用户名: 密码: 验证码:
胶质瘤发生、发展、治疗的靶细胞与靶分子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分逆分化细胞是胶质瘤发生、发展、治疗的靶细胞
     【目的】探讨BTSCs体外分化过程中的回逆现象,为研究其分化抑制机制奠定基础。
     【方法】利用CD133免疫磁珠筛选系统,从肿瘤组织中分离获得CD133+细胞(BTSCs),分成4组进行培养:(1)含10%胎牛血清(FCS);(2)10%FCS+VPA;(3)无FCS+生长因子;(4)无FCS+生长因子+VPA。取不同时间点上的细胞,相差显微镜观察其形态变化;流式细胞术检测与分化相关的标志物、细胞周期和DNA倍体变化;免疫激光共聚焦分析与分化相关标志物的共表达情况。
     【结果】无FCS条件下培养的BTSCs呈悬浮球状生长,高表达CD133和Nestin,不表达GFAP和β-TubulinⅢ,G0/G1期细胞占大多数,G2/M期细胞接近0%,DNA都是异倍体,对VPA反应不敏感。含FCS培养原本悬浮的细胞约4 h开始贴壁,均呈圆形。此后逐渐向多形性分化,至7 d时分化的细胞部分又返回至圆形,至10 d~21 d时,有的还能重新恢复球形并呈悬浮生长。培养3 d、7 d、10 d和21 d时,CD133、Nestin阳性细胞数先降后升,GFAP+和β-TubulinⅢ+细胞数始终处于较低水平。含FCS培养液中加入VPA,细胞形态上未见上述的回逆现象,CD133和Nestin表达的先降后升现象消失,GFAP和β-TubulinⅢ在第7 d以后表达明显升高,但极大部分细胞共表达Nestin。而神经干细胞(NSCs)在含FCS培养至10 d时即以GFAP和β-TubulinⅢ表达为主,未见CD133+细胞。此外,含血清培养时BTSCs仍以异倍体为主,含少量的G2/M期细胞,加VPA诱导后细胞周期和DNA倍体变化不明显。
     【结论】BTSCs在含血清条件下培养出现的多向分化表型不稳定,时有去分化所导致的回逆。加入诱导分化剂VPA培养,虽然能阻止回逆现象出现,并有代表星形胶质细胞和神经元标志物表达上升,但因其共表达Nestin而仍属于未完全分化细胞,表明BTSCs分化始终处于受抑状态。
     第二部分p18INK4c基因失活参与胶质瘤的发生发展
     【目的】探讨p18INK4c基因在胶质瘤发生发展中的作用。
     【方法】分别用RT-PCR和免疫组化检测人脑胶质瘤细胞和组织中p18INK4c基因的表达变化;MS-PCR分析胶质瘤细胞中p18INK4c基因启动子甲基化状态;通过测序分析p18INK4c基因的序列变化;构建真核表达载体pcDNA-p18INK4c,脂质体Lipofectamine 2000介导转染人脑胶质瘤细胞SHG44,RT-PCR检测基因表达,流式细胞仪分析细胞增殖周期变化。
     【结果】8株人脑胶质瘤细胞系中5株细胞不表达p18INK4c基因,其中2株中基因启动子呈甲基化状态;3株细胞表达p18INK4c基因,基因启动子区都呈去甲基化。68例人脑胶质瘤组织中22例不表达、46例表达p18蛋白。BTSCs中p18INK4c表达缺失。转染p18INK4c基因后,SHG44细胞中出现明显p18INK4c表达,细胞周期G0/G1期细胞增加,S期细胞减少。
     【结论】部分胶质瘤细胞和组织中p18INK4c基因表达缺失,启动子甲基化是导致基因表达沉默的原因之一。p18INK4c基因失活参与了胶质瘤的发生发展过程。
     第三部分诱导分化治疗人脑胶质瘤的靶细胞与靶分子
     【目的】探讨丙戊酸钠诱导人脑胶质瘤细胞分化时作用的靶细胞和靶分子。
     【方法】丙戊酸钠治疗位于裸小鼠皮下的可移植性人脑胶质瘤,半定量RT-PCR检测移植瘤中HDAC1和Tob的表达;CD133免疫磁珠分离胶质瘤组织中的CD133+细胞,在分别含血清或不含血清加生长因子的条件下培养,加丙戊酸钠作用21d,流式细胞仪检测和共聚焦显微镜观察分化标志物表达。
     【结果】丙戊酸钠能明显抑制位于裸小鼠皮下移植瘤的增殖,使HDAC1表达下降,Tob表达升高。流式细胞仪检测丙戊酸钠作用21d的细胞,在含血清条件下,GFAP或β-tubulinⅢ阳性细胞数显著增加,而无血清加生长因子条件下两标志物表达均无显著差异;共聚焦显微镜观察显示上述的GFAP+或β-tubulinⅢ+细胞共表达Nestin。
     【结论】VPA逆转人脑胶质瘤细胞分化抑制的靶分子有HDAC1和Tob,靶细胞为处于分化过程中的脑肿瘤干细胞。
     第四部分ABCG2和MGMT基因启动子甲基化异常与胶质瘤细胞耐药
     【目的】分析胶质瘤细胞中耐药基因ABCG2和MGMT启动子甲基化与基因表达之间的关系。
     【方法】RT-PCR检测胶质瘤细胞中ABCG2和MGMT的表达,MS-PCR分析基因启动子甲基化状态,用去甲基化试剂5-氮-脱氧胞苷处理胶质瘤细胞U251后分析基因表达变化。
     【结果】8株人脑胶质瘤细胞中有6株细胞表达ABCG2,其中5株细胞中ABCG2基因呈去甲基化,1株甲基化与去甲基化共存;2株细胞不表达ABCG2,其中1株甲基化与去甲基化共存,1株没有检测出甲基化和去甲基化产物。5株细胞表达MGMT,3株细胞不表达,其中5株细胞中MGMT为去甲基化,4株为高甲基化。
     【结论】胶质瘤细胞中部分细胞表达ABCG2和/或MGMT,基因启动子区呈去甲基化状态,这些细胞可能对相关药物耐药;而启动子高甲基化是胶质瘤细胞中ABCG2和MGMT基因失活的重要因素。
Part I Dedifferentiated cells: the targets of gliomagenesis, malignant progression, and therapy
     【Objective】To investigate in vitro differentiation reversion of brain tumor stem cells (BTSCs) for further study the inhibitory mechanisms of BTSCs differentiation.
     【Methods】CD133+ cells (BTSCs) were isolated from glioma specimens using the immunomagnetic bead separation system, and cultured in DMEM/F-12 medium supplemented with: (1) 10% fetal calf serum (FCS), (2) 10% FCS + sodium valproate (VPA) injection, (3) no FCS + growth factors, and (4) no FCS + growth factors + VPA injection, respectively. The morphological changes of cells were observed under phase contrast microscope at different time points; the cell surface markers relating with cell differentiation, cell cycles and changes in DNA ploids were detected with flow cytometry (FCM); co-expressions of cell surface markers relating with differentiation were analyzed with immunofluorescence staining and laser scanning confocal microscopy (LSCM).
     【Results】BTSCs cultured grew with a spherical shape in a suspended way in FCS-free medium and the expression levels of CD133 and nestin were high, but expressions of glial fibrillary acidic protein (GFAP) andβ-TubulinⅢwere negative. Cells in G0/G1 phase were the majority among these cells and in G2/M phase, nearly 0%. Besides, chromosomes of these cells were all heteroploids and the cells were insensitive to VPA. Having been cultured in FCS medium for 4 h, the suspended BTSCs spheres became adherent and turned to the round shape. Later on, the cells differentiated gradually into various shapes, until 7 d after in vitro culturing, the differentiated cells partially returned to the round shape and during the 10-21 d, some even regained the spherical shape and again grew in the suspended way. In addition, the results of FCM showed that the number of CD133 or Nestin positive cells decreased first and then increased after having been cultured in FCS medium for 3, 7, 10 and 21 days, but the number of GFAP+ or β-TubulinⅢ+ cells were at low levels. On the contrary, when VPA was added to the FCS medium, the phenomenon of reversion in cell morphology and changes of CD133 and nestin expression levels disappeared. The GFAP+ andβ-TubulinⅢ+ cells increased significantly after treatment with VPA for 7 d, but nestin was co-expressed with most of the GFAP+ orβ-TubulinⅢ+ cells. After cultured in FCS medium for 10 d, the majority of neural stem cells (NSCs) were GFAP+ andβ-TubulinⅢ+ cells with no CD133+ cells. Besides, the BTSCs cultured in FCS medium were heteroploids primarily including a few G2/M phase cells. After treatment with VPA, there were no significant differences in cell cycle and DNA ploids.
     【Conclusions】The phenotype of multi-directional differentiation of BTSCs in FCS medium was instable. The differentiated cells reversed frequently due to dedifferentiation. The differentiation inducer VPA inhibited differentiation reversion of BTSCs and facilitated the expressions of cell surface markers representing astrocytes and neurons, but the differentiation of BTSCs was incomplete for their co-expression with nestin, suggesting that the differentiation of BTSCs was still consistently inhibited.
     Part II Inactivation of p18INK4c gene was involved in gliomagenesis and malignant progression
     【Objective】To investigate the role of p18INK4c gene in gliomagenesis and malignant progression.
     【Methods】The p18INK4c expression in glioma cell lines and tissues was detected uing RT-PCR and immunohistochemistry. The methylation status of the p18INK4c promoter was analyzed by methylation-specific PCR. The p18INK4c mRNA was amplified and sequenced from 4 cell lines with p18INK4c expression, and then ligated into pcDNA3.1+ vector and transfected into glioma cell line SHG44 with Lipofectamine 2000. After transfection, the p18INK4c expression and cell cycle of SHG44 cell line were detected with RT-PCR and FCS, respectively.
     【Results】Five of 8 human glioma cell lines did not expressed p18INK4c, with promoter methylation in two. Three of 8 cell lines expressed p18INK4c, with all promoter hypomethylation. Twenty two of 68 glioma specimens did not express P18 protein, 46 of the specimens expressed. P18 mRNA and protein expression were negative in BTSCs. After transfected with pcDNA-p18INK4c, human glioma cell line SHG44 expressed p18INK4c significantly, the ratio of G0/G1 phase cells increased, S phase cells decreased compared with negative control.
     【Conclusions】Part of glioma cells and specimens did not express p18INK4c gene. Promoter methylation might contribute to p18INK4c silencing in some glioma cells. The p18INK4c gene inactivation might play a role in gliomagenesis and malignant progression.
     Part III Target cells being induced to differentiate by VPA in glioma
     【Objective】To investigate the target cells and molecules with sodium valproate induced differentiation of human glioma cells.
     【Methods】Nude mice bearing human glioma xenogenic graft subcutaneously were treated with VPA. The expressions of HDAC1 and Tob genes of xenografts were analyzed with semiquantitative RT-PCR. The CD133+ cells (BTSCs) were isolated from glioma specimens by immunomagnetic sorting, and cultured in the medium containing FCS or in the serum-free medium supplemented with growth factors, respectively, followed by treatment with VPA in vitro for 21days. The cell surface markers were detected with flow cytometry and confocal microscopy.
     【Results】VPA inhibited the growth of subcutaneous xenografs bearing on nude mice, and up-regulated the HDAC1 expression, down-regulated the Tob expression. The cell surface markers of BTSCs were detected by flow cytometry after VPA treatment for 21 days. In the FCS group, the GFAP orβ-tublinⅢpositive cells increased significantly, but in the growth factor group, no statistical differences were observed in the GFAP orβ-tublinⅢexpression. The results of confocal microscopy indicated that the GFAP+ orβ-tublinⅢ+ cells coexpressed with Nestin.
     【Conclusions】HDAC1 and Tob genes were the potential target molecules in reversion of the differential inhibition of human glioma cells with VPA. The BTSCs undergoing the processes of differentiation were the target cells for VPA.
     Part IV Promoter methylation of ABCG2 and MGMT gene in glioma cells
     【Objective】To analyze the correlations of ABCG2 and MGMT gene expression with the promoter methylation status in glioma cell lines.
     【Methods】The expressions of ABCG2 and MGMT in glioma cell lines were detected with RT-PCR. The promoter methylation status of ABCG2 and MGMT were analyzed by methylation-specific PCR. The expressions of ABCG2 and MGMT in U251 glioma cell line were analyzed after 5-Aza-dC treatment.
     【Results】Six of 8 glioma cell lines expressed ABCG2, with amplification only in U(unmethylated) reaction in five, and amplification in both U and M(methylated) reaction in one. Two of 8 cell lines did not expressed ABCG2, one displayed amplification bands in both the M and U reaction, and the other one failed to amplify either M or U bands. Five of 8 cell lines expressed MGMT, hypomethylation was detected in five, and hypermethylation in four.
     【Conclusions】Part of glioma cell lines expressed ABCG2 and/or MGMT, with promoter hypomethylation. These cell lines might be drug resistance. Promoter methyltion might contribute to inactivation of ABCG2 and MGMT in glioma cell lines.
引文
1黄强,董军,王爱东,等.胶质瘤细胞分化与恶性进展相关分子研究.中华神经外科疾病研究杂志, 2005, 4(3):227-232.
    2 Reya T, Morrison SJ, Clarke MF, et al. Stem cell, cancer, and cancer stem cell. Nature, 2001, 414(6859):105-111.
    3 Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res, 2003, 63(18): 5821-5828.
    4王金鹏,黄强,张全斌,等.人脑胶质瘤干细胞SHG-44s的克隆及初步鉴定.中国肿瘤临床, 2005, 32(11): 604-606.
    5黄强,董军,朱玉德,等.人脑胶质瘤组织中分离与培养肿瘤干细胞.中华肿瘤杂志, 2006, 28(5): 331-333.
    6 Cinagl J, Kotchetkov R, Blaheta R, et al. Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: enhancement by combination with interferon. Int J Oncol, 2002, 20(3):97-106.
    7 Xiao-Nan Li, Qin Shu, Men J, et al. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histon hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther, 2005, 4(12):1912-1922.
    8 Li XN, Du ZW, Huang Q. Modulation effects of hexamethylene bisacetamide on growth and differentiation of cultured human malignant glioma cells. J Neurosurg, 1996, 84:831-838.
    9 Li XN, Du ZW, Huang Q, et al. Growth-inhibitory and differentiation-inducing activity of dimethylformamide in cultured human malignant glioma cells. Neurosurg, 1997, 40(6): 1250-1259.
    10孙立军,黄强,王爱东,等.人脑胶质瘤细胞对诱导分化药物敏感性的研究.中国药科大学学报, 2002, 32(5):419-422.
    11黄强,施铭岗,董军,等.诱导分化、化疗和免疫治疗在荷人脑胶质瘤动物体内序贯组合研究.中华神经外科杂志, 2003, 19(1):10-14.
    12 Fomchenko EI, Holland EC. Stem cells and brain cancer. Experimental Cell Res, 2005, 306:323-329.
    13 Pestell RG, Albanese C, Reutens AT, et al. The cyclins and cyclin-dependent kinase inhibitors in normal regulation of proliferation and differentiation. Endocrine Review, 1999, 20:501-534.
    14 Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev, 2002, 3: 415-428.
    15 Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. New Engl J Med, 2003, 349:2042-2054.
    16 Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature, 2004, 432(7015): 396-401.
    17张全斌,黄强,兰青.脑肿瘤干细胞的热点问题及研究进展.中华医学杂志, 2005, 85(26): 1868-1870.
    18 Bao S, Wu Q, McLendon RE, et al, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006, 444(7120): 687-688.
    19 Beier D, Hau P, Proescholdt M, et al, CD133+ and CD133- Glioblastoma- Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles. Cancer Res, 2007, 67(9):4010-4015.
    20 Zhang XS, Shen G, Yang XF, et al. Most C6 cells are caner stem cells: evidence from clonal and population analysis. Cancer Res, 2007, 67(8): 3691-3697.
    21 Chakhparonian M, Wellinger RJ. Telomere maintenance and DNA replication: how closely are these two connected? Trends Genet, 2003, 19(8): 439-446.
    22 Sharpless NE, DePinho RA. Telomeres, stem cells, senescence, and cancer. J Clin Invest, 2004, 113(2): 160-168.
    23 Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res, 2004, 64(19): 7011-7021.
    24 Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255(5052): 1707-1709.
    25 Mckay R. Stem Cells in the Central Nervous System. Science, 1997, 276:66-71.
    26 Groszer M, Erickson R, Scripture-Adams DD, et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. PNAS, 2006, 103(1): 111-116.
    27 Tunici P, Bissola L, Lualdi E, et al. Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Mol Cancer, 2004, 3:25-35.
    28朱卿,黄强,翟德忠,等.针对胶质瘤发生、发展分子机制研究的组织芯片制作.中华神经医学杂志, 2006, 5:338-341
    29 Blais A, Labrie Y, Pouliot F, et al. Structure of the gene encoding the human cyclin-dependent kinase inhibitor p18 and mutational analysis in breast cancer. Biochem Biophys Res Commun, 1998, 247:146-153.
    30 Sanchez-Aguilera A, Delgado J, Camcho FI, et al. Silencing of the p18INK4c gene by promoter hypermethylation in Reed-Sternberg cells in Hodgkin lymphomas. Blood, 2004, 103:2351-2357.
    31 Korshunov A, Golanov A. Immunohistochemical analysis of p18INK4C and p14ARF protein expression in 117 oligodendrogliomas: correlation with tumor grade and clinical outcome. Arch Pathol Lab Med, 2002, 126(1):42-48.
    32 Dib A, Peterson TR, Raducha-Grace L, et al. Paradoxical expression of INK4c in proliferative multiple myeloma tumors: bi-allelic deletion vs increased expression. Cell Division, 2006, 1:23-32.
    33 Morishita A, Masaki T, Yoshiji H, et al. Reduced expression of cell cycle regulator p18(INK4c) in human hepatocellular carcinoma. Hepatology, 2004, 40:677-686.
    34 Husemann K, Wolter M, Büschges R, et al. Identification of two distinct deleted regions on the short arm of chromosome 1 and rare mutation of the CDKN2C gene from 1p32 in oligodendroglial tumors. J Neuropathol Exp Neurol. 1999, 58(10): 1041-1050.
    35 Pohl U, Cairncross JG, Louis DN. Homozygous deletions of the CDKN2C/ p18INK4C gene on the short arm of chromosome 1 in anaplastic oligodendrogliomas. Brain Pathol, 1999, 9(4):639-643.
    36 Alonso ME, Bello MJ, Arjona D, et al. Mutational study of the 1p located genes p18ink4c, Patched-2, RIZ1 and KIF1B in oligodendroglioma. Oncol Rep. 2005, 13(3):539-542.
    37 Blais A, Monte D, Pouliot F, et al. Regulation of the human cyclin-dependent kinase inhibitor p18INK4c by the transcription factors E2E1 and Sp1. J Biol Chem, 2002, 277(35):31679-31693.
    38 Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999, 13:1501-1512.
    39 Harper JW, Elledge SJ. Cdk inhibitors in development and cancer. Curr Opin Genet Dev, 1996, 6:56-64.
    40 Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell, 2002, 2(2):103-112.
    41 Malumbres M, Hunt SL, Sotillo R, et al. Driving the cell cycle to cancer. Adv Exp Med Biol, 2003, 532:1-11.
    42黄强,杜子威,徐庚达,等.人脑胶质瘤细胞系裸小鼠实体瘤模型NHG-1的建立及其特征的研究.中华肿瘤杂志, 1987, 9(4): 269-272.
    43季晓燕,黄强,董军,等.脑肿瘤干细胞体外分化的形态、标志物及细胞增殖动力学特征.中华医学杂志, 2006, 86(23): 1604-1609.
    44 Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cell. Cancer Res 2006, 66(19):9339-9344.
    45 Atmaca A, Maurer T, Heinzel M. A dose-escalating phase I study with valproic acid (VPA) in patients (pts) with advanced cancer. Journal of Clinical Oncology, ASCO Annual Meeting Proceedings (Post-Meeting Edition), 2004, 22(14S):3169.
    46 Rosato R, Wang Z, Gopal V, et al. Evidence of a functional role for the cyclin-dependent kinase-inhibitor p21WAF1/CIP1/MDA6 in promoting differentiation and preventing mitochondrial dysfunction and apoptosis induced by sodium butyrate in human myelomonocytic leukemia cells (U937). Int J Oncol, 2001, 19(15): 181-191.
    47 Jin Cho S, La M, Ahn JK, et al. Tob-mediated cross-talk between MARCKS phosphorylation and ErbB-2 activation. Biochem Biophys Res Commun 2001, 283(2): 273-277.
    48孙立军,黄强,王爱东,等.建立胶质瘤细胞诱导分化相关基因谱.中华肿瘤杂志, 2002, 24(3):222-225.
    49孙继勇,黄强,董军,等.半定量RT-PCR检测胶质瘤细胞分化相关新基因的表达.中国神经肿瘤杂志, 2003, 1(1):12-16.
    50孙继勇,王爱东,黄强,等.胶质瘤相关基因Tob的功能研究.中华神经医学杂志, 2005, 4(11): 081-1084.
    51 Michael D, Tito F, Susan B. Tumor stem cells and drug resistance. Nature Rev Cancer, 2005, 5(4):275-284.
    52 Morrison SJ and Kimble J. Asymmetric and symmetric stem-cell division in development and cancer. Nature, 2006, 441: 1068-1074.
    53黄强,张全斌,董军,等.胶质细胞分化障碍与胶质瘤发生和发展相关分子研究.中华神经外科杂志, 2004, 20(2):104.
    54邵耐远,黄强,董军,等.神经节细胞胶质瘤恶变及其差异基因表达分析.中华神经外科杂志, 2004, 20(3):191-195.
    55孙立军,黄强,王爱东,等.应用差异显示技术克隆胶质瘤细胞诱导分化相关基因.中华神经外科杂志, 2003, 19(2):89-92.
    56 Xiaonan Li, Qiang Huang, Ziwei Du. Methodologic study of direct preparation for chromosome analysis of human solid brain tumor[J]. Cancer Geneetics Cytogenetics, 1992, 58:160-163.
    57 Feinberg AP. The epigenetics of cancer etiology. Semi Cancer Biol, 2004, 14:427-432.
    58 Baylin SB, Esteller M, Rountree MR, et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet, 2001, 10 (7):687-692.
    59 Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res, 2000, 60(21):5954-5958.
    60 Smiragia DJ, Plass C. The study of aberrant methylation in cancer via restriction landmark genomic scanning. Oncogene, 2002, 21:5414-5426.
    61 Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet, 1999, 8:459-470.
    62 Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. PNAS, 1996, 93:9821-9826.
    63 Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 2003, 22:7340-7358.
    64 Pegg AE. Mammalian 06-alkylguanine-DNA alkyltransferase: regulation andimportance in response to alkylating carcinogenic and therapeutic agents. Cancer Res, 1990, 50:6119-6129.
    65储亮,黄强,翟德忠,等. ABCG2在胶质瘤组织中的表达及意义.癌症, 2007, 26(10):1090-1094.
    66肖宏,黄强,董军,等. ABCG2、VEGF、IGFBP-2、EGFR在胶质瘤组织芯片中表达与预后关系的分析.中华神经医学杂志, 2007, 6(9):878-882.
    67王爱东,陈忠平,黄强,等.人脑胶质瘤耐药基因mdr1、ERCC2、MGMT的表达及相关性分析.癌症, 2001, 20(4):387-390.
    68 Diestra JE, Scheffer GL, Catala I, et al.Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ABCP/ABCG2 in human tumor detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol, 2002, 198:213-219.
    69 Huang Y, SadeeW. Membrane transporters and channels in chemoresistance and sencitivity of tumor cells. Cancer Letters, 2006, 239:168-182.
    70 Rabindaran SK, Ross DD, Doyle LA, et al. Fumitremorgin C reverse multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res, 2000, 60:47-50.
    71 Woehlecke H, Osada H, Herrmann A, et al. Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int J Cancer, 2003, 107:721-728.
    72 Uggla B, Stahl E, Wagsater D, et al. BCRP mRNA expression v. clinical outcome in 40 adult AML patients. Leuk Res, 2005, 29:141-146.
    73 Bailey-Dell KJ, Hassel B, Doyle LA, et al. Promoter characteriztion and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta, 2001, 1520:234-241.
    74 Turner JG, Gump JL, Zhang CC, et al. ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood, 2006, 108:3881-3889.
    75 Chen ZP, Malapetsa A, McQuillan A, et al. Evidence for nucleotide excision repair as a modifying factor of O6-methylguanine-DNA methyltransferase-mediated innate chlorethylnitrosourea resistance in human tumor cell 1ines. Mol Pharmocol, 1997, 52:815-820.
    76陈忠平, Mohr G, Panasci LC,等.六氧甲基鸟嘌呤DNA甲基转移酶基因表达与肿瘤耐药.癌症, 1998, 17(3):182-185.
    77 Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. New Eng Med, 2000, 343(19):1350-1354.
    1黄强,王爱东,董军,等.神经干细胞分化与神经节细胞胶质瘤恶化相关分子研究.肿瘤, 2005, 25(1):15-18.
    2 Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. New Engl J Med, 2003, 349:2042-2054.
    3 Baylin SB,Herman JG. DNA hypermethylation in tumorigenesis. Trends in Genetics, 2000, 16:168-173.
    4 Feinberg AP. The epigenetics of cancer etiology. Semi Cancer Biol, 2004, 14:427-432.
    5 Costello JF, Berger MS, Huang HS, et al. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res, 1996, 56:2405-2410.
    6 Esteller M, Garcia-Foncilla J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med, 2000, 343:1350-1354.
    7 Mollemann M, Wolter M, Felsberg J, et al. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer, 2005,113(3):379-385.
    8 Yu J, Zhang H, Gu J, et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer, 2004, 4 (65):1-15.
    9 Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002, 21: 5400-5413.
    10 Fan T, Yan Q, Huang J, et al. Lsh-deficient murine embryonal fibroblasts show reduced proliferation with signs of abnormal mitosis. Cancer Res, 2003, 63 (15):4677-4683.
    11 Robertson KD. DNA methylation and chromatin - unraveling the tangled web. Oncogene. 2002, 21(35):5361-5379.
    12 Grassi1 G, Maccaroni1 P, Meyer1 R, et al. Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87. Carcinogenesis, 2003, 24(10):1625-1635.
    13 Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet, 1999, 21: 103–107.
    14 Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Pro Natl Acad Sci USA, 1996, 93:9821-9826.
    15黄美近汪建平,褚忠华,等. E-钙黏附素基因甲基化与结直肠癌临床病理特征的关系.中华实验外科杂志, 2005, 22(11): 1355-1356.
    16王志伟,易静,陈玉美,等.乳腺癌中p16基因甲基化及其与临床病理学特征的关系.中华实验外科杂志, 2002, 19:81.
    17 Smiragia DJ, Plass C. The study of aberrant methylation in cancer via restriction landmark genomic scanning. Oncogene, 2002, 21:5414-5426.
    18 Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet, 1999, 8:459-470.
    19 Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res, 2000, 60(21):5954-5958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700