1蛋白的拟南芥T0代植株,与野生型相比,植株明显矮小,且开花期平均延迟7天左右。这一重要异常现象为下一步揭示棉花GhUVB1蛋白功能提供了重要线索。
     4.棉花GhUVB1蛋白定位于质膜与核膜或核内的,理论上是与紫外光信号接受与传递密切相关的蛋白,超表达该蛋白的转基因拟南芥植株出现生长延迟现象,这一现象与隐花色素CRY1的表现相似。推测棉花GhUVB1可能是一种隐花色素或与隐花色素密切相关的蛋白。
Cotton is one of the most important economic crops in our country. People are always interested in identifying and developing new cotton breed to make it can be widely cultivated in saline-alkali soil. Recently, a great achievement has been obtained. However, the salt tolerance ability of cotton is still very limited. So identification of the corresponding salt-tolerant cotton will have important implications for agriculture. The transgenic technology provides us with new ways to improve the plants tolerance by transferring useful genes to different plants. In this experiment, a NaCl-induced cDNA library of cotton seedlings was constructed in order to isolate more salt-tolerance genes from cotton. The library was validated to be successful by titering. 17 salt-induced clones were identified after screening the cDNA Library. Clone 5, 17, 30, and 21 were selected to studied respectively.
     Metallothioneins (MTs) are defined as a class of proteins with the characteristics of low molecular weight, high cysteine (Cys) residue content and metal-binding ability. They have been widely found in animals, plants, fungi and cyanobacteria. Plant MT-like proteins are divided into three major classes (MT-I, MT-II, MT-III ), which are distinguishable on the basis of the distribution of cysteine residues in their amino acid sequences. Clone 5 and 17 belong to class MT-I. The stucture and function of Clone 5 and 17 were studied. The main results are as follows:
     1. Clone 5 and 17 have high sequence homology with each other, the identity of Nucleotide sequences is 91.15%, and identity of the amino acid residues sequences can reach 85.94%. These two clones showed high homology with metallothein-like genes from various plants species, such as Rubus idaeus, Carica papaya, Vitis vinifera, Actinidia chinensis etc. The phylogenetic analysis of these proteins suggested that those proteins all belong to the same protein family. Take together, our results indicated that clone 5 and 17 encode two MT-I proteins, which were designated as GhMT1 and GhMT2.
     2. Northern blot analysis indicated that the mRNA accumulation of GhMT1 was induced by salt stress (300mM NaCl), and the mRNA level kept increasing in the following 12 hours. The expression of GhMT1 was also up-regulated by 300μM CuSO4, 300μM ZnSO4, low temperature (4℃), drought (25% PEG), ABA (abscisic acid) and ethylene, suggesting that MT-I in cotton was not a specific salt stress response gene family but an abiotic stress response gene family. This result also suggested that GhMT1 might play a role in signal transduction of ABA and ethylene.
     3. Northern blot analysis also showed that the expression was repressed by N-Acetyl-L-cysteine (NAC) when treated by NaCl, low temperature (4℃) or drought (25%PEG). Analysis of H2O2 level showed that NAC repress the H2O2 level increase in above stress. .Therefore, reactive oxygen species (ROS) is essential for activating the GhMT1 and other member expression of GhMT I family under abiotic stress.
     4. The transgenic tobacco plants overexpressing GhMT1 and GhMT2 grew better than wild type tobacco in 200 and 300 mM NaCl solution. The transgenic tobacoo plants also grew better under low temperature (4℃), drought (25%PEG) condition. Northern blot analysis showed that the GhMT1 and GhMT2 genes had higher transcription levels in transgenic tobacco plants, while there was no GhMT1 and GhMT2 expression in wild-type tobacco plants.
     5. The increased SOD activities were observed in transgenic tobacco plants and wild type tobacco plants after various abiotic treatments (NaCl, 4℃, 25% PEG). However, the SOD activities in transgenic plants was higher than in wild type plants, indicating that over-expression of GhMT1 could increase the activity of SOD, which maybe the reason that GhMT1 and its members could improve abiotic stress tolerance of cotton.
     6. To test the binding of GhMT1 to metal Zn2+, we expressed GhMT1 in E. coli. The results showed that the purified GhMT1 could bind Zn2+ions in vitro ,and the binding ability is no more than five Zn2+ions per MT molecule.
     Peptidyl prolyl cis/trans isomerases (PPIases, EC 5.2.1.8) play a role in protein folding and function by twisting the backbone of target proteins. PPIases are abundantly expressed in virtually all organisms and all cellular compartments .These ubiquitous proteins can be divided into three families, cyclophilins, FK506-binding proteins (FKBP), and parvulins. PPIases may also act as chaperones either in a PPIase domain-dependent or-independent manner, and they may have essential overlapping functions with other PPIases and chaperones. GhPPI of clone 30 belong to parvulins. The stucture and function of GhPPI were studied. The main results are as follows:
     1. Clone 30 has high sequence homology with peptidyl-prolyl cis-trans isomerase PPIC-type family (Pin4) from Arabidopsis Thaliana , Oryza sativa and Mus musculus etc. The phylogenetic analysis of these proteins suggested those proteins belong to parvulins family. Sequence alignment showed that GhPPI is more similar to hPar14 or hPar17 type parvulin with 55% identity to hPar14(also known as PIN4/EPVH/hPar14) and hPar17. Taked together, our results indicated that clone 30 encodes peptidyl-prolyl cis-trans isomerase, which is more similar to hPar17, and were designated as GhPPI.
     2. Subcellular localization of the transiently expressed pBI121-GhPPI-GFP fusion protein in onion epidermal cells was done, the results show GhPPI-GFP fluorescence is concentrated to the nucleus or to the chromosome.
     3. To assay activity of GhPPI PPIase, expression vector of pET30 a (+)-GhPPI was Constructed and expression of pET30 a (+)-GhPPI was induced with IPTG. The results showed that the purified GhPPI has low activity, these indiced the GhPPI is a new peptidyl-prolyl cis-trans isomerase.
     4. Northern blot analysis indicated that the mRNA accumulation of GhPPI was induced by salt stress (300mM NaCl), and the mRNA level kept increasing in the following 12 hours. The result suggested that GhPPI might play a role to improved abiotic stress tolerance of cotton.
     5. GhPPI share a similar C-terminal PPIase domain and an similar N-terminal Lys-rich domain with hPar14 and hPar17. The basic N-terminal domain of hPar14 or hPar17 is responsible for the phosphorylation regulated partition between cytosol and nucleus and its affinity for DNA binding. So GhPPI may have regulatory functions as that in hPar14 and hPar17. It may be better that AtPIN, as GhPPI, also be classified into hPar17 type than into hPar14 before.
     6. AtPPI was cloned and over expression vector, antisense expression vector and RNAi pFGC5941 vector were constructed. The respective transgenic Arabidopsis plants were identified. 14 days old of Seedlings of transgenic RNAi Arabidopsis were grown stronger and faster than wild type, this is an interesting phenomena.
     The sequence and expression analysis, function identification of Clone 21 were also studied. The main results are as follows:
     1. Clone 21 has high sequence homology with ultraviolet-B-repressible protein. The phylogenetic analysis of these proteins suggested those proteins belong to ultraviolet- B- repressible protein family. Clone 21 has also high sequence homology with photosystem II subunit X(Psb X). Take together, our results indicated that clone 21 encodes putative utative ultraviolet-B-repressible protein, which were designated as GhUVB1.
     2. Subcellular localization of the transiently expressed pBI121-GhUVB1-GFP fusion protein in onion epidermal cells shows GhPPI-GFP fluorescence is concentrated to the membrane of cell and karyotheca repectively.
     3. Over expression of GhUVB1 in the transgenic Arabidopsis plants show that the T0 transgenic Arabidopsis plants were grown slowly and flower lag of 7days. The phenomic lag of transgenic plant by over expression GhUVB1 in Arabidopsis plants show was smilar to cryptochrome CRY1. Take together, these results indicated that GhUVB1 maybe is closed relative with cryptochrome.
引文
1.李文炳等,棉花实用新技术,山东科学技术出版社,1992,217-240.
    2.刘友良和汪良驹,植物对盐胁迫的反应和耐盐性,余叔文、汤章城主编:植物生理与分子生物学(第二版),科学出版社,1998,752-769.
    3.孙小芳,刘友良,棉花品种耐盐性鉴定指标可靠性的检验,作物学报,2001,27(6):794-801.
    4.王爱国等,活性氧对花生叶片大分子量DNA的损伤,植物生理学通讯,1993, 29:260-262.
    5.翁跃进,作物耐盐品种及其栽培技术,中国农业出版社,2002.
    6.杨洪兵,陈敏,王宝山.小麦幼苗拒Na+部位的拒Na+机理.植物生理与分子生物学学报. 2002, 28, 181-186.
    7.张道远,尹林克,潘伯荣.柽柳泌盐腺结构、功能及分泌机制研究进展.西北植物学报, 2003, 23, 190-194.
    8.张宏飞,王锁民.高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展.植物学通报, 2007,24, 561-571.
    9.张其德,盐胁迫对植物及其光合作用的影响(上),植物杂志,1999,6,32-33.
    10.章文华,刘友良.盐胁迫下钙对大麦和小麦离子吸收分配及H+-ATP酶活性的影响.植物学报, 1993, 35:435-440.
    11.张新春,庄炳昌,李自超,植物耐盐性研究进展[J],玉米科学,2002,10(1):50)56.
    12.赵可夫,范海.盐生植物及其对盐渍生境的适应生理(第一版).北京:科学出版社. 2005, pp. 131-180.
    13.赵可夫,李法曾.中国盐生植物(第一版).北京:科学出版社.1999, pp. 30-65.
    14.赵世杰,董新纯等,《植物生理实验指导》中国农业科技出版社,1998.
    15.中国科学院上海植物生理研究所,上海市植物生理学会,《现代植物生理实验指南》.科技出版社,1999
    16.周三,韩军丽,赵可夫.泌盐盐生植物研究进展.应用与环境生物学报, 2001,7, 496-501.
    17. Aghdasi B., Ye K., Resnick A., et al. FKBP12, the 12-kDa FK506-bind-ing protein, is aphysiologic regulator of the cell cycle.[J].Proc Natl Acad Sci,USA, 2001.98(5):2425-2430.
    18. Ahmad M, Cashmore A R. HY4 gene ofA.thalianaencodes a protein with characteristics of a blue-light photoreceptor[J].Nature,1993,366:162-166.
    19. Alberto Coego, a Vicente Ramirez, a Ma Jose′Gil, a Victor Flors, b Brigitte Mauch-Mani, c and Pablo Veraa. An Arabidopsis Homeodomain Transcription Factor, overexpessor of cationic peroxidase 3, Mediates Resistance to Infection by Necrotrophic Pathogens. Plant Cell,2005.17:2123-2137.
    20. Allan A.C. and Fluhr R.. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell,1997.9:1559-1572.
    21. Alvarez M.E., Pennell R.I., Meijer P.J., Ishikawa A., Dixon R.A. and Lamb C.. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell,1998.92:773-784.
    22. Apel K. and Hirt H.. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004.55:373-399.
    23. Arevalo R.M., Wu X., Hanes S.D. and Heitman J.. Prolyl isomerases in yeast. [J] Front Biosci, 2004.9:2420-2446.
    24. Ashraf M, McNeilly T. Improvement of slat tolerance in maize (Zea mays L.). Plant Breed, 1990.104:101-107.
    25. Ashraf M.. Salt tolerance of cotton: some new advances. Crit Rev Plant Sci, 2002. 21:1-32
    26. Baker C.J. and Orlandi E.W.. Sources and effect of reactive oxygen species in plants. In Reactive Oxygen Species in Biological Systems: An Interdisciplinary Approach, D.L. Gilbert and C.A. Colton,eds (New York: Kluwer Academic Publishers), pp.1999:481-501.
    27. Ballesteros E., Blumwald E., Donaire J P., Belver A.. Na+/H+ antiporter activity in tonoplast vesicles isolated from sunflower induced by NaCl stress. Physiol Plant, 1997.99:328-334.
    28. Bayer P: Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding. J Biol Chem 2003, 278:26183-26193.
    29. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F . Functional analysis of AtHKT1 in Arabidopsis shows thatNa+ recirculation by the phloem is crucial for salt tolerance. EMBO J, 2003, 22:2004-2014.
    30. Blume J.P., and Hunter T.Oncogenic kinase signaling. [J]. Nature, 2001,411(6835) :355-365.
    31. Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. Biochim Biophys Acta, 2000,1465:140-151.
    32. Bohnert H.J. and Sheveleva E.. Plant stress adaptations, making metabolism move. Curr Opin Plant Biol, 1998. 267-274.
    33. Breiman A. and Camus I.. The involvement of mammalian and plant FK 506- binding proteins (FKBPs) in development. Transgenic Res, 2002.11 : 321-335.
    34. Briggs WR, Olney MA.Photoreceptors in plant photomor-phogenesis to date.Five phytochromes,two cryptochromes, one phototropin and one superchrome.Plant Physiol, 2001,125:85~88.
    35. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R. HKT1;5-Like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol, 2007,143:1918-1928.
    36. Cashmore AR,Jarillo JA,Wu YJ et al. Cryptochromes: blue light receptors for plants and animals.Science,1999,284:760~765.
    37. Chhipa B.R., Lal P. Na/K ratios as the basis of salt tolerance in wheat. Aust J AgricRes, 1995,46(3):533-539.
    38. Cobley L.S., Steele W.M.. Vegetables and fibers. In: An introduction to the botany of tropical crops, 2nd ed. Longman, London. New Yourk,1976. Pp . 252-257.
    39. Cramer G.R., L?uchli A., Polito V.S.. Displacement of Ca2+ by Na+ from the plasmalemma of root cells a primary response to salt stress. Plant Physiology, 1985,79:207-211.
    40. Cramer GR. Sodium-calcium interactions under salinity stress. In: L?uchli A, Lüttge U, eds. Salinity. Environment-plantsmolecules. Dordrecht: Kluwer. 2002, pp. 205-227.
    41. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R. Control of sodium transport in durum wheat. Plant Physiol 2005,137:807-818.
    42. Davenport R.J.,Tester M.A.. Weakly voltage-dependent,.nonselective cation channel mediates toxic sodium influx in wheat. Plant physiology, 2000.122: 823-834.
    43. Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ2007, 30, 497-507.
    44. Davenport RJ, Tester M. A weakly voltage-dependent, nonselective cation channels mediates toxic sodium influx in wheat. Plant Physiol 2000, 122, 823-834.
    45. Demidchik V, Davenport RJ, Tester M. Nonselective cation channels. Annu Rev Plant Physiol Mol Biol 2002,53,67-107.
    46. Demidchik V, Maathuis FJM. Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytol 2007,175, 387-404.
    47. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A., and Bukau, B. Nature 1999,400,693–696.
    48. Dharmasiri N., Dharmasiri S., Jones A. and Estelle M.. Auxin Action in a Cell-Free System. Curr Biol, 2003.13:1418-1422.
    49. Ding TL, Duan P, Wang BS . Na+/K+ selectivity of leaf sheath in wheat cultivars differing in salt tolerance. J Plant Physiol Mol Biol 2006,32,123-126.
    50. Droge W.. Free radicals in the physiological control of cell function. Physiol Rev, 2002.82:47-95.
    51. Durocher, D., and S. P. Jackson. The FHA domain. FEBS Lett.2002, 513:58–66.
    52. Durrant W.E., and Dong X.. Systemic acquired resistance.Annu. Rev Phytopathol, 2004.42:185-209.
    53. Enstone DE, Peterson CA, Ma F . Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 2003,21, 335-351.
    54. Ermak G., and Davies K.J.. Calcium and oxidative stress: From cell signaling to cell death. Mol Immunol, 2002.38:713-721.
    55. Essah PA, Davenport R, Tester M . Sodium influx and accumulation in Arabidopsis. Plant Physiol 2003,133,307-318.
    56. F.J. Quintero, M. Ohta, H. Shi, J.K. Zhu, J.M. Pardo, Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis.Proc. Natl. Acad. Sci. USA, 2002,99:9061-9066.
    57. Fiseher G., Bang H. and Meeh C.. Detection of enzyme catalysis for cis-trans isomerization of peptide bonds using Proline containing peptide substrates. [J] Biomed Biochim Acta, 1984.43:1101-1111.
    58. FKBP65.An ER-localized extracellular matrix binding-protein. [J]. Mol Biol Cell,2000.11(11):3925-3935.
    59. Flowers T.J. Chloride as a nutrient and as an osmoticum. In: Tinker B, L?uuchli A,eds.Asvanced in plant nutrition, New York: Praeger, 1988:55-78.
    60. Flowers T.J., Troke P.F., Yeo A.R.. The mechanism of salt tolerance in halophytes. AnnuRev Plant Physiol, 1977.28:89-121.
    61. Fujiyama S, Yanagida M, Hayano T, Miura Y, Isobe T, Fujimori F, Uchida T, Takahashi N: Isolation and proteomic characterization of human Parvulin-associating preribosomal ribonucleoprotein complexes. J Biol Chem 2002, 277:23773-23780.
    62. Grant J.J., and Loake G.J.. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol, 2000.124:21-30.
    63. Greenway H., Munns R.. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980.31:149-190.
    64. Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOSa protein kinase physically interacts with and is activated by the calcium0binding protein SOS3. PNAS USA, 2000, 97: 3725-3740.
    65. Halliwell B., and Gutteridge J.M.C.. Free Radicals in Biology and Medicine. Oxford: Clarendon Press, 1989.
    66. Handschumacher R.E.,Harding M.W.,Rice J.,Drugge R. J. and Speicher D. W.. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. [J] Science, 1984.226:544-546.
    67. Hardin, S.C., and Wolniak, S.M.. Molecular cloning and characterization of maize ZmMEK1, a protein kinase with a catalytic domain homologous to mitogen- and stress-activated protein kinase kinases. Planta,1998,206:577-584.
    68. Haro R, Ba?uelos MA, Senn ME, Barrero-Gil J, Rodríguez- Navarro A . HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol ,2005,139,1495-1506.
    69. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J.. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Mol. Plant Physiol. 2000, 51:463-499.
    70. He, C., Fong, S.H., Yang, D., and Wang, G.L. BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol. Plant-Microbe Interact.,1999,12:1064-1073.
    71. He, Z., L. Li, and S. Luan. Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol. 2004, 134:1248–1267.
    72. Hirt, H.. Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci.19972:11-15.
    73. Holmstrom KO, Mantyla E, Welin B, Mandal A, Palva TE, Tunnela OE, Londesborough J.Drought tolerance in toacco. Nature, 1996, 379:686-684.
    74. Holmstrom KO, Somersalo S, Mandal A, Plava TE, Welin B. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot, 2000,51:177-185.
    75. Horie T, Horie R, Chan WY, Leung HY, Schroeder JI . Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants. Plant Cell Physiol 2006,47, 622-633.
    76. Horie T, Schroeder JI . Sodium transporters in plants. Diverse genes and physiological function. Plant Physiol 2004,136,2457-2462.
    77. Huang JW, Grunes DL, Kochran LV. Voitage-dependent Ca2+ influx into right-side-out plasma membrane vesicles inolated from wheat roots: characterization of a putative Ca2+channel.Pro Natl Acad Sci USA, 1994,91: 3473-3477.
    78. Huang SB, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R . A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 2006,142,1718-1727.
    79. Husain S, Caemmerer S, Munns R . Control of salt transport from roots to shoots of wheat in saline soil. Funct Plant Biol 2004,31,1115-1126.
    80. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T. Shinozaki K. Various abiotic stresses rapidly active Arabidosis MAP kinases AtMPK4 and AtMPK6. Plant J, 2000, 24: 655-665.
    81. Ichimura, K., Mizoguchi, T., Hayashida, N., Seki, M., and Shinozaki,K.. Molecular cloning and characterization of three cDNAs encoding putative mitogen-activated protein kinase kinases (MAPKKs) in Arabidopsis thaliana. DNA Res,1998a, 5:341-348.
    82. Ichimura, K., Mizoguchi, T., Irie, K., Morris, P., Giraudat, J., Matsumoto,K., and Shinozaki, K.. Isolation of ATMEKK1 (a MAP kinase kinase kinase)-interacting proteins and analysis of a MAP kinase cascade in Arabidopsis. Biochem. Biophys. Res. Commun., 1998b, 253:532-5.
    83. Jabs, T., Dietrich, R.A., and Dangl, J.L.. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science,1996,273:1853-1856.
    84. James RA, Davenport RJ, Munns R . Physiological characterisation of two genes for Na+exclusion in durum wheat: Nax1 and Nax2. Plant Physiol 2006,142, 1537-1547.
    85. Jang HJ, Pin KT, Kang SG et al. Molecular cloning of a novel Ca+-binding protein that is induced by NaCl stress. Plant Mol Biol, 1998,37:839-847.
    86. Jeschke WD, Wolf O, Hartung W . Effect of NaCl salinity on flows and partitioning of C, N, and mineral ions in whole plants of white lupin, Lupinus albus L. J Exp Bot 1992,43,777-788.
    87. Jonak, C., Kiegerl, S., Ligterink, W., Baker, P.J., Huskisson, N.S., and Hirt, H. ress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl.Acad. Sci. USA,1996,St 93:11274-11279.
    88. Joo, J.H., Bae, Y.S., and Lee, J.S. (). Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 2001,126,1055-1060.
    89. Junghee H. Joo, Shiyu Wang,a J.G. Chen, A.M. Jones,b, and Nina V. Fedoroffa, Different Signaling and Cell Death Roles of Heterotrimeric G Protein a and b Subunits in the Arabidopsis Oxidative Stress Response to Ozone, Plant Cell,2005,17:957-970.
    90. Kallen J., Spitzfaden C., Zurini M.G., Wider G., Widmer H,. Wuthrich K.and Walkinshaw M.D.. Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature, 1991.353:276-279.
    91. Karley AJ, Leigh RA, Sanders D . Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. Plant Physiol 2000,122,835-844.
    92. Kessler D, Papatheodorou P, Stratmann T, Dian EA, Hartmann-Fatu C, Rassow J, Bayer P, Mueller JW.The DNA binding parvulin Par17 is targeted to the mitochondrial matrix by a recently evolved prepeptide uniquely present in Hominidae.BMC Biology 2007, 5:37doi:10.1186/1741-7007-5-37
    93. Kirken R.A. and Wang Y.L.. Molecular actions of sirolimus: sirolimus and mTor. Transplant Proc, 2003.35(3):227S-230S.
    94. Knight H. Calcium signaling during abiotic stress in plants. Int Rev Cytol, 2000, 195:269-325.
    95. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J . Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 2004,134,43-58.
    96. Kudula J, Xu W, Harter K, Gruissem W, Luan S. Genes for calcineurin B-like protein in Arabidopsis are differentially regulated by stress signals. Proc.Natl. Acad. Sci. USA, 1999, 96:4718-4723.
    97. Landrieu, I., L. De Veylder, J. S. Fruchart, B. Odaert, P. Casteels, D. Portetelle, M. Van Montagu, D. Inze, and G. Lippens. The Arabidopsis thaliana PIN1At gene encodes a single-domain phosphorylation-dependent peptidyl prolyl cis/trans isomerase. J. Biol. Chem. 2000,275:10577-10581.
    98. Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79:583-593.
    99. Liming Xiong, Karen S. Schumaker, and Jian-Kang Zhu, Cell Signaling during Cold, Drought, and Salt Stress. The Plant Cell,2002,S165-S183.
    100. Lin C, Ahmad M, Cashmore AR. Arabidopsis cryptochrome is a soluble protein mediating blue light-dependent regulation of plant growth and development. Trends Plant J,1996,10:893~902.
    101. Lin C. Plant blue-light receptors. Trends Plant Sci, 2000,5:337~342.
    102. Liu J, Zhu JK . A calcium sensor homolog required for plant salt tolerance. Science 1998,280,1943-1945.
    103. Lu K.P., Hanes S.D. and Hunter T.. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature, 1996.380:544-547.
    104. Lu KP, Hanes SD, Hunter T: A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 1996, 380:544-547.
    105. Lu KP: Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 2003, 4:175-180.
    106. Luttge U . Structure and function of plant glands. Annu Rev Plant Physiol 1971, 22,23-44.
    107. Lux A, Sottnikova A, Opatrna J, Greger M . Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 2004,120,537-545.
    108. Lynch J, Polito VS, Lauchili A. Salinity stress increases cytoplasmic Ca2+ activity in maize root protoplasts. Plant Physiol, 1989,90:1271-1274.
    109. Maas EV, and Hoffman GJ. Crop salt tolerance—Current assessment. J Irrig Drain Div Am Soc Civ Eng, 1977,103:115-134.
    110. Maathuis FJM, Amtmann A . K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 1999,84,123-133.
    111. Maathuis FJM, Sanders D. Sodium uptake in Arabidopsis thaliana is regulated by cyclic nucleotides. Plant Physiol 2001,127,1617-1625.
    112. Maeda T, Takekawa M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science,1995,269: 554-558.
    113. Maeda T, Wurgler-Murphy SM, Saito H. A two-conponent system that regulates an osmosensing MAP kinase cascade in yeast. Nature,1994,369:242-245.
    114. Marchetti, M.A., Bollich, C.N., and Uecker, F.A.. Spontaneous occurrence of the Sekiguchi lesion in two American rice lines: Its induction, inheritance, and utilization. Phytopathology .1983,73:603-606.
    115. Marks A.R..Cellular functions of immuno Philins.[J] physiol rev,1996.76: 631-649.
    116. Martin, G.B., Brommonschenkel, S., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D., and Tanksley, S.D.. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science,1993, 262: 1432-1436.
    117. Matheos DP, Kingbury TJ, Ahsan US, Cunningham KM. Tcn1p. Crz1p,a calcineurin-dependent transcription facter that defferentially regulates gene expression in Saccharomyces cerevisiae. Gene Dev,1997,11:3445-3458.
    118. Memelink, J., Verpoorte, R. and Kijne, J.W. . ORCAnisation of jasmonate -responsive gene expression in alkaloidmetabolism. Trends Plant Sci.2001,6: 212-219.
    119. Mikolajczyk M, Olubunmi SA, Muszynska G, Klessig DF, Dorowolska G. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homog of protein kinase ASK1 in tobacco cells. Plant Cell,2000,12: 165-178.
    120. Mizoguchi, T., Ichimura, K., and Shinozaki, K.. Environmental stress response in plants: The role of mitogen-activated protein kinases. Trends Biotechnol., 1997,15:15-19.
    121. Mueller JW, Kessler D, Neumann D, Stratmann T, Papatheodorou P, Hartmann-Fatu C, Bayer P: Characterization of novel elongated Parvulin isoforms that are ubiquitously expressed in human tissues and originate from alternative transcription initiation. BMC Mol Biol 2006, 7:9.
    122. Mullineaux, P., Ball, L., Escobar, C., Karpinska, B., Creissen, G., and Karpinski, S. Are diverse signalling pathways integrated in the regulation of Arabidopsis antioxidant defence gene expression in response to excess excitation energy? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000,355:1531-1540.
    123. Munns R . Physiological processes limiting plant growth in saline soils: some dogmas hypotheses. Plant Cell Environ 1993,16,15-24.
    124. Munns R . Prophylactively parking sodium in the plant. New Phytol 2007, 176, 501-504.
    125. Munns R, Cramer GR, Ball MC. Interactions between rising CO2, soil salinity and plant growth, In: Luo Y, Mooner HA, eds. Carbondioxide and environmental stress. London:Academic Press, 1999, 139-167.
    126. Munns R, Guo J, Passioura JB, Cramer GR. Leaf water status controls day-time but not dailyrates of leaf expansion in salt-treated barley. Australian Journal of Plant Physiology, 2000, 27: 949-957.
    127. Munns R, James RA, Lauchi A . Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 2006,57,1025-1043.
    128. Munns R, Termaat A. Physiological processes limiting plant growth on daline soils: some dogmas and hypotheses. Plant Cell Enviroment, 1993,16:15-24.
    129. Munns R, Termaat A. Whole plant responses to salinity. Aust J Plant Physiol, 1986,13,143-160.
    130. Munns R, Tonnet ML, Shennan C, Gardner PA . Effect of high external NaCl concentrations on ion transport within the shoot of Lupinus albus. II. Ion in phloem sap. Plant Cell Environ 1988,11,291-300.
    131. Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002,25:239-250.
    132. Neumann PM. Rapid and reversible modification of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant Cell Envirn,1993,16:1107-1114.
    133. Nuccio, M.L., Rhodes, D., McNeil, S.D., and Hanson, A.D. Metabolic engineering of plants for osmotic stress resistance.Curr. Opin. Plant Biol,1999, 2:128-134.
    134. Obata K., Koide M., Nagata K., et al. Role of FK506-binding protein 12 in development of the chick embryonic heart. [J]. Biochem Biophys Res Commun,2001.283(3):613-620.
    135. ?ertli JJ. Extracellular salt accumulation, a possible mechanism of salt injury in plants. Arochimica,1968,12:461-469.
    136. Olivier V., Chlamydomonas Immunophilins and Parvulins: Survey and Critical Assessment of Gene. Models.Eukaryotic Cell,2005.p:230-241.
    137. Olivier Vallon Chlamydomonas Immunophilins and Parvulins: Survey and Critical Assessment of Gene Models EUKARYOTIC CELL, Feb.2005,p. 230–241.
    138. Ota IM, Varshavsky A. A yeast protein similar to bacterial two-component regulators.Science,1993,262:566-569.
    139. Pardo JM, Reddy MP, Yang S et al. Stress signaling through Ca2+/ calmodulin–dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Nalt Acad Sci USA,1998,95:9681-9686.
    140. Pardo MJ, Quintero FJ . Plants and sodium ions: keeping company with the energy. Genome Biol 2002,3,1017-1021.
    141. Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen,G.J., Grill, E., and Schroeder, J.I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.Nature ,2000,406:731-734.
    142. Pemberton TJ, Kay JE: Identification and comparative analysis of the peptidyl-prolyl cis/trans isomerase repertoires of H. sapiens, D. melanogaster, C. elegans, S. cerevisiae and Sz. pombe. Comparative and Functional Genomics 2005, 6:277-300.
    143. Piao HL, Pih KT, Lim JH et al. An arebidopsis GSK3/shaggy-like gend that complements yeast salt stress-sensitive mutants is induced by NaCl and Abscisic acid. Plant Physiol,1999,119:527-1534.
    144. Rahfeld, J.-U., Schierhorn, A., Mann, K., and Fischer, G. FEBS Lett.
    145. Ranathunge K, Steudle E, Lafitte R . A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant Cell Environ 2005,28,1450- 1462.
    146. Ranganathan R, Lu KP, Hunter T, Noel JP: Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 1997, 89:875-886.
    147. Ranganathan, R., Lu, K. P., Hunter, T., and Noel, J. P. Cell,1997,89, 876–886.
    148. Raught B., Gingras A.C. and Sonenberg N.. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA,2001.98(13) :7037-7044.
    149. Reimer T, Weiwad M, Schierhorn A, Ruecknagel PK, Rahfeld JU, Bayer P, Fischer G: Phosphorylation of the N-terminal domain regulates subcellular localization and DNA binding properties of the peptidyl-prolyl cis/trans isomerase hPar14. J Mol Biol 2003, 330:955-966.
    150. Reimer T,Weiwad M, Schierhorn A, Ruecknagel PK, Rahfeld JU, Bayer P, Fischer G (2003) Phosphorylation of the N-terminal domain regulates subcellular localization and DNA binding properties of the peptidylprolyl cis/trans isomerase hPar14. J Mol Biol 330: 955–966
    151. Reimer U. and Fischer G.. Local structural changes caused by peptidyl-prolyl cis-trans isomerization in the native state of proteins. Biophys Chem,2002.96: 203- 212.
    152. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX . A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 2005,37,1141-1146.
    153. Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H., and Jones,J.D. Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell,1999,11:273-287.
    154. Rubio F, Gassmann W, Schroeder JI. Sodium-driver potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 995,270:1660-1663.
    155. Rulten S, Thorpe J, Kay J: Identification of eukaryotic parvulin homologues: a new subfamily of peptidylprolyl cis-trans isomerases. Biochem Biophys Res Commun 1999, 259:557-562.
    156. Rus A, Lee B, Mu?oz-Mayor A, Sharkuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM . AtHKT1 facilitates Na+ homeostasis and K nutrition in planta. Plant Physiol 2004,136,2500- 2511.
    157. Rus AM, Bressan RA, Hasegawa PM . Unraveling salt tolerance in crops. Nat Genet 2005,37,1029-1030.
    158. Rus, A. S. Yokoi, A. Sharkhuu, M. Reddy, B.H. Lee, et al., AtHKT1 is a salt tolerance determinant that controls Na entry into plant roots. Proc Natl Acad Sci, USA,2001.98 :14150-14155
    159. Sánchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, Albert A. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 2005,345,1253-1264.
    160. Santa-María GE, Epstein E . Potassium/sodium selectivity in wheat and the amphiploid cross wheat Lophopyrum elongatum. Plant Sci 2001,160, 523-534.
    161. Sauer, H., Wartenberg, M., and Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem.11,173-186.
    162. Scheel, D. (2002). Oxidative burst and the role of reactive oxygen species in plant-pathogen interactions. In Oxidative Stress in Plants,D. Inze and M. Van Montagu,eds (New York: Taylor and Francis), pp.137-153.
    163. Schopfer, P., Liszkay, A., Bechtold, M., Frahry, G., and Wagner, A.(2002). Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214,821-828.
    164. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D. Guard cell signal transduction.Annu Rev Plant Physiol Plant Mol Biol,2001,52:627-658.
    165. Sekerina E, Rahfeld JU, Muller J, Fanghanel J, Rascher C, Fischer G, Bayer P: NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein. J Mol Biol 2000, 301:1003-1017.
    166. Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM., Gavmard F., Grignon C.Cloning and expression in yeast of a plant potassium ion transport system. Science,1992,256:663-665.
    167. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA. Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 2006,141,1653-1665.
    168. Shi H, Ishitani M, Kim C, Zhu JK . The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 2000, 97,6896-6901.
    169. Shi H, Quintero FJ, Pardo JM, Zhu JK . The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 2002, 14,465-477.
    170. Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J. Novel protein kinases associated with calcineurin B-like clacium sensors in Arabidopsis. Plant Cell, 1999,11:2393-2406.
    171. Shi. H, Ishitani. M., C. Kim, J.-K. Zhu, The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc.Natl. Acad. Sci. USA . 2000,97:6896–6901.
    172. Silberbush M, Ben-Asher J. Simulation study of nutrient uptake by plants from soiless cultures as affected by salinity buildup and transpiration. Plant and Soil, 2001,233:59-69.
    173. Singh C, Jacobson L . The radial and longitudinal path of ion movement in roots. Physiol Plant 1977,41,59-64.
    174. Steven R.Davis and Robert J.Cousins.Metallothionein Expression in Animals:A Physiological Perspective on Function.Recent Advances in Nutritional Sceiences,2000,1085-1088.
    175. Stone, J.M., and Walker, J.C. . Plant protein kinase families and signal transduction. Plant Physiol.1995,108:451-457.
    176. Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N . Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 2005,44, 928-938.
    177. Surmacz TA, Bayer E, Rahfeld JU, Fischer G, Bayer P: The N-terminal basic domain of human parvulin hPar14 is responsible for the entry to the nucleus and high-affinity DNA-binding. J Mol Biol 2002, 321:235-247.
    178. Tena, G., Asai, T., Chiu, W.L., and Sheen, J. (2001). Plant mitogen -activated protein kinase signaling cascades. Curr. Opin. Plant Biol.,2001,4:392–400.
    179. Tenhaken, R., and Rubel, C. (1998). Induction of alkalinization and an oxidative burst by low doses of cycloheximide in soybean cells. Planta.206:666-67.
    180. Tester M, Davenport R . Na+ tolerance and Na+ transport in higher plants. Ann Bot 2003,91,503-507.
    181. Tester M, DavenportR. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003,91:503-527.
    182. Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA . Pathways for the permeation of Na+ and Cl- into protoplasts derived from the cortex of wheat roots. J Exp Bot 1997,48,459-480.
    183. Uchida T, Fujimori F, Tradler T, Fischer G, Rahfeld JU: Identification and characterization of a 14 kDa human protein as a novel parvulin-like peptidyl prolyl cis/trans isomerase. FEBS Lett 1999, 446:278-282
    184. Uchida T, Takamiya M, Takahashi M, Miyashita H, Ikeda H, Terada T, Matsuo Y, Shirouzu M, Yokoyama S, Fujimori F, Hunter T: Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem Biol 2003, 10:15-24.
    185. Ulrike Bechtold, Denis J. Murphy and Philip M. Mullineaux. Arabidopsis Peptide Methionine Sulfoxide Reductase2Prevents Cellular Oxidative Damage in Long Nights. The Plant Cell, 2004,16:908-919.
    186. Vitart V, Baxter I, Doerner P, Harper JF . Evidence for a role in growth and saltresistance of a plasma membrane H+- ATPase in the root endodermis. Plant J 2001,27,191-201.
    187. Volkov V, Amtmann A . Thellungiella halophila, a salttolerant relative of Arabidopsis thaliana, has specific root ionchannel features supporting K+/Na+ homeostasis under salinity stress. Plant J 2006,48,342-353.
    188. W. Wang, B. Vinocur, A. Altman, Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.Planta , 2003,218:1-14.
    189. W.Jones RG, Brady CJ, Spears J. Ionic and osmotic relations in plant cells. IN: Laidman DL, Wyn Jones RG, eds. Recent advances in the biochemistry of cereals. London:Academic Press.1979,63-103.
    190. Wang B, Davenport RJ, Volkov V, Amtmann A . Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J Exp Bot 2006,57, 1161-1170.
    191. Wang H, et al. ICK1, a cyclin-dependent protein kinase inhibitor form Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J,1998,15:501-510.
    192. Wang SM, Zhang JL, Flowers TJ . Low-affinity Na uptake in the halophyte Suaeda maritime. Plant Physiol 2007,145,559-571.
    193. Wolf O, Munns R, Tonnet ML, Jeschke WD . Concentrations and transport of solutes in xylem and phloem along the leaf axis of NaCl-treated Hordeum vulgare. J Exp Bot 1990,41,1133-1141.
    194. Xu X., Su B., Barndt R.J.. et al. FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK506. Transplantation , 2002.73(11) :1835-1838.
    195. Yadav R, Flowers TJ, Yeo AR . The involvement of the transpirational bypass flow in sodium uptake by high- and low-sodium-transporting lines of rice developed through intravarietal selection. Plant Cell Environ 1996,19,329-336.
    196. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J, Kirschner MW, Fischer G, Cantley LC, Lu KP: Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 1997, 278:1957-1960
    197. Yeo AR. Molecular Biology of salt tolerance in the context of whole plant. Plant Physiology,1998,49:915-929.
    198. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 2002,30,529-539.
    199. Zhang SQ, Klessig DF. MAPK cascades in plant defense signaling. Trends Plant Science,2001,6:520-534.
    200. Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D.W., and Song,C.P.. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol. 2001,126,1438-1448.
    201. Zhao Kefu, Fan Hai, Jiang Xing-yu and Zhou San. Critical day-length and photo- inductive cycle for induction of flowering in halophyte Suaeda salsa. Plant Science, 2002.162: 27-31.
    202. Zheng, H. et al. The Prolyl isomerase Pinl15 are gulator of P53 ingenotoxieres Ponse.Nature, 2002. 41: 984- 853
    203. Zhu JK et al. Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci, 1997,16:253-277.
    204. Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis: Evidence for a critical role of potassium nutrition. Plant Cell,1998,10: 1181-1191.
    205. Zhu Y Z,Ji S T,Lu Y C,et al.Current status and progress in Chinese cotton genomic research. Cotton science,2002,14(sup):36.
    206. Zhu. J.K., Salt and drought stress signal trasduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.2002,53:247-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700