用户名: 密码: 验证码:
我国玉米杂交种及其亲本更替过程中产量生理特性的演进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2007—2008年在国家玉米工程技术中心(山东)和作物生物学国家重点实验室进行。选用60年代以来生产上大面积推广玉米杂交种及其骨干亲本为材料,探讨我国玉米杂交种及其亲本更替过程中产量生理特性的演进规律,深入研究玉米品种及其亲本对群体密度响应的生理机制,以光合碳代谢为中心,系统探究我国杂交种及其亲本更替过程中源库生理特性的演进规律,主要研究结果如下:
     1我国不同年代玉米杂交种及其亲本更替过程中农艺性状的演进
     当代杂交种及其亲本的子粒产量显著高于1980s和1960s品系(P<0.05),分别平均提高25.7%、35.8%和7.6%、26.9%,表明当代F1杂交种在产量方面具有较高的杂种优势。随产量提高,不同年代杂交种及其亲本的穗长变化不明显,穗粗、穗粒数和百粒重均明显增加(P<0.05);F1杂交种株高、穗位高以1980s植株最高,而其亲本随年代更替不断升高。年代更替中,各品系的茎粗增大,雄穗分枝数减少,叶向值显著升高(P<0.05),且两密度条件下趋势基本一致。当代杂交种及其亲本的植株叶片数、叶面积指数、花后光合势和平均净光合速率均显著高于1980s和1960s品系(P<0.05),且在高密度条件下优势更明显。相关和通径分析表明,产量与穗粗、穗粒数、百粒重、叶面积指数和叶向值呈显著正相关(P<0.05),其中百粒重、叶面积指数和叶向值对其产量的贡献较大。
     2不同年代玉米杂交种亲本籽粒灌浆特性及物质运转
     产量较高的当代杂交种,其亲本灌浆速率呈先慢后快的趋势,籽粒灌浆的积累起始势(R0)较高,灌浆最大速率出现时间(Tmax)延迟,灌浆速率最大时生长量(Wmax)和最大灌浆速率(Gmax)明显较高。当代杂交种亲本具有较高的花前干物质积累和日增干重,其茎鞘物质输出率和茎鞘物质贡献率均高于早期的亲本。当代杂交种亲本的氮素积累量、转移量和氮素的利用效率明显较高。当代杂交种亲本较高的籽粒灌浆能力,这可能与当代杂交种亲本的物质积累能力强,对营养物质的运转效率高密切相关。
     3不同年代玉米杂交种亲本光合效率的演进规律
     当代杂交种亲本的籽粒产量随年代更替不断提高,其生物产量和收获指数共同提高,这主要是因为其花后具有较高叶面积、叶绿素含量和可溶性蛋白含量,维持叶片较好的保绿性,有效的延缓了植株衰老。与早期杂交种亲本相比,当代骨干自交系具有较高的光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Er),生育后期保持较高的光合性能,其光合速率的降低主要受非气孔因素限制。同时当代杂交种亲本具有较高的最大光化学效率(Fv/Fm)和实际光化学效率(ΦPSII),并且较多的天线色素用于捕获光能,促进了光合电子传递,这都有利于当代亲本提高光能利用效率和光合能力,获得较高的籽粒产量。
     4不同年代玉米杂交种亲本光合日变化特性及光合响应
     当代杂交种亲本在日变化中总比早期的亲本具有较高的光合效率,且在中午时优势更明显,各年代杂交种亲本都没有出现光合午休现象。当代杂交种亲本光系统II日变化中光化学效率(Fv/Fm)和量子产量(ΦPSII)都是比较高的,且具有较高的光化学猝灭系数(qP)和非光化学猝灭(NPQ),表明当代杂交种亲本光系统2反应中心开放比例增加,更多的天线色素吸收的激发能用于电子链传递。随光强度和CO2浓度的升高,表现出更高的光合潜势。当代杂交种亲本的光补偿点和CO2补偿点较低,表观量子效率和羧化效率显著高于早期的亲本,表明当代杂交种亲本在低光强和低CO2浓度条件下,可以维持相对较高的光合能力。
     5种植密度对不同年代玉米杂交种及其亲本光合特性的影响
     高密度条件下,当代杂交种及其亲本的光合高持续期明显延长,花后始终保持较高的叶面积指数、叶绿素及可溶性蛋白含量,有效维持植株叶片的功能期和延缓植株的衰老。当代杂交种及其亲本具有较高的PEPCase和RuBPCase活性,在籽粒灌浆期能够保持较高的光合效率,且对光能的利用效率明显高于早期的品系,从而使其生育后期能够维持叶绿体组分的结构性和功能性。
     6种植密度对不同年代玉米杂交种及其亲本光合特性的影响
     高密度条件下,减源疏库明显降低了不同年代杂交种及其亲本的籽粒产量,且疏库处理对其影响更大。当代杂交种及其亲本在减源疏库处理下具有较高的籽粒产量,且维持相对较高的穗位叶叶绿素和可溶性蛋白含量,有效延缓了其衰老的进程。当代品系具有相对较高的穗位叶光合效率,减源疏库对其影响并不显著,这主要由于其生育后期具有良好的叶绿体结构和较多的细胞器数目,使其维持相对较高光化学效率。
The experiment was carried out in national maize engineering technology center (Shandong) and State Key Laboratory of Crop Biology from 2007 to 2008. We investigate the evolution of yield and physiology traits in china with maize hybrids and their parents which was popularized in production after 1960s, and analyze the physiology machanism of reponse to plant density of maize hybrids and their parents. This paper focused on photosynthetic carbon metabolism, study source-sink traits of maize hybrids and their parents released in different years. The main results as followed:
     1 Evolution Characteristics of Main Agronomic Traits with Genetic Improvement of Maize Hybrids and their Parents in China
     Compared with 1980s and 1960s hybrids and their parents, the modern varieties had higher grain yield with the times evolution (P<0.05), accompanied with biomass and harvest index under two planting densities, indicating that the modern F1 hybrids had higher heterosis in their yields. The ear length of hybrids and their parents had less change, and greatly increased in ear diameter, kernel numbers per ear and 100-kernel weight with grain yield enhancing (P<0.05). Plant height and ear position height of hybrids was highest in 1980s, and those of their parents were heightened released in different years. The stem diameter increased, tassel branches reduced, and leaf orientation value (LOV) significantly enhanced of hybrids and their parents in different years (P<0.05). The individual leaf numbers, leaf area index(LAI), leaf area duration after anthesis and average net photosynthetic rate of 2000s hybrids and their parents were higher than those of the earlier varieties (P<0.05), especially at high density condition. The correlation and pathway analysis indicated that yield was positively correlated with ear diameter, kernel numbers per ear, 100-kernel weight, leaf area index and leaf orientation value (P<0.05), and 100-kernel weight, leaf area index and leaf orientation value of elite inbred lines showed more contribution in their yield.
     2 The grain filling traits and matter transportion of maize hybrids parents released in different years
     The modern hybrids with higher grain yield had higher initiation potential(R0), and the appeared time of the highest rate delayed, the biggest production(Wmax) and the highest grain filling rate(Gmax) were higher than those of the earlier parents. Also, the modern hybrids parents maintained higher nutrient matter accumulation, stem-sheath matter exportation rate, stem-sheath matter contribution and higher nitrogen translocation efficiency. The modern hybrids parents maintained higher grain filling ability, which was closed correlated with stronger matter accumulation ability and higher nutrient matter translocation efficiency of modern maize parents.
     3 The evolution of photosynthesis efficiency in maize hybrids parents released in different years
     The grain weight in the recently lines gradually increased released in different years, which was accompanied with the common enhancement of plant weight and harvest index. Also, the recently released lines had a better stay-green character, prolonging effective photosynthesis duration during leaf senescence owing to their higher chlorophyll content, soluble protein content, and larger leaf area at late growth stage. In recently released lines, photosynthetic rate (Pn), intercellular CO2 concentration (Ci) and stomatal conductance (Gs) showed higher values, and declined slowly at late growth stage obviously. Synchronously, Chlorophyll fluorescence parameters such as the maximal photochemical efficiency (Fv/Fm), the actual photochemical efficiency (ΦPSⅡ), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (NPQ) of recently released lines were higher than those of earlier released lines. We analyzed plant light energy partition indicated that more percentage energy partition was allocated to photo reaction center in recently released lines, but had a lower themal-dissipation of antenna pigment. These suggested recently released lines showed great advantages in photosynthetic performance, electron transfer, and light energy transform at the late growth stage, so the higher grain yield of recently released lines resulted from the common improvement of leaf physiological activity and photosynthetic efficiency in grain filling period.
     4 The photosynthetic diurnal Change traits and photosynthetic responses of maize hybrids parents released in different years. The modern maize hybrids parents maintained higher photosynthetic efficiency than those of earlier parents in diurnal Change, especially showed great advantages at noon. Three maize hybrids parents were not appeared photosynthetic midday depression. With the increase of light intensity, the modern parents showed higher photosynthetic potential. The modern hybrids parents had lower light compensation points and CO2 compensation points, and showed higher apparent quantum efficiency and carboxylic efficiency. These indicated that the modern hybrids parents maintained higher photosynthetic ability under low light intensity and low CO2 concentration.
     5 Effect of plant density on photosynthetic traits of maize hybrids and their parents released in different years
     The modern hybrids and their parents maintained longer photosynthetica higher duration, and had higher leaf area index, chlorophyll content and soluble protein content, which delayed the process of senescence in maize plant. The modern hybrids and their parents had higher photosynthetic key enzymes activity, and showed higher photosynthetic efficiency, moreover, light energy utilization efficiency of the modern maize was higher than those of earlier maize, which could maintained the excellent structure and function of chloroplast components at the late of stage.
     6 Effect of source-sink change on yields and photosynthetic traits of maize hybrids and their parents
     Source-sink change distinctly decreased grain yield and 100-grain weight of maize hybrids and their parents, and significantly at reduced sink treatment. The modern hybrids and their parents maintained higher chlorophyll content and soluble protein content, which prolonged the function of maize leaf and delayed the process of senescence in plant. The modern maize hybrids and their parents had higher photosynthetic efficiency and photochemistry efficiency, but not significant change by source-sink change, which was mainly caused by better chloroplast structure and more organelle numbers to sustain higher photochemistry efficiency.
引文
[1]艾希珍,郭延奎,马兴庄,刑禹贤.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构.中国农业科学,2004,37(2):268-273
    [2]陈根云,俞冠路,陈锐,许大全.光合作用对光和二氧化碳响应的观测方法探讨.植物生理与分子生物学报,2006,32(6):691-696
    [3]春亮,陈范骏,张福锁,米国华.不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成.植物营养与肥料学报,2005,11(5):615-619
    [4]崔彦宏.春玉米不同群体产量构成因素的分析.河北农业大学学报,1992(1):14-18.
    [5]戴景瑞.我国玉米遗传育种的回顾和展望.玉米遗传育种国际学术讨论会文集.长春,2000,9:1-7
    [6]东先旺,刘树堂.夏玉米超高产群体光合特性的研究.华北农学报,1999,14(2):1-5
    [7]董树亭,高荣歧.玉米花粒期群体光合性能与高产潜力研究.作物学报, 1997, 23(3):318-325
    [8]董树亭,胡昌浩,王空军.玉米品种更替过程中生理特性演进规律研究[J].华北农学报,1998,13:9-14
    [9]董树亭,王空军,胡昌浩.玉米品种更替过程中群体光合特性的演变.作物学报,2000,26(2):200-204
    [10]段民孝.从农大108和郑单958中得到的玉米育种的启示.玉米科学,2005,13(4):49-52
    [11]关义新,马兴林,向春阳,凌碧莹.不同玉米自交系氮效率的分析.玉米科学,2004,12(1):100-102
    [12]郭小强,赵明,李少昆.不同玉米自交系光合特性研究.玉米科学,1997,5(3):46-49
    [13]何萍,金继运,林葆.氮肥用量对春玉米叶片衰老的影响及其机理研究.中国农业科学,1998,31(3):1-4
    [14]胡昌浩,董树亭,王空军.我国不同年代玉米品种生育特性演进规律的研究. I籽粒产量特性的演进.玉米科学,1998,6(2):44-48
    [15]胡昌浩、董树亭、王空军.我国不同年代玉米品种生育特性演进研究∶Ⅱ.物质生产特性的演进.玉米科学,1998b,6:49–53.
    [16]巨晓棠,张福锁.关于氮肥利用率的思考.生态环境,2003,12(2):192-197
    [17]柯永培,赖仲铭.我国玉米生产两个年代主要自交系性状的比较研究.四川农业大学学报,1993,11(1):56-63
    [18]赖仲铭,杨克诚,郑有良.播期效应对玉米产量性状配合力影响的研究.四川农业大学学报,1987,5(2):65-70
    [19]李潮海,刘奎.不同产量水平玉米杂交种生育后期光合效率比较分析.作物学报, 2002,28(3):379-383
    [20]李寒冰,胡玉熹,白克智,匡廷云,周馥,林金星.小麦芒和旗叶叶绿体结构及低温荧光发射光谱的比较研究[J].电子显微学报,2002,21(3):341-344
    [21]李明顺,张世煌,李新海,潘光堂,白丽,彭泽斌.根据产量特殊配合力分析玉米自交系杂种优势群.中国农业科学,2002,35(6):600-605
    [22]李鹏民,高辉远,Reto J. Strasser.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学报,2005,31(6):559-566
    [23]李少昆,赵明,郭小强,尚有军,王树安,王美云.玉米自交系株型及其光合特性研究.中国农业大学学报,1999,4(5):77-81
    [24]李少昆,赵明,王树安,曹连莆,郭小强.不同基因型叶片呼吸速率的差异及与光合特性关系的研究. 1998,3(3):59-65
    [25]李少昆,赵明,许启凤,王树安,王玉萍,王美云.我国常用玉米自交系光合特性研究.中国农业科学,1999,32(2):53-59
    [26]李少昆.玉米不同基因型源特性研究:博士论文.北京:中国农业大学农学系,1996
    [27]李绍长,陆嘉惠,孟宝民,董志新.玉米籽粒胚乳细胞增殖与库容充实的关系.玉米科学,2000,8(4):45-47
    [28]李维岳,才卓,赵化春主编.吉林玉米.吉林科学技术出版社,2000:108-118
    [29]李霞,刘友良,焦德茂.不同高产水稻品种叶片德荧光参数的日变化和光适应特性的关系.作物学报,2002,28(2):145-153
    [30]李霞,丁在松,李连禄,王美云,赵明.玉米光合性能的杂种优势.应用生态学报,2007,18(5):1049-1054
    [31]李新海,袁力行,李晓辉,张世煌,李明顺,李文华.利用SSR标记划分70份我国玉米自交系的杂种优势群.中国农业科学,2003,36:622-627
    [32]刘建安,米国华,张福锁.不同基因型玉米氮效率差异的比较研究.农业生物技术学报,1999,7(3):248-254
    [33]刘新芝,彭泽斌,思扬,张洪哲. 50个常用玉米自交系配合力的聚类分析.玉米科学,1994,2(1):1-6
    [34]刘宗华,王春丽,汤继华,田国伟,牛俊海,鲁晓民.氮胁迫对不同玉米自交系若干农艺性状和产量的影响.河南农业大学学报,2006,40(6):573-577
    [35]米国华,陈范骏,春亮,郭亚芬,田秋英,张福锁.玉米氮高效品种的生物学特征.植物营养与肥料学报,2007,13(1):155-159
    [36]牛连杰.不同年代玉米自交系性状改良趋势的研究.中国种业,2004,1(2):37-38
    [37]史新海,隋方功,宋再华,王广明,张延胜,范深问,潘信芳,束春德.中熟高产玉米杂交种主要农艺性状演变规律的研究.作物学报,1996,22,(6):750-756
    [38]孙庆泉,胡昌浩,董树亭,王空军.我国不同年代玉米品种生育全程根系特性演化的研究.作物学报,2003,29(5):641-645
    [39]孙庆泉,胡昌浩,董树亭.玉米产量提高过程中干物质积累演变规律的研究.山东玉米科技进展.北京农业大学出版社,1994,131-136
    [40]孙世贤. 2003年国审玉米品种介绍.玉米科学,2004,13 (增刊):132-144
    [41]汤继华,谢惠玲,黄绍敏,胡彦民,刘宗华,季洪强,寇志安.缺N条件下玉米自交系叶绿素含量与光合效率的变化.华北农学报,2005,20(5):10-12
    [42]陶世蓉,初庆刚,东先旺,刘绍棣.不同株型玉米叶片形态结构的研究.玉米科学,1995,51-53
    [43]佟屏亚.中国玉米科技史.北京:中国农业科技出版社,2004.
    [44]王国忠,刘秀丽.不同类型水稻品种的籽粒灌浆生理.江苏农学院学报, 1997,18(4):19-21
    [45]王建革.我国玉米自交系性状的改进.玉米科学,1997,5(4):26-29
    [46]王空军,董树亭,胡昌浩,刘开昌,张吉旺.我国玉米品种更替过程中根系生理特性的演进:I根系保护性酶和膜质过氧化作用的变化.作物学报,2002,28(3):384-388
    [47]王空军,董树亭,胡昌浩,刘开昌,张吉旺.我国玉米品种更替过程中根系生理特性的演进:I根系活性与ATPase活性的变化.作物学报,2002,28(2):185-189
    [48]王空军,董树亭,胡昌浩.我国1950s-1990s玉米光合特性的演进.植物生态学报,2001,25(2):247-251
    [49]王空军,董树亭,胡昌浩.我国不同年代玉米品种开花后叶片保护性酶和膜质过氧化作用的演进.作物学报,1999,25(6):700-706
    [50]王空军,董树亭,胡昌浩.玉米品种更替过程中群体光合特性的演变作物学报2000,26:200–203.
    [51]王空军,郑洪建,刘开昌,张吉旺,董树亭,胡昌浩.我国玉米品种更替过程中根系时空分布特性的演变.植物生态学报,2001, 25 (4): 472-475
    [52]王庆成,刘开昌.紧凑型玉米新杂交种群体结构特点和变化动态.西北植物学报,2002,22(6):1336-1342 .
    [53]王秀玲,赵明,王启现,李连禄,王美云.玉米杂交种及亲本自交系气孔特征.作物学报,2004,30(3):293-296
    [54]王艳,米国华,陈范骏,张福锁.玉米自交系氮效率基因型差异的比较研究.应用与环境生物学报,2002,8(4):361-365
    [55]王懿波,王振华,陆利行,王永普,张新.中国玉米种质基础,杂种优势群划分与杂种模式研究.玉米科学,1998,6:9-13
    [56]王懿波,王振华,王永普,张新,陆利行.中国玉米主要种质杂交优势利用模式研究.中国农业科学,1997,30(4):16-24
    [57]王元东,段民孝,邢锦丰,王继东,张春原,郭景伦,赵久然,陈绍江. P群种质在玉米杂种优势利用和种质创新中的作用及展望.玉米科学,2004,12:10-15
    [58]王振华,王义波,王永普,张新.玉米自交系株型和产量性状的遗传改良效果.玉米科学,2000(1):15-16
    [59]王芝堂.玉米杂交种的性状表现与亲本选配的探讨.华北农学报,1987,2(4):38-43
    [60]吴长艾,孟庆伟,邹琦.叶黄素循环及其调控.植物生理学通讯. 2001,37(1):1-5
    [61]吴景锋.我国玉米杂交种发展的主要历程、差距和对策.玉米科学,1995,3(1):1-5
    [62]吴景锋.我国主要玉米杂交种种质基础评述.中国农业科学,1983,16(2):1-8
    [63]吴景锋.中国玉米单交种二十年的发展,作物杂志,1991(1):1-4
    [64]武田友四郎.暖地水稻品种物质生产的研究.日记作,1984,53(1):12-21
    [65]谢振江,李明顺,李新海,张世煌,张宝石.华北地区骨干自交系农艺性状与产量的相关性.沈阳农业大学学报,2007,38(3):265-268
    [66]徐庆章,牛玉贞,王庆成,黄舜阶,李登海.玉米株型在高产育种中的作用III株型与叶面温度、蒸腾作用的关系.山东农业科学,1993,7-8
    [67]薛吉全,梁宗锁,马国胜,路海东,任建宏.玉米不同株型耐密性的群体生理指标研究.应用生态学报. 2002,13(1):55-59
    [68]闫文芝.对影响小麦气孔密度变化因素初探.内蒙古农业科技,1997,3:9-12
    [69]杨克军,李明,李振华.群体结构对紧凑型玉米生长发育及产量影响的研究.黑龙江八一农垦大学学报,2003,15(3):29-32.
    [70]杨胜铭,高辉远,邹琦.状态转换对光合作用激发能分配的调节及其光破坏防御的关系.植物生理学通讯. 2001,37(2):89-94
    [71]杨伟光,张君,赵欣欣,李继竹,吴云艳.几个玉米改良系主要农艺性状配合力和遗传参数的分析.玉米科学,2002,10(4):22-25
    [72]杨新泉,冯峰,宋长青,冷疏影.主要农田生态系统氮素行为与氮肥高效利用研究.植物营养与肥料学报,2003,9(3):373-376
    [73]姚启伦.玉米抗倒伏性状的研究——一般配合力效应(GCA)极其在育种上的应用.重庆师范学院学报,2003,20(2):48-51
    [74]印志同,邓德祥,卞云龙,孙卫永.玉米自交系性状的遗传相关分析和主成分分析.扬州大学学报,2001,4(1):48-51
    [75]袁力行,傅骏烨,张世煌,刘新芝,彭泽斌,李新海.利用RFLP和SSR划分玉米自交系杂种优势群的研究.作物学报,2001,27:149-156
    [76]曾三省.中国玉米杂交种的种质基础.中国农业科学, 1990,23( 4):1-9
    [77]曾小美,袁琳,沈允钢.拟南芥连体和离体叶片光合作用的光响应.植物生理学通讯. 2002,38(1):25-28
    [78]张丽颖,刘祥久,张喜华.国内部分玉米自交系植株形态性状与产量相关性研究.玉米科学,2005,13(1):19-21
    [79]张世煌,等.玉米杂种优势和种质扩增、改良和创新.中国农业科学,2000,33(增刊) :34-39
    [80]张世煌.中国玉米杂交种优势群和杂种优势模式.作物杂志,1998,67(增刊):84-85
    [81]张世煌.中美两国玉米育种思路和技术水平的比较.北京农业,2007,4:9-10
    [82]张永江,李少昆,胡昌浩,张旭,董树亭,高世菊.玉米不同基因型叶片PSII光能转换效率的比较研究.中国农业科学,2003,35(6):621-625
    [83]张永科,姚伯岐,马永平.玉米自交系产量优势性状及其研究利用.国外农学-杂粮作物,1998,18(3):1-4
    [84]张泽民,刘丰明,牛连杰,田兰荣.不同年代自交系性状改良趋势的研究.遗传,1998,20(增刊):75-77
    [85]赵久然,郭景伦,郭强,尉徳铭,孔艳芳.应用RAPD分子标记技术对我国骨干自交系进行类群划分.华北农学报,1999,14:32-37
    [86]赵克明.中国历年各地育成的玉米杂交种组合一览表.玉米科学,2003,11(增刊):100-120
    [87]赵明,丁在松,陈鹏,张旭.干旱和遮光条件下玉米非光化学荧光猝灭的变化和组成的研究.作物学报, 2003,29(1):59-62
    [88]赵明,王美云,李少昆.玉米不同自交系叶片色素及其光合速率关系的研究.中国农业大学学报,1998,3(1)83-87
    [89]赵明,王美云.玉米亲本及杂交种光合速率的关系.北京农业大学学报,1995,21(3):265-269
    [90]周洪生.玉米育种及种子产销的历史、现状及展望.见21世纪玉米遗传育种展望——玉米遗传育种国际学术讨论会文集.长春,2000.北京:中国农业科技出版社,2000,229-236
    [91]朱庆森,曹显祖,骆亦其.水稻籽粒灌浆过程分析.作物学报,1988,14(3):182-193
    [92] Alexander V R, Peter H. Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Aust. J. Plant Physiol, 1995, 22: 221–230.
    [93] Almeida M L, Sangoi L & Ender M. Incremento na densidade de plantas: uma alternativa para aumentar o rendimento de gr?os de milho em regioes decurta estacao estival de crescimento. Ci. Rur. 2000, 30: 23–29.
    [94] Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24:1–15.
    [95] Austin R B. Genetic varation in photosynthesis review. J Agric Sci, 1989, 60: 422-424
    [96] Bahman E, Jerry M W. Root development and nitrogen influx of corn genotypes growth under combined drought and N stresses. Agron J,1993, 85: 147-152
    [97] Bernardo R. What if we knew all the genes for a quantitative trait in hybrids crops? Crop Sci, 2001, 41: 1-4
    [98] Binkman M.A, Frey K.J. Flag leaf physiological analysis among photosynthetic rate, bean yield and other characters in filed-grown cultivars of soybean. Can J Plant Sci., 61: 191-198,1981
    [99] Borrás L, & Otegui ME. Maize kernel weight response to post-flowering source-sink ratio. Crop Sci, 2001, 41: 1816–1822.
    [100] Borrás L, Maddonni GA, Otegui ME. Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Res., 2003, 82: 13–26.
    [101] Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein, utilizing the principle of protein-dye landing. Anal. Biochem, 1976,72: 248-254
    [102] Bruce A B. The Mendelian theory of heredity and augmentation of vigor. Science, 1910, 32: 627-628
    [103] Bungard R A, McNeil D & Morton J D. Effects of nitrogen on the photosynthetic apparatus of Clematis vitalba grown at several irradiances. Australian Journal of Plant Physiology 1997, 24: 205–214.
    [104] Catsky J & ?esták Z. Photosynthesis during leaf development. In: Pessarkli M. (ed.) Handbook of Photosynthesis. New York– Basel– Hong Kong: Marcel Dekker. 1997. Pp. 633–660
    [105] Crafts-Brandner SJ, Salvucci ME & Egli DB. Changes in ribulosbisphosphate carboxylase/oxygenase and ribulosebisphsphate 5-phosphate kinase abundances and photosynthetic capacity during leaf senescence. Photosynth. Res, 1990, 23: 223–230
    [106] Crosbie T M. Changes in physiological traits associated with long-term breedingefforts to improve grain yield of maize. In: Loden HD & Wilkinson D. (eds.) Proc. 37th Corn and Sorghum Res. Conf. Washington, DC:Am. Seed Trade Assoc. 1982. Pp. 206–233.
    [107] Demmig-Adams B & Adams WWⅢ. Photoprotection and other responses of plants to high light stress. Ann. Rev. Physiol. Plant Mol. Biol, 1992, 43:599.
    [108] Demmig-Adams B, Adams WWⅢ, Baker DH, Logan BA, Bowling DR & Verhoeven AS. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant, 1996, 98: 253–264.
    [109] Ding L, Wang K J, Jiang G M, Biswas D K, Xu H, Li L F, Li Y H. Effect of nitrogen deficiency on photosynthetic traits of maize hybrids released in different years. Annals of botany, 2005b, 96(5): 925-930
    [110] Ding L, Wang K J, Jiang G M, Li Y G, Jiang C D, Liu M Z, Niu S L, Peng Y. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field crops research, 2005a, 93(1):108-115
    [111] Djisbar A, Heterosis for embryo size and source and sink components of maize. Crop Sci, 1989, 29, (4): 985-991
    [112] Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci, 1999, 39: 1662-1630
    [113] Duvick D N. What is yield? In: Edmeades GO et al. (ed.) Developing drought and low N-tolerant maize. El Batan, Mexico: CIMMYT. 1997. Pp. 332–335.
    [114] Duvick D. N. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 2005, 86: 83-145,
    [115] Duvick D N. Genetic contributions to yield gains of U.S. hybrid maize, 1930 to 1980. In: Fehr WR. (ed.) Genetic contributions to yield gains of five major crop plants. Madison, WI: ASA and CSSA. 1984. Pp. 15–47.
    [116] Duvick D N. What is yield? In: Edmeades G O et al. (ed.) Developing drought and low N-tolerant maize. El Batan, Mexico: CIMMYT. 1997. Pp. 332–335.
    [117] Duvick, D.N. Genetic contribution to advances in yield of US maize. Maydica, 1992, 37: 69-79
    [118] Dwyer L M, Anderson AM, Stewart D W, Ma BL & Tollenaar M. Changes in maize hybrid photosynthetic responses to leaf nitrogen pre-anthesis to grain filling. Agron. J, 1995, 87: 1221–1225.
    [119] Dwyer L M, Stewart D.W., Tollenaar M. Analysis of corn leaf photosynthesis under drought stress. Canadian Journal of Plant Science, 1992, 72: 477-481
    [120] Dwyer L M, Tollenaar M. Genetic improvement in photosynthetic response of hybrid maize cultivars, 1959 to 1988. Can. J. Plant Sci, 1989, 69: 81-91
    [121] East E M. Heterosis. Genetics, 1936, 21: 375-397
    [122] East E M. Inbreeding in corn. Reports of the connecticut agricultural experiment station for years 1907-1908. 1908, PP. 419-428
    [123] Echarte L, Luque S, Andrade FH, Sadras VO, Cirilo A, Otegui ME & Vega CRC. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1995. Field Crop Res, 2000, 68:1–8.
    [124] Evance L T, Ficher R A. Yield potential: its defination, measurement, and signicance. Crop Science, 1999, 39: 1544-1551
    [125] Evans L T.作物生理学.江苏省农业科学院科技情报室译.北京:农业出版社,1970,127-145
    [126] Fakorede MAB, & Mock JJ. Growth analysis of maize variety hybrids obtained from two recurrent selection programmes for grain yield. New Phytol, 1980,85:393–408
    [127] Fasoula D & Fasoula V. Competitive ability and plant breeding. Plant Breed. Rev. 1997, 14: 89–138.
    [128] Fischer KS & Palmer AFE. Tropical maize. In: Goldersworthy PR & Fischer NM. (eds.) The Physiology of Tropical Field Crops. Newer York: Wiley. 1984. Pp. 213–248.
    [129] Gardner F P, Valle P R, Mccloud D E. Yield characteristics of ancient of maize compared to modern hybrid. Agronomy journal, 1990, 82: 864-868
    [130] Gardner F.P., Pearce R.B., Mitchell R.L. Physiology of crop plants. Lowa state university press, 1985
    [131] Genty B, Briantais JM & Baker NR: The relationship between the quantum yield of non-photochemical quenching of chlorophyll fluorescence and the rate ofphotosystem 2 photochemsitry in leaves. Biochim Biophys Acta, 1989, 990: 87–92.
    [132] Ginsburg S, Schellenberg M & Matile P. Cleavage of chlorophyll-porphyrin. Requirement for reduced ferredoxin Plant Physiol, 1994, 105: 545–554.
    [133] Hao N B, Du W G., Ge Q Y, Zhang G., Li W H., Man W Q, Peng D.C., Bai K.Z., Kuang T.Y. Progress in the breeding of soybean for high photosynthetic efficiency. Acts Botanica Sinica, 2002, 44: 253-258,.
    [134] Harbinson J, Genty B, Baker N.R. The relationship between CO2 assimilation and electron transport in leaves. Photosynth Res, 1990, 25: 313–324
    [135] Harbinson J, Genty B, Baker NR. The relationship between CO2 assimilation and electron transport in leaves. Photosynth Res, 1990, 25:313–324.
    [136] Harsh Mehta,Kumud Ranjan Sarkar.陈悦译.玉米光合作用、产量和产量组成的杂种优势.国外农学-杂粮作物,1993,3:8-11
    [137] Hirasawa T, Iida Y, Ishihara K. Dominant factors in reduction of photosynthetic rate affected by air humidity and leaf water potential in rice plants. Jpn. J. Crop Sci, 1989, 58: 383–389.
    [138] HoláD, KoěnerováM, SofrováD, Sopko B. Genetically based differences in photochemical activities of isolated maize (Zea mays L.) mesophyll chloroplasts. Photosynthetica, 1999, 36:187–197
    [139] Huang J K, Carl P, Scott R. Enhancing the crops to feed the poor. Nature, 2002, 44 (3): 253-258
    [140] Huck M G, Ishihara K, Peterson C M, Ushijima T. Soybean adaptation to water stress at selected stages of growth. Plant Physiol,1983,73: 422–427
    [141] Ishihara K & Saito K. Diurnal course of photosynthesis, transpiration, and diffusive conductance in the single leaf of the rice plants grown in the paddy field under submerged condition. Jpn. J. Crop Sci., 1987, 56: 8–17.
    [142] Jenkins G I., Woolhouse H W.: Photosynthetic electron transport during senescence of the primary leaves of phaseolus vulgaris L. I non-cyclicelectron transport. Journal of Experiments Botany, 1981, 32: 467-478,
    [143] Jiang G. M, Hao N B, Bai K Z, Zhang Q D, Sun J Z, Guo R J, Ge Q Y, Kuang T Y.Chain correlation between variables of gas exchange and yield potential in different winter wheat cultivars. Photosynthetica, 2000, 38: 227-232
    [144] Jorge B. Physiological bases for yield differences in selected maize cultivars from Central America. Field Crops Res, 1995, 42:69–80.
    [145] Krebs D, SynkováH, Avratov?ěukováN, KoěováM, sestak Z. Chorophyll fluorescence measurements for genetic analysis of maize hybrids. Photosynthetica, 1996, 32: 505–608.
    [146] Lafitte H R & Edmeades G O. Improvement for tolerance to low soil nitrogen in tropical maize. 1. Selection criteria. Field Crops Res., 1994, 39: 1–14.
    [147] Leverenz J W, Falk S, Pilstr?m C M, Samuelsson G. The effects of photoinhibition on the photosynthetic light-response curve of green plant cells (Chlamydomonas reinhardtii). Planta 1990, 182:161–168.
    [148] Lilley R M & Walker D A. An improved spectrophotometric assay for ribulose bisphosphate carboxylase. Biochimica et Biophysica Acta 1974, 358: 226–229.
    [149] Lu R.H., Tang C.Q., Kuang T.Y., Tang P.S. Photoreduction of cytochrome B559 in the photosystem II reaction center complex. Acta Botanica Sinica. 1997, 39: 517-521
    [150] Macky A D, Barber S A. Effect of nitrogen on growth of two genotypes in the field. Agronomy Journal,1986, 77: 699-703
    [151] Makino A & Osmond B. Effects of nitrogen nutrition partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiology, 1991, 96:355–362.
    [152] Manoj K J, Prasanna M. Probing photosynthetic performance by chlorophyll a fluoreacence analysis and interpretation of fluorescence parameters. J. Sci. Ind, 1995, 54: 155-174.
    [153] Matile P. Chloroplast senescence. In: Baker N & Thomas H. (eds.) Crop Photosynthesis: Spatial and Temporal Determinants. Amsterdam: Elsevier. 1992. Pp. 413–440.
    [154] Modarres A M, Hamilto R I, Dijak M, Dwyer L M, Stewart D W. Plant Population Density Effects on Maize Inbred Lines Grown in Short-season Environments. CropSci ,1998, 38(1):104-108
    [155] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factor which contribute to efficiency of nitrogen utilization. Agronomy Journal, 1982, 74: 562-564
    [156] Moss D N, Musgrave R B. Photosynthesis and crop production. Advanced in Agronomy, 1971, 23: 317-336
    [157] Nissanka S P. The response of an old and a new maize hybrid to nitrogen, weed and moisture stress. Univ. of Guelph, ON, Canada: Ph.D. thesis. 1995.
    [158] Peixoto C M, Silva PRF, Rezer F, & Carmona, R. Produtividade de híbridos de milho em fun??o da densidade de plantas, em dois níveis de manejo daágua e da aduba??o. Pesq. Agrop. Gau, 1997, 3:63–71.
    [159] Pepper G Z. Leaf orientation and yield of maize. Crop Science, 1977, 17: 883-886
    [160] Qiao C G., Wang Y J, Guo H A, Chen X J, Liu J Y, Li S Q. A review of advances in maize production in Jilin Province during 1974-1993. Field Crops Res, 47: 65-75,1996
    [161] Rajcan I & Tollenaar M. Source: sink ratio and leaf senescence in maize: II. Nitrogen metabolism during grain filling. Field Crops Research, 1999, 60: 255–265.
    [162] Russell W A. Agronomic performance of maize cultivars representing different areas of breeding. Maydica, 1984, 29: 375–390.
    [163] Russell W A. Evaluations for plant, ear, and grain traits of maize cultivars representing different eras of breeding. Maydica, 1985, 30: 85–96.
    [164] Sangoi L & Salvador R J. Influence of plant height and leaf number on maize production at high plant densities. Pesq. Agrop. Bras, 1998, 33: 297–306.
    [165] Sangoi L, Gracietti M A, Rampazzo C & Bianchetti P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research, 2002, 79: 39-51.
    [166] Sangoi L. Understanding plant density effects on maize growth and development: an important issue to maximize grain yield. Ci. Rur. 2001, 31:159–168.
    [167] Sanguineti M C, M M giuliani, Ruberose. Root and Shoot Traits of Maize Inbred Lines Grown in the Field in Hydroponic Culture and Their Relationships with RootLodging Maydica. 1998, 43:211-216
    [168] Schreiber U, Bilger W, Neubauer C: Chlorophyll fluorescence as a non-invasive indicator for rapid assessment o in vivo photosynthesis. In: Schulzem ED, Calswell MM. (ed.) Ecophysiology of photosynthesis. Berlin: Springer Verlag. 1994. Pp. 49–70.
    [169] Sestak Z. Photosynthetic characteristics during ontogenesis of leaves 2. Photosystems, components of electron transport chain, and photophosphorylation. Photosynthetica, 1977, 11: 449–474.
    [170] Shull G H. The composition of a field of maize. Am Breed Assoc Rep., 1908, 4: 296-301
    [171] Stoddart J L & Thomas H. Leaf senescence. In: Boulter D & Parthier B. (eds.) Encyclopedia of Plant Physiol. Berlin: Springer Verlag. 1982. Pp. 592–636.
    [172] Swank JC, Below FE, Lambert RJ & Hageman RH. Principles and Procedures of Statistics: A Biometrical Appraoch. (2nd edn). New York, NY: McGraw-Hill Book Co. 1982.
    [173] ThompsonW A, Kriedemann P E. Phtosynthetic Response to Light and Nutrients in Sun Tolerant and Shade Tolerant Rainforest Tress. II Leaf Gas Exchange and Component Processes of Photosynthesis. Physio J, 1992, 19:19- 42.
    [174] Thorne G N. Varietal difference in photosynthesis of ears and leaves of barley. Ann Bot. 1974, 27:155-174
    [175] Tollenaar M & Aguilera A. Radiation use efficiency of an old and a new maize hybrid. Agron. J, 1992, 84:536–541.
    [176] Tollenaar M & Dwyer LM. Physiology of maize. In: Smith DL & Hamel C. (eds.) Crop yield, physiology and processes. New York: Springer. 1998. Pp. 169–204.
    [177] Tollenaar M & Lee EA. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002, 75: 161-169.
    [178] Tollenaar M & Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science, 1999, 39: 1597–1604.
    [179] Tollenaar M, Daynard T B.: Relationship between assimilate source and reproductivesink in maize grown in a short-season environment. Agron J, 1978, 70: 219-222,
    [180] Tollenaar M, Nissanka S P, Aguilera A, Weise S F & Swanton CJ. Effect of weed interference and soil nitrogen on four maize hybrids. Agron. J, 1994, 86:596–601.
    [181] Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science, 1999, 39: 1597–1604.
    [182] Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci, 1989, 29:1365-1371,
    [183] Tollenaar M. Physiological basis of genetic improvement of maize hybrids in Ontario from 1959 to 1988. Crop Science, 1991, 31:119–124.
    [184] Tollenaar M., Aguilera A.: Radiation use efficiency of an old and a new maize hybrid. Agron. J, 1992, 84: 536-541
    [185] Tu Z P. Studies on the photosynthetic pharacteristics of rice and breeding for high use efficiency of solar energy. Scientia Agricultura Sinica, 1997, 30: 28-35
    [186] Uhart S A, Andrade F H. Nitrogen and Carbon Accumulation and Remobilization during Grain Filling in Maize under Different Source/Sink Ratios. Crop Science, 1995, 35(1):183-190.
    [187] Valentinuz OR & Tollenaar M. Vertical profile of leaf senescence during the grain-Filling period in older and newer maize hybrids. Crop Sci, 2004, 44: 827–834.
    [188] Wakabayashi K, Hirasawa T, Ishihara K. Analysis of photosynthesis depression under low leaf water potential by comparison of CO2 exchange and O2 evolution rates. Jpn. J. Crop Sci, 1996, 65: 590–598.
    [189] Wang G, Kang M S & Moreno O. Genetic analyses of grain-filling rate and duration in maize. Field Crops Research, 1999, 61:211–222.
    [190] Wang Y.B., Wang Z.H., Wang Y.P., Zhang X., Lu L.X.: Studies on the heterosis utilizing models of main maize germplasms in China. Scientia Agricultura Sinica, 1997, 30: 16-24
    [191] Ward D A, Woolhouse H W. Comparative Affects of Light during Growth on the Photosynthetic Properties of NADP-ME Type C4 Grasses From Open and Shaded Habitats. I. Gas exchange, Leaf Anatomy and Ultrastructure. Plant, Cell and Enironment, 1986, 9(4):261-270
    [192] Ward D A, Woolhouse H W. Comparative effects of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats. II. Photosynthetic enzyme activities and metabolism. Plant, Cell and Enironment, 1986,9(4):271-277
    [193] Xiao J, Li J, Yuan L,Tanksley S D. Domiance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecularmarkers. Genetics, 1995,140: 745-754
    [194] Xu D Q, Shen Y G. Photosynthesis and crop yield. The research of crop high yield and high efficiency in physiology. BeiJing: Science and technology publishing company, 1994
    [195] Zhang Q D, Lu C M, Feng L J, Lin S Q, Kuang T Y, Bai K Z. Effect of elevated CO2 on the primary conversion of light energy of alfafa photosynthesis. Acta Botanica Sinica, 1996, 38: 77–82.
    [196] Zhao M, Li L L, Guan D M, Wang Z M & Ding Z S. Theories of yield formation and ways of high yield in crop. Kyoto: Proc. Int. Symp.“World Food Security”. 1999. Pp. 143-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700