用户名: 密码: 验证码:
CD40分子在人宫颈癌组织中表达的临床意义及CD40信号对宫颈癌细胞株SiHa体外的生物学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子宫颈癌是常见的妇科恶性肿瘤,发病率在女性恶性肿瘤中居第二位,仅次于乳腺癌。近几年国内外报道宫颈癌的发病率和病死率有年轻化的倾向,35岁以下的妇女宫颈癌发病率明显上升。因此对宫颈癌病因、发病机制的研究,以及寻求更敏感的宫颈癌早期诊断、更有效的治疗方法成为非常必要。
     CD40是分子量48KD的细胞表面分子,表达于许多类型细胞中,包括B细胞、树突状细胞、单核细胞、内皮细胞以及一系列肿瘤细胞。CD40属于肿瘤坏死因子受体(TNFR)超家族成员。CD40分子的配体CD40L主要表达于活化的CD4+T辅助(Th)细胞。CD40L/CD40相互作用是特异性免疫应答及其过程中主要的协同刺激信号。大量研究表明,CD40分子可以介导B细胞的增殖、分化、抗体分泌及其类型转换、树突状细胞的激发及分化成熟,内皮细胞粘附分子的改变,炎症因子的释放以及白细胞在炎症部位的聚集等。这表明CD40是免疫反应中的重要分子。
     本研究主要探讨CD40及其相关分子在宫颈癌组织上的表达及其临床生物学意义;讨论宫颈癌细胞株SiHah表达CD40及其生物学影响;CD40对用于宫颈癌治疗的化疗药物敏感性的影响。期望寻找宫颈癌肿瘤个性化免疫治疗的新方案。
     一、CD40及其相关分子在宫颈癌中的表达及生物学意义
     目的:研究宫颈癌组织中CD40分子的表达、并探讨其与宫颈癌侵袭、淋巴结转移等生物学行为的相关性,分析HPV16/18 E6、p16INK4a、VEGF、CD34分子在宫颈癌组织中的表达及其与CD40表达的相关性。方法:采用免疫组织化学方法,对239例宫颈组织标本切片(包括正常子宫颈组织38例,慢性宫颈炎43例,宫颈上皮内瘤变CIN I级36例,CIN II级39例,CIN III级27例,宫颈鳞状上皮癌56例)检测CD40分子的表达;同时检测了HPV16/18 E6、p16INK4a、VEGF、CD34在宫颈组织中的表达。结果:CD40分子在正常宫颈组织、慢性宫颈炎组织和CIN I~II上不表达或弱表达,而CIN III和宫颈癌组织上表达明显增加,阳性率分别达55.55%和67.86%,差异有显著性(p<0.01)。CD40分子在宫颈癌中的表达与宫颈癌的FIGO临床分期(r=0.05, p>0.05)、病理分级(r=-0.12, p>0.05)无相关性,而与肿瘤肌层浸润深度(r=0.44, p<0.01)、有无淋巴转移(r=0.30, p<0.05)有明显的相关性。宫颈癌组织中HPV16/18 E6、p16INK4a、VEGF分子表达均较正常组织高(78.6%、80.36%、87.50%)。CD34 MVD在宫颈癌组织上表达为27.02±10.68,明显较其它各组增高(p<0.001)。HPV16/18-E6阳性表达的宫颈CIN II~III组织中,P16INK4a表达阳性者占90.47%,HPV16/18-E6阳性表达的宫颈癌组织中,P16INK4a表达阳性达97.72%,因此P16INK4a在宫颈CIN II~III及宫颈癌中的表达和HPV16/18-E6的阳性表达有明显的相关性(r=0.362,p<0.05;r=0. 837,p<0.01)。CD40分子的表达和P16INK4a的表达呈正相关(r=0.52,p<0.01);和HPV16/18-E6、VEGF以及CD34 MVD的表达亦有一定的正相关性(r=0.57,p<0.01; r=0.32,p<0.05;r=0.37,p<0.05)。结论:CD40可作为宫颈癌诊断、预后和淋巴结转移评估的客观指标。CD40分子表达与抑癌基因p16INK4a、HPV16/18-E6以及VEGF和CD34 MVD的表达有一定的正相关性,由此提示CD40分子在宫颈癌的发生、发展过程中可能起着非常重要的作用。
     二、激发型CD40单抗对宫颈癌细胞株体外增殖和化学药物敏感性的作用
     目的:研究CD40分子激发对宫颈癌细胞SiHa化疗敏感性的影响及其机制。
     方法:采用流式细胞术检测宫颈癌细胞SiHa上CD40分子的表达,MTT法检测CD40单抗(5C11)联合化疗药物对SiHa细胞的作用,PI染色检测SiHa细胞周期的变化,Annexin V-PI法检测细胞凋亡、Real-time PCR方法分析单抗5C11作用SiHa细胞后凋亡基因表达水平变化。结果:宫颈癌SiHa细胞表面CD40表达率为96.0%,SiHa细胞经5C11作用后出现G2/M期阻滞,5C11和化疗药物盐酸吉西他滨(Gemcitabin)各自抑制细胞生长作用不明显,但两者联合能显著抑制SiHa的生长和促进凋亡。SiHa细胞在和5C11作用24小时后,抗调亡基因BCL-XL的表达明显下调,促调亡基因BAX的上调作用不明显。结论:CD40分子通过介导G2/M期阻滞和调节凋亡基因表达水平增加SiHa细胞对肿瘤化疗药物盐酸吉西他滨敏感性。
Invasive cervical carcinoma is one of the common malignant tumors in woman, ranking the 2nd place among all of female malignant carcinomas, only second to breast cancer. It was reported that incidence and mortality of cervical carcinoma trended to be younger in recent years. The incidence among women of less than 35 has been increasing. So it was important and necessary to investigate the disease etiologically and pathogenesis, in order to explore more sensitive was for diagnosis and more effective therapy of cervical carcinoma.
     CD40, a 48KD cell membrane molecule, belongs to the tumor necrosis factor receptor(TNFR) superfamily. CD40 is expressed in many cell types including B cell, dendritic cells, monocytes, endothelial cell, epithelia cell and also many carcinoma cells. CD40 ligand is expressed mainly in activated CD4+T helper cell. Interaction by CD40L-CD40 is a main co-stimulatory signal during antigen-specific immune response and during immune regulation. To date, an increasing number of studies showed that signals mediated by CD40 could contribute to B cell proliferation, Ig secretion and class switching; dendritic cell activation and maturation; adhesion molecules expression on endothelial cell, inflammatory factor secretion, and the accumulation of white cells to the inflammatory sites. These indicated that CD40 is a very important molecule during immune response.
     In this study, the expression of CD40 on human cervical carcinoma and their clinical significance were focused. The expression of CD40 on cervical carcinoma cell line SiHa and its biological effects were studied. Moreover we studied the effects of CD40 mAb on the chemosensitivity of human cervical tumor cell line SiHa to Gemcitabin. We hope to find a new method of tumor immunotherapy.
     1. the expression and clinical significances of CD40 and related molecules in human cervical carcinoma
     Objective: To study the expression of CD40 and associated molecules HPV16/18 E6, P16INK4a, VEGF and CD34 on different types of malignant cervical cancer, and to study their clinical significance. Methods: Surgical biopsy specimens were obtained from 239 patients (includes: 56 cases cervical squamous epithelium cancer, 36 cases of cervical intraepithelial neoplasia (CIN I), CIN II 39 cases of, CIN III 27 of, 43 cases of chronic cervical inflammation and 38 normal controls) . The expression of CD40 and associated molecules HPV, P16INK4a, VEGF and CD34 on different types of malignant cervical cancer were examined by immunohistochemistry. The relation of CD40 and associated molecules and clinical significance were analyzed. Results: The expression of CD40, HPV16/18 E6, P16INK4a, VEGF and CD34 on cervical cancer and CIN III have significant differences from the normal controls, and CIN I~II. The rates of CD40 positive cell in the 56 cases of cancer and in the 27 cases of CIN III were 55.55% and 67.86%, respectively (p<0.01). The positive expression rates of CD40, HPV16/18 E6, P16INK4a and VEGF were 78.6%, 80.36 and 87.50% respectively, and the CD34 MVD was 27.02±10.68. The positive expression rates of P16INK4a were 90.40% and 97.72% in CIN III and cervical cancer respectively. The expression of P16INK4a was significantly associated with HPV16/18 E6 in CIN III and cervical cancer (r=0.362 and r=0. 837, p<0.01 ). CD40 expression had a positive correlation with HPV16/18 E6 (r=0.57, p<0.01), P16INK4a(r=0.52, p<0.01), VEGF(r=0.32, p<0.05) and CD34 MVD(r=0.37, p<0.05). Further more, the expression of CD40 has a close correlation to lymph nodule metastasis(r=0.44, p<0.01) and invasive extent of muscular layer(r=0.30, p<0.05) in cervical cancer. Conclusion: These results suggested that CD40 might be a valuable factor for diagnosis and judgment of prognosis and lymphonudule metastasis in cervical cancer. These data also indicated that CD40 was an important molecule to tumor development.
     2. the biological effects of CD40 ligation on human cervical squamous epithelium cancer cell line
     Objective: To study the effect of CD40 mAb on the chemosensitivity of human cervical tumor cell line SiHa to Gemcitabin. Methods: Flow cytometric analysis was used to detected expression of CD40 in SiHa. Agonistic anti-human CD40 monoclonal antibody (5C11) was added to the cell culture system. PI staining and Annexin V-PI assay were used to study the biological effects of 5C11 on cervical tumor cell. Cell proliferation was analyzed by MTT assay after treatment with chemotherapeutic drugs. Expression of apoptotic genes mRNA was evaluated by quantitative RT-PCR. Results: The cervical tumor cell line SiHa highly expressed CD40. 5C11 or Gemcitabin could not effectively induced SiHa proliferation arrest, but combination of 5C11 and Gemcitabin could do. CD40 activation can induce arresting the cells at G2/M interphase and down-regulating anti-apoptotic genes BCL-XL expression and up-regulating apoptotic genes BAX expression weakly. Conclusion: CD40 activation could enhance chemosensitivity of human cervical tumor cell to Gemcitabin by inducing arresting the cells at G2/M phase and affecting apoptotic genes expression.
引文
1.Alex W Tong, Marvin J Stone. Prospect for CD40-directed experimental therapy of human cancer. Cancer Gene Therapy. 2003, 10: 1-3
    2.Banchereau J, de Paoli P, Valle A, et al. Long-term human B cell lines dependent on interleukin 4 and antibody to CD40. Science. 1991, 251: 70-83
    3.Hollenbaugh D, Grosmair LS, Kullas CD, et al. The human T antigen gp39, a member of the TNFαGene family, is a ligand for the CD40 receptor: expression of a soluble from of gp 39 with B cell co-stimulatory activity. EMBOJ. 1992, 11: 4313
    4.Spriggs MK, Armitage RJ, Strockbine L, et al. Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. J Exp Med. 1992, 176: 1543
    5.Graf D, Muller S, Korthauer U, et al. A soluble from of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol. 1995, 25: 1749
    6.Biancone L, Cantaluppi V, Camussi G. CD40-CD40L interaction in experimental and human disease. Int J Mol Med. 1999; 3: 343-353
    7.Seran C.Hill, Sarah J. Youde, Stephen Man, et al. Activation of CD40 in cervical carcinoma cell facilitates CTL responses and augments chemotherapy-induced apoptosis. J. Immunol. 2005, 168: 41-46
    8.Gauchat JF, Aubry JP, Mazzei G, et al. Human CD40 ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett. 1993; 315: 259-266
    9.Fanslow W. C., Srinivasan S., Paxton R., Gibson M. G., Spriggs M. K. andArmitage R. J. Structural characteristic of CD40 ligand that determine biological function. emin.Immunol. 1994,6: 267–278
    10.Uckun F. M., Schieven G. L., Dibirdik I., Chandan-Langlie M., Tuel-Ahlgren L. and Ledbetter J. A. Stimulation of protein tyrosine phosphorylation, phosphoinositide turnover, and multiple previously unidentified serine/threonine-specific protein kinases by the pan-B-cell receptor CD40/Bp50 at discrete developmental stages of human B-cell ontogeny. J. Biol. Chem. 1991,266: 17478–17485
    11.Aagaard-Tillery K. M. and Jelinek D. F. Phosphatidylinositol 3-kinase activation in normal human B lymphocytes. J. Immunol. 1996,156: 4543–4554
    12.Ren C. L., Morio T., Fu S. M. and Geha R. S. Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase C gamma 2. J. Exp. Med. 1994,179: 673–680
    13.Gulbins E., Brenner B., Schlottmann K., Koppenhoefer U., Linderkamp O., Coggeshall K. M. et al. Activation of the Ras signaling pathway by the CD40 receptor. J. Immunol. 1996,157: 2844–2850
    14.Purkerson J. M. and Parker D. C. Differential coupling of membrane Ig and CD40 to the extracellularly regulated kinase signaling pathway. J. Immunol. 1998,160: 2121–2129
    15.Goldstein M. D., Cochrane A. and Watts T. H. Cyclic-AMP modulates downstream events in CD40-mediated signal transduction, but inhibition of protein kinase A has no direct effect on CD40 signaling. J. Immunol. 1997,159:5871–5880
    16.Kato T., Kokuho T., Tamura T. and Nariuchi H. Mechanisms of T cell contact-dependent B cell activation. J. Immunol. 1994,152: 2130–2138
    17.Berberich I., Shu G., Siebelt F., Woodgett J. R., Kyriakis J.M. and Clark E. A. Cross-linking CD40 on B cells preferentially induces stress-activaed protein kinases rather than mitogen-activated protein kinases. EMBO J. 1996, 15: 92–101
    18.Purkerson J. M. and Parker D. C. Differential coupling of membrane Ig and CD40 to the extracellularly regulated kinase signaling pathway. J. Immunol. 1998,160: 2121–2129
    19.Suttles J., Milhorn D. M., Miller R. W., Poe J. C., Wahl L.M. and Stout R. D. CD40 signaling of monocyte inflammatory cytokine synthesis through an ERK1/2-dependent pathway: a target of interleukin IL-4 and IL-10 antiinflammatory action. J. Biol. Chem. 1999,274: 835–5842
    20.Ren C. L., Morio T., Fu S. M. and Geha R. S. Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase C gamma 2. J. Exp. Med. 1994,179: 673–680
    21.Aagaard-Tillery K. M. and Jelinek D. F. Phosphatidylinositol 3-kinase activation in normal human B lymphocytes. J. Immunol. 1996,156: 4543–4554
    22.Eyndhoven W. G. van, Frank D., Kalachikov S., Cleary A.M., Hong D. I., Cho E. et al. A single gene for human TRAF-3 at chromosome 14q32.3 encodes a variety of mRNA species by alternative polyadenylation, mRNA splicing and transcription initiation. Mol. Immunol. 1998,35:1189–1206
    23.Rothe M., Sarma V., Dixit V. M. and Goeddel D. V. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science. 1995, 269: 1424–1427
    24.Hu H. M., O’Rourke K., Boguski M. S. and Dixit V. M. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J. Biol. Chem. 1994,269: 30069–30072
    25.Chaudhuri A., Orme S., Eilam S. and Cherayil B. J. CD40-mediated signals inhibit the binding of TNF receptorassociated factor 2 to the CD40 cytoplasmic domain. J.Immunol. 1997,159: 4244–4251
    26.241 Rothe M., Xiog J., Shu H. B., Williamson K., Goddard A.and Goeddel D. V. I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc. Natl. Acad. Sci. USA . 1996,93: 8241–8246
    27.Ishida T. K., Tojo T., Aoki T., Kobayashi N., Ohishi T.,Watanabe T. et al. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc. Natl. Acad. Sci. USA . 1996, 93: 9437–9442
    28.243 IshidaT., MizushimaS., AzumaS., Kobayashi N., Tojo T.,Suzuki K. et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40cytoplasmic region. J. Biol. Chem. 1996,271: 8745–28748
    29.Pullen S. S., Miller H. G., Everdeen D. S., Dang T. T. A., Crute J. J. and Kehry M. R. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry.1998, 37:11836–11845
    30.Kashiwada M., Shirakata Y., Inoue J. I., Nakano H.,Okazaki K., Okumura K. et al. Tumor necrosis factor receptor-associated factor 6 (TRAF6) stimulates extracellular signal-regulated kinase (ERK) activity in CD40 signaling along a ras-independent pathway. J. Exp. Med. 1998,187: 237–244
    31.Pullen S. S., Labadia M. E., Ingraham R. H., McWhirter S.M., Everdeen D. S., Alber T. et al. High-affinity interactions of tumor necrosis factor receptor-associated factors (TRAFs) and CD40 require TRAF trimerization and CD40 multimerization. Biochemistry. 1999,38: 10168–10177
    32.Sutherland C. L., Krebs D. L. and Gold M. R. An 11-amino acid seq1uence in the cytoplasmic domain of CD40 is sufficient for activation of c-Jun N-terminal kinase, activation of MAPKAP kinse-2, phosphorylation of I kappa B alpha, and protection of WEHI-231 cells from anti-IgMinduced growth arrest. J. Immunol. 1999 , 162: 4720–4730
    33.Dadgostar H. and Cheng G. An intact zinc ring finger is required for tumor necrosis factor receptor-associated factor-mediated nuclear factor-kappaB activatin but is dispensable for c-Jun N-terminal kinase signaling. J. Biol. Chem. 1998,273: 24775–24780
    34.Grammer A. C., Swantek J. L., McFarland R. D., Miura Y.,Geppert T. and Lipsky P. E. TNF receptor-associated factor-3 signaling mediates activation of p38 and Jun N-terminal kinase, cytokine secretion, and Ig production following ligation of CD40 on human B cells. J. Immunol. 1998,161:1183–1193
    35.Tsukamoto N., Kobayashi N., Azuma S., Yamamoto T. and Inoue J. Two differently regulated nuclear factor kappaB activation pathways triggered by the cytoplasmic tail of CD40. Proc. Natl. Acad. Sci. USA . 1999, 96: 1234–1239
    36.Pullen S. S., Dang T. T., Crute J. J. and Kehry M. R. CD40 signaling throughtumor necrosis factor reptor-associated factors (TRAFs): binding site specificity and activation of downstream pathways by distinct trafs. J. Biol. Chem. 1999,274: 14246–14254
    37.Lee H. H., Dempsey P. W., Parks T. P., Zhu X., Baltimore D. and Cheng G. Specificities of CD40 signaling:involvement of TRAF2 in CD40-induced NF-kappaB activation and intercellular adhesion molecule-1 up-regulation. Proc. Natl. Acad. Sci. USA. 1999, 96: 1421–1426
    38.Darnell J. E. Jr, Kerr I. M. and Stark G. R. Jak-STAT pathways and transcriptional action in response to IFNs and other extracellular signaling proteins. Science. 1994, 264:1415–1421
    39.Karras J. G., Wang Z., Huo L., Frank D. A. and Rothstein T. L. Induction of STAT protein signaling through the CD40 receptor in B lymphocytes: distinct STAT activation following surface Ig and CD40 receptor engagement. J.Immunol. 1997, 159: 4350–4355
    40.Tortolani P. J., Lal B. K., Riva A., Johnston J. A., Chen Y.Q., Reaman G. H. et al. Regulation of JAK3 expression and activation in human B cells and B cell malignancies. J. Immunol. 1995,155: 5220–5226
    41.258 Jabara H. H., Buckley R. H., Roberts J. L., Lefranc G.,Loiselet J., Khalil G. et al. Role of JAK3 in CD40-mediated signaling. Blood. 1998, 92: 2435–2440
    42.Worm M. M., TsytsykovaA. and GehaR. S. CD40 ligation and IL-4 use different mechanisms of transcriptional activation of the human lymphotoxin alpha promoter in B cells. Eur. J. Immunol. 1998,28: 901–906
    43.Schaffer A., Cerutti A., Shah S., Zan H. and Casali P. The evolutionarily conserved sequence upstream of the human Ig heavy chain S gamma 3 region is an inducible promoter: synergistic activation by CD40 ligand and IL-4 via cooperative NF-kappa B and STAT-6 binding sites. J. Immunol. 1999,162: 5327–5336
    44.Yanagihara Y., Basaki Y., Ikizawa K. and Kajiwara K. Possible role of nuclear factor-kappa B activity in germline C epsilon transcription in a human Burkitt lymphomaB cell line. Cell Immunol. 1997,176: 66–74
    45.Hornung M., Lindemann D., Kraus C., Peters A. and Berberich I. The CD40TRAF family member interacting motif carries the information to rescue WEHI 231 cells from anti-IgM-induced growth arrest. Eur. J. Immunol. 1998,28: 3812–3823
    46.Jeppson J. D., Patel H. R., Sakata N., Domenico J., Terada N. and Gelfand E. W. Requirement for dual signals by anti-CD40 and IL-4 for the induction of nuclear factorkappa B, IL-6, and IgE in human B lymphocytes. J. Immunol. 1998,161: 1738–1742
    47.Huo L. and Rothstein T. L. Receptor-specific induction of individual AP-1 components in B lymphocytes. J. Immunol. 1995,154: 3300–3309
    48.Berberich I., Shu G., Siebelt F., Woodgett J. R., Kyriakis J.M. and Clark E. A. Cross-linking CD40 on B cells preferentially induces stress-activaed protein kinases rather than mitogen-activated protein kinases. EMBO J. 1996,15: 92–101
    49.Choi M. S., Brines R. D., Holman M. J. and Klaus G. G. Induction of NF-AT in normal B lymphocytes by anti-immunoglobulin or CD40 ligand in conjunction with Il-4. Immunity. 1994, 1: 179–187
    50.Lam E. W., Choi M. S., Sman J. van der, Burbidge S. A. and Klaus G. G. Modulation of E2F activity via signaling through surface IgM and CD40 receptors in WEHI-231 B lymphomacells. J. Biol. Chem. 1998,273: 10051–10057
    51.Berberich I., Shu G. L. and Clark E. A. Cross-linking CD40 on B cells rapidly activates nuclear factor-kappa B. J. Immunol. 1994,153: 4357–4366
    52.Lee J. R. and Koretzky G. A. Production of reactive oxygen intermediates following CD40 ligation correlates with c-Jun N-terminal kinase activation and IL-6 secretion in murine B lymphocytes. Eur. J. Immunol. 1998,28: 4188–4197
    53.Durie F. H., Foy T. M., Masters S. R., Laman J. D. and Noelle R. J. The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol. Today. 1994,15:406–411
    54.Eliopoulos A. G., Dawson C. W., Mosialos G., Floettmann J. E., Rowe M., Armitage R. J. et al. () CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene. 1996, 13: 243–2254
    55.瞿秋霞,张学光. CD40信号和肿瘤免疫.中国肿瘤生物治疗杂志. 2005,12(3):163-166
    56.Rothstein TL, Wang JKM, Panka DJ, et al. Protection against Fas- dependent Th1- mediated apoptosis by antigen receptor engagement in B cells. Nature. 1995;374:163–165.
    57.Garrone P, Neidhardt EM, Garcia E, et al. Fas ligation induces apoptosis of CD40- activated human B lymphocytes. J Exp Med. 1995;182:1265–1273
    58.Miyashita T, McIlrath MJ, Grammer AC, et al. Bidirectional regulation of human B cell responses by CD40–CD40 ligand interactions. J Immunol. 1997;158:4620–4633.
    59.Majlessi L, Bordenave G. Role of CD40 in a T cell–mediated negative regulation of Ig production. J Immunol. 2001;166: 841–847.
    60.Funakoshi S, Longo DL, Beckwith M, et al. Inhibition of human B- cell lymphoma growth by CD40 stimulation. Blood. 1994;83:2787–2794.
    61.Arpin C, Dechanet J, Van Kooten C, et al. Generation of memory B cells and plasma cells in vitro. Science. 1995;268: 720–722.
    62.Quiding- Jarbrink M, Lakew M, Nordstrom I, et al. Human circulating specific antibody -forming cells after systemic and mucosal immunizations: differential homing commitments and cell surface differentiation markers. Eur J Immunol. 1995;25:322–327.
    63.Costello RT, Gastaut JA, Olive D. What is the real role of CD40 in cancer immunotherapy? Immunol Today. 1999;20: 488–493.
    64.Young LS, Eliopoulos AG, Gallagher NJ, et al. CD40 and epithelial cells: across the great divide. Immunol Today. 1998; 19:502–506.
    65 . Van Kooten C, Banchereau J. CD40–CD40 ligand. J Leukoc Biol. 2000;67:2–17.
    66.Grewal IS, Flavell RA. CD40 and CD40L in cell–mediated immunity. Annu Rev Immunol. 1998;16:111–155.
    67.Roy M, Aruffo A, Ledbetter J, Linsley P, Kehry M, Noelle R. Studies on the interdependence of gp39 and B7 expression and function during antigen - specific immune responses. Eur J Immunol. 1995;25:596–603.
    68.Grewal IS, Xu J, Flavell RA. Impairment of antigen– specific T- cell priming in mice lacking CD40 ligand. Nature. 1995; 378:617–622.
    69.Sin JI, Kim JJ, Zhang D, et al. Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen - specific helper T cell type 1 CD4+ T cell mediated protective immunity against herpes simplex virus type 2 in vivo. Hum Gene Ther. 2001;12:1091–1102.
    70.Bleharski JR, Niazi KR, Sieling PA, et al. Signaling lymphocytic activation molecule is expressed on CD40 ligand–activated dendritic cells and directly augments production of inflammatory cytokines. J Immunol. 2001;167: 3174–3181.
    71.Singh SR, Casper K, Summers S, Swerlick RA. CD40 expression and function on human dermal microvascular endothelial cells: role in cutaneous inflammation. Clin Exp Dermatol. 2001;26:434–440.
    72.Lee HH, DadgostarH,Cheng Q,Shu J,et al. NF-kappaB-mediated up-regulation of Bcl-X andBfl-1/A1 is required for CD40 survival signaling in B lymphocytes . Proc Natl Acad Sci USA. 1999;96: 9136-9141
    73.Dallman C, Johnson PWM, Packham G. Differential regulation of cell survival by CD40. apoptosis. 2003;8:45-43
    74.Eliopoulos AG, Dawson CW, Mosialos G, et al. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein -Barr virus–encoded LMP-1: involvement of TRAF3 as a common mediator. Oncogene. 1996;13:2243–2254.
    75.Eliopoulos AG, Stack M, Dawson CW, et al. Epstein– Barr virus–encoded LMP-1 and CD40 mediate IL-6 production in epithelial cells via an NF-kappaB pathway involving TNF receptor–associated factors. Oncogene. 1997;14:2889–2916.
    76.Hirano A, Longo DL, Taub DD, et al. Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood. 1999;93:2999–3007.
    77.Hess S, Engelmann H. A novel function of CD40: induction of cell death in transformed cells. J Exp Med. 1996;183:159–167
    78.Ni CZ, Welsh K, Leo E, et al. Molecular basis for CD40 signaling mediated by TRAF3. Proc Natl Acad Sci USA. 2000;97:10395–10399.
    79.McWhirter SM, Pullen SS, Werneburg BG, et al. Structural and biochemicalanalysis of signal transduction by the TRAF family of adapter proteins. Cold Spring Harbor Symp Quant Biol. 1999;LXIV:551–562.
    80.Werneberg BG, Zoog SJ, Dang TTA, et al. Molecular characterization of CD40 signaling intermediates. J Biol Chem. 2001;276:43334–43342.
    81. Zapata JM, Krajewska M, Krajewski S, et al. TNFRassociated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol. 2000;165:5084–5096.
    82.Gallagher NJ, Eliopoulous AG, Aganthangelo A, et al. CD40 activation in epithelial ovarian carcinoma cells modulates growth, apoptosis, and cytokine secretion. Mol Pathol. 2002; 55:110–120.
    83.Antonia SJ, Extermann M, Flavell RA. Immunologic nonresponsiveness to tumors. Crit Rev Oncol. 1998;9:35–41
    84.Mackey MF, Gunn JR, Ting PP, et al. Protective immunity induced by tumor vaccines requires interaction between CD40 and its ligand, CD40L. Cancer Res. 1997;57:2569–2574..
    85 . Van Mierlo GJ, den Boer AT, Medema JP, et al. CD40 stimulation leads to effective therapy of CD40(_) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci USA. 2002;99:5561–5566.
    86.Courderc B, Zitvogel L, Douin- Echinard V, et al. Enhancement of antitumor immunity by expression of CD70 (CD27 ligand ) or CD40L (CD40 ligand ) costimulatory molecules in tumor cells. Cancer Gene Ther. 1998;5:163–175.
    87.Ito D, Ogasawara K, Iwabuchi K, et al. Induction of CTL response by simultaneous administration of liposomal peptide vaccine with an anti -CD40 and anti -CTLA mAb. J Immunol. 2000;164:1230–1235.
    88.Zhao-Hua Zhou, Qin Shi, Jiang-Fang Wang, et al. Sensitizatino of multiple myeloma and B lymphoma lines to dexamethasone andγ-radiation-induced apoptosis by CD40 activation. Apoptosis, 2005,10(1):123-134
    89.Urashima M, Suzuki H, Yuza Y, et al. An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood. 2000;95:1258–1263
    90.Todryk SM, Tutt AL, Green MHA, et al. CD40 ligation for immunotherapy of solid tumours. J Immunol Methods. 2001; 248:139–147.
    91.MacDonald AS, Straw AD, Bauman B, Pearce EJ. CD8-dendritic cell activation status plays an integral role in influencing TH2 response development. J Immunol. 2001; 167:1982–1988
    92. Urashima M, Suzuki H, Yuza Y, et al. An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood. 2000;95:1258–1263
    93.Hoffman TK, Meidenbauer N, Muller-Berghaus J, et al. Proinflammatory cytokines and CD40 ligand enhance cross -presentation and cross -priming capability of human dendritic cells internalizing apoptotic cancer cells. J Immunother. 2001; 24:162–171.
    94.古涛,李敏,陈成,等. PD-L1和PD-L2在树突状细胞上的表达及其生物学意义.现代免疫学, 2004,(1): 13-17
    95.Marie-Ghislaine de Goer de Herve MG, Durali D, Tran TA, et al. Differential effect of agonistic anti-CD40 on human mature and immature dendritic cell. Blood, 2005, 10. 1182/ blood-2004-12-4678
    96.Jyothi MD, Khar A. Regulation of CD40L expression on natural killer cells by interleukin -12 and interferon gamma: its role in the elicitation of an effective antitumor immune response. Cancer Immunol Immunother. 2000;49:563–572.
    97.Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med. 1993;177:925–935.
    98. Claxton DF, Kao SF, Ehmann C. CD40 ligand and IL-4 are required for optimal leukemic dendritic cell maturation ( Abstract ). Blood. 2001;98:589a
    99.Kato K, Yoshida M, Takaue Y, et al. Retinoid and CD40 ligand cooperate to promote induction of immune accessory molecules and immune responses to human myeloid leukemia cells ( Abstract ). Blood. 2001;98:589a
    100.Ghia P, Transidico P, Beiga JP, et al. Chemoattractants MDC and TARC are secreted by malignant B- cell precursors following CD40 ligation and support themigration of leukemia- specific T cells. Blood. 2001;98:533–540
    101.Ilia NB, Hillary L, Gideon B, et al. CD40 ligation activates murine macrophages via an IFN-γdependent mechanism resulting in tumor cell destruction in vitro. J Immunol, 2005, 174(6):6013-6022
    102.. Dilloo D, Brown M, Roskrow M, et al. CD40 ligand induces an antileukemia immune response in vivo. Blood. 1997;90: 1927–1933
    103.Cantwell MJ, Wierda WG, Lossos IS, et al. T cell activation following infection of primary follicle center lymphoma B cells with adenovirus encoding CD40L. Leukemia. 2001;15: 1451–1457
    104.Takahashi S, Rousseau RF, Yotnda P, et al. Autologous antileukemia immune response induced by chronic lymphocytic leukemia B cells expressing the CD40 ligand and interleukin 2 transgenes. Hum Gene Ther. 2001;12:659–670
    105.Liu Y, Qureshi M, Xiang J. Antitumor immune responses derived from transgenic expression of CD40 ligand in myeloma cells. Cancer Biother Radiopharm. 2002;17:11–18.
    106.Dotti G, Savoldo B, Takahashi S, et al. Adenovector- induced expression of human-CD40- ligand (hCD40L) by multiple myeloma cells. A model for immunotherapy. Exp Hematol. 2001;29:952–961.
    107.Noguchi M, Imaizumi K, Kawabe T, et al. Induction of antitumor immunity by transduction of CD40 ligand gene and interferon -gamma into lung cancer. Cancer Gene Ther. 2001; 8:421–429.
    108.Schmitz V, Barajas M, Wang L, et al. Adenovirus–mediated CD40 ligand gene therapy in a rat model of orthotopic hepatocellular carcinoma. Hepatology. 2001;34:72–81.
    109.Nakajima A, Kodama T, Morimoto S, et al. Antitumor effect of CD40 ligand: elicitation of local and systemic antitumor responses by IL-12 and B7. J Immunol. 1998;161:1901–1907.
    110.Gurunathan S, Irvine KR, Wu CY, et al. CD40 ligand / trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infections and tumor challenge. J Immunol. 1998;161:4563–4571.
    111.Adams GP and Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23:1147-1152
    112.Law CL, Gordon KA, Collier J, et al. Preclinical antilymphoma activity of a humanized anti-CD40 monclonal antibody, SGN-40. Cancer Res. 2005;65:8331-8338
    113 . Tai YT, Li XF, Catley L, et al. Immunomodulatory drug lenalidomide(CC-5013, IMiD3) augments anti-CD40 SGN-40-Induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Res. 2005;65:11712-11723
    114.Law CL, Gordon KA, Collier J, et al. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res. 2005,65: 8331-8338
    115.Ryschich E, Marten A, Schmidt E, et al. Activating anti-CD40 antibodies induce tumor invasion by cytotoxic T-lymphocytes and inhibition of tumor growth in experimental liver cancer. Euro Journal Cancer. 2006;42(7):982-987
    116.Vonderheide RH, Flaherty KT, Khalil M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007,25(7):876-883
    1. Zhou ZH, Wang JF, Wang YD, et al. An agonist anti-human CD40 monoclonal antibody that induces dendritic cell formation and maturation and inhibits proliferation of a myeloma cell line. Hybrdoma. 1999; 18: 471
    2. Chan PG, Sung HY, Sawaya GF, et al. Changes in cervical cancer incidence after three decades if screening US women less than 30 years old. Obstet Gynecol,2003,102(4):765-773
    3. Ghaderi M,Wallin KL,Wiklund F, et al. Risk of invisive cervical cancer associated with polymorphic HLA DR/RQ haplotypes.Int J Cancer, 2002,100(6):698-701
    4. Shi HZ, Huang WD, Zhang XG, et al. Soluble CD40 ligand expression in pichia pastoris and its effects on DCs and malignant B cell. Acta Biochem Biophy Sin. 2000; 32: 317
    5. Seran C.Hill, Sarah J. Youde, Stephen Man, et al. Activation of CD40 in cervicalcarcinoma cell facilitates CTL responses and augments chemotherapy-induced apoptosis. J. Immunol. 2005, 168: 41-46
    6.瞿秋霞,张学光. CD40信号和肿瘤免疫.中国肿瘤生物治疗杂志. 2005,12(3): 163-164
    7. Andreas Altenburg, Stephan E. Baldus, Hans Smola, et al. CD40 Ligand-CD40 interaction induces chemokines in cervical carcinoma cell in synergism with IFN-γ. J. Immunol. 1999, 162: 4140-4146
    8. Sabel MS, Yamada M, Kawaguchi Y, et al. CD40 expression on human lung cancer correlates with metastatic spread. Cancer Immunol Immunother, 2000, 49: 101-108
    9. Einstein MH, Goldberg GL. Human papillomavirus and cervical neoplasia. Cancer Invest,2002,20(7-8):1080-1085
    10. Dell G, Gaston K. Human papillomavirus and their role in cervical cancer.Cell Mol Life Sci, 2001,58(12-13):1923-1942
    11. Gallo G, Bibbo M, Bagella L, et al. Study if viral integration of HPV-16 in young patients with LSIL. J Cli Pathol,2003,56(7):532-536
    12. Ishikawa M, Fujii T, Saito M, et al. Overexpression of p16INK4aas an indicator for human papillomavirus oncigenic activity in cervical squamous neoplasia. Int J Gynecol Cancer, 2006,16(1):347-353
    13. Murphy N, Ring M, Killalea AG, et al. p16INK4a as a marker for cervical dyskaryosis: CIN and cGIN in cervical biopsies and ThinPrep smears.J Clin Pathol,2003,56(1):56-63
    14. Hu L,Guo M, He Z, et al. Human papillomavirus genotyping and p16INK4a expression in cervical intraepithelial neoplasia of adolescents. Mod Pathol, 2005,18(2):267-273
    15. Leung DW,Cashianes G,Kuang WJ,et al.Vascular endothelial growth factor is a secreted angiogenic mitogen.Science,1989,246(4935):1306.
    16. Liotta LA,Kleinerman J.Saidel G.Quantitative relationships of intravascular tumor ceHs,tumor vessels and pulmonary metastases following tumor implantation[J] J.Cancer Res,1974,34(5):997-1004.
    17. Dobbs SP,Hewett PW ,Johnson IR,et a1.Angiogenesis is associated with vascular endothelial growth factor expression in cervical intraepi-thelial neoplasial.Br J Cancer. 1997,76(11):1410-1415.
    18. Lopez-Ocejo 0,Viloria—Petit A,Bequet—Romero M,et a1.Oncogenes and tumor an giogenesis:the HPV.16 E6 oncoprotein activates the vascular endothelial growth factor(VEGF)gene promoter in a p53 independent manner. J.Oncogene,2O00,19(40):4611-4620.
    19. Tai YT, Podar K, Gupta D, Lin B, Young G, Akiyama M, Anderson KC: CD40 activation induce P53-dependent vascular endothelial groeth factor secrction in human multiple myeloma cells. Blood.2002; 99:1419-1427.
    20. Melter M, Reinders M, Sho M, Pal S, Geehan C, et al. Ligation of CD40 induces the expression if favsculalr endothelia growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood. 2000;96:3801-3808
    21. Biancone L, Cantaluppi V, Boccellino M, et al.Activation of CD40 favors the growth and vascularization of Kaposi’s sarcoma. J Immunol. 1999;163:6201-6208.
    22. Lenczewski A, Terlikowski SJ, Sulkowska M,et al. Prognostic significance of CD34 expression in early cervical squamous cell carcinoma. Folia Histochem Cytobiol. 2002;40(2):205-206.
    23. Tokumo K,Kodama J,Se ki N,et a1.Diferent an giogenic pathways in human cervical cancers[J].Gynecol Oncol,1998,68(1):38-44.
    24. Nair P, Gangadevi T, Jayaprakash PG ,et al.Increased angiogenesis in the uterine cervix associated with human papillomavirus infection. Pathol Res Pract.1999;195(3):163-169.
    25. Weidner N.The relationship of tumor an giogenesis and metastasis with emphasis on invasive breast carcinoma. Advances in pathology and laboratory medicine edited by RS Weinstein. Chicago: Mosby Year Book.1992:111-121
    1、Zhou ZH, Wang JF, Wang YD, et al. An agonist anti-human CD40 monoclonal antibody that induces dendritic cell formation and maturation and inhibits proliferationof a myeloma cell line. Hybridoma, 1999,18:471~478
    2、周照华,施勤,张学光等. CD40单克隆抗体对CD40表达阳性的B淋巴细胞恶性肿瘤的生长抑制和促凋亡作用研究.中华血液学杂志, 2000,21(5):237~239
    3、Shi HZ, Huang WD, Zhang XG, et al. Soluble CD40 ligand expression in pichia pastoris and its effects on DCs and malignant B cell. Acta Biochem Biophy Sin. 2000, 32: 317
    4、Tong AW, Papayoti M, Netto G, et al. The growth inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer. Clin Cancer Res. 2001,7: 691~703.
    5、Antonia SJ, Extermann M, Flavell RA. Immunologic nonresponsiveness to tumors. Crit Rev Oncol. 1998;9:35–41.
    6、C hristinaM .C oughlin,B arbaraA .V ance,St ephanA .G rupp,et al. R N A- transfected CD40-activated B rrllai nducef unctionalT-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood,2004,103:2046-2054.
    7、Dimitris Daoussis, Andrew P. Andonopoulos, and Stamatis-Nick C Targeting CD40L:a promising therapeutic approach. Clinical and Diagnostic Laboratory Immunology, 2004,11:635~64
    8、Eliopoulos AG, Clare D, Knox PG, et al. CD40 induces apoptosis in carcinoma cell through activation of cytotoxic ligands of the Tumor necrosis factor superfamily. Mol Cell Biology, 2000,20:5503-5515
    9、Westendorf JJ,Ahmann GJ,Armitage RJ,et a1.CD4O expression in malignant plasma cdls.J Immunol,1994,152:117-128
    10、M ex W .Tong. Zhang BQ,Mues G,Solano M,Hanson T,and Stond MJ. Anti- CD40 antibody binding modulates human multiple myeloma clonogenicity in vitro.Blood,1994, 84(9):3026-3033
    11、Pellat Deceunynck C,Amio M,Robillard N,et a1.CD1la-CD18 and CD102 interactions mediate human myeloma cell growth arrest induced bv CD40 stimulation.Cancer Res. 96, 15: 56(8):1909-1916
    12、汤琳,庄羽美,周照华等.激发型抗CD40单抗介导恶性肿瘤细胞凋亡及其机制探讨.苏州大学学报(医学版). 2002, 22(4):364-367
    13、Zhao-Hua Zhou, Qin Shi, Jiang-Fang Wang, et al. Sensitizatino of multiple myeloma and B lymphoma lines to dexamethasone andγ-radiation-induced apoptosis by CD40 activation. Apoptosis, 2005,10:123-134
    14、P. Hernandez, P. Olivera, A. Deunas-Gonzalez, et al. Gemcitabine activity in cancer cell lines. Cancer Chemother Pharmacol, 2001,48:488-492
    15、Law CL, Gordon KA, Collier J, et al. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res. 2005,65: 8331-8338
    16、Ryschich E, Marten A, Schmidt E, et al. Activating anti-CD40 antibodies induce tumor invasion by cytotoxic T-lymphocytes and inhibition of tumor growth in experimental liver cancer. Euro Journal Cancer. 2006;42(7):982-987
    17、Vonderheide RH, Flaherty KT, Khalil M, et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol. 2007,25(7):876-883

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700