用户名: 密码: 验证码:
交叉韧带重建移植物体内重塑的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:兔自体和异体髌韧带移植重建前交叉韧带后移植物Ⅲ型胶原表达与生物力学的变化
     目的研究兔自体和异体髌韧带移植重建前交叉韧带后,移植物中Ⅲ型胶原表达和生物力学性能的变化。
     方法36只健康成年新西兰白兔,切除双侧前交叉韧带,每只兔随机一侧移植同种异体髌韧带,共36膝,另一侧移植自体髌韧带,共36膝。分别于手术后3周、6周、12周切取移植物,反转录一聚合酶链反应检测Ⅲ型前胶原-mRNA表达,免疫组织化学方法检测Ⅲ型胶原表达,并截取双侧膝关节股骨-移植物-胫骨复合体行生物力学检测。另取6只健康成年新西兰兔不进行前交叉韧带重建,为正常对照。
     结果正常前交叉韧带及移植前自体和异体髌韧带Ⅲ型胶原表达阴性;移植后各时间点移植物均可见Ⅲ型前胶原-mRNA表达,自体髌韧带术后6周达到高峰,而异体髌韧带手术后12周Ⅲ型前胶原-mRNA表达仍较高;异体髌韧带手术后生物力学性能丢失明显,随着Ⅲ型胶原表达减少,生物力学性能逐渐增加,但未达到正常前交叉韧带水平。结论受体细胞侵入移植物,合成Ⅲ型胶原,可能是移植物体内重建过程中生物力学性能降低的原因之一;异体移植物Ⅲ型胶原合成时间延长于自体移植物;确切了解交叉韧带移植物重建中胶原基质的改变,对于促进移植物术后重建具有重要意义。
     第二部分:富血小板血浆来源的富生长因子液对兔异体冻干跟腱移植后早期微血管生成的影响
     目的观察富血小板血浆来源的富生长因子液对兔异体冻干跟腱移植重建前交叉韧带后早期微血管生成的影响。
     方法12只健康成年新西兰白兔切除双侧前交叉韧带,随机一侧植入经等量生理盐水预处理后的兔异体冻干跟腱(NS组),另一侧植入经血小板血浆来源的富生长因子液预处理后的兔异体冻干跟腱(PRGF组)。2只健康成年白兔为空白组,仅切开一侧膝关节。术后2周、4周、6周对移植物行苏木精-伊红染色和免疫组织化学染色检查, Weidner法定量检测移植物微血管密度。结果PRGF组MVD高于NS组(P<0.05);术后2周、4周、6周,NS组与PRGF组微血管密度分别为2.52±0.45,3.41±0.44,2.57±0.51和3.56±0.81,4.91±0.46,3.01±0.75,两组间各时间点差异均有统计学意义(P<0.01);而且PRGF组在新血管形成的时间、血管形成数量及血管长入肌腱的深度方面均优于NS组。
     结论富血小板血浆来源的富生长因子液可促进异体冻干跟腱移植重建前交叉韧带后早期微血管生成。
     第三部分:富生长因子液对兔异体冻干跟腱重建前交叉韧带后胶原表达及生物力学的影响
     目的观察富血小板血浆来源的富生长因子液对异体冻干跟腱移植重建兔前交叉韧带后移植物胶原变化和生物力学性能的影响。
     方法40只健康成年新西兰白兔,手术切断双侧ACL,随机一侧植入经血小板血浆来源的富生长因子液预处理后异体冻干跟腱(PRGF组,共40膝),另一侧植入经等量生理盐水预处理的异体冻干跟腱(NS组,共40膝)。手术后3周、6周、12周、24周取关节内移植物进行苏木精-伊红染色观察,免疫荧光共聚焦方法检测Ⅰ型及Ⅲ型胶原变化,并截取双侧膝关节股骨-移植物-胫骨复合体行生物力学检测。另取6只健康白兔不进行前交叉韧带重建,为正常对照组。
     结果手术后3周移植物被大量炎性细胞覆盖,PRGF组明显少于NS组;宿主细胞逐渐向移植物深层侵润,移植物深层可见血管形成;手术后3周PRGF组及NS组Ⅲ型胶原含量升高,Ⅰ型胶原含量下降,以NS组明显;手术后12周,PRGF组Ⅲ型胶原含量明显减少,而NS组要延迟到手术后24周;随着Ⅲ型胶原含量下降,Ⅰ型胶原含量升高,移植物生物力学性能开始改善,手术后24周移植物生物力学性能PRGF组明显高于NS组。
     结论富生长因子液可促进兔异体冻干跟腱移植重建前交叉韧带后胶原重塑,加速移植物重建。
     第四部分:聚对苯二甲酸乙二醇酯材料LARS韧带体内组织学及超微结构研究
     目的观察聚对苯二甲酸乙二醇酯材料LARS韧带重建兔前交叉韧带后移植物体内组织学转归及超微结构。
     方法选择12只健康成年新西兰白兔,随机分为A,B两组,其中A组(共9膝),前交叉韧带完全切断后,用体外编织的聚对苯二甲酸乙二醇酯材料LARS韧带重建,并用前交叉韧带残端覆盖移植物;B组(共3膝)前交叉韧带完全切除后单纯应用体外编织的聚对苯二甲酸乙二醇酯材料LARS韧带重建前交叉韧带。分别于手术后1月、3月、6月切取关节内移植物行苏木精-伊红染色及masson染色观察,并应用透射电子显微镜观察移植物超微结构。
     结果手术后1月,A组关节内LARS韧带纤维束被纤维结缔组织包裹,而B组手术后6月仍不能被纤维结缔组织包裹;手术后3月,A组关节内LARS韧带纤维束包裹的纤维结缔组织为不成熟的胶原纤维组织,不能沿应力分布,另外,A组及B组在骨道内或LARS韧带纤维束之间,存在中等程度的异物反应或炎症反应,以B组明显;手术后6月,A组关节内LARS韧带纤维束之间仍为不成熟的胶原纤维组织,不能沿应力分布;电子显微镜观察见人工纤维束间存在小直径的胶原纤维分布,人工纤维束间的成纤维细胞及骨道内人工纤维束间的成骨细胞增殖活跃,细胞体积及细胞核增大,粗面内质网扩张;A、B组骨道内均存在骨长入,新生编织骨起始于骨道壁,向人工材料的深层长入,但这种骨长入过程缓慢,在骨道内或LARS韧带纤维束之间,异物反应或炎症反应逐渐减轻。
     结论聚对苯二甲酸乙二醇酯材料LARS韧带生物相容性较好,为永久型韧带设计,仅具有部分支架型韧带的特性;关节内游离部分需用自体组织覆盖;移植后骨道内是否存在有效骨长入仍需进一步观察。
PartⅠExpression of TypeⅢCollagen and Biomechanical evaluation of Anterior Cruciate Ligament Reconstruction with Fresh-frozen Patellar tendon allograft and autograft
     Objective To observe the expression of type III collagen and biomechanical changes of anterior cruciate ligament reconstruction with fresh-frozen patellar tendon allograft and autograft in rabbits. Methods 42 skeletally matured New Zealand white rabbits were used in the experiment. 36 rabbits were removed two sides of ACL .One side was underwent ACL reconstruction with aseptically harvested fresh-frozen patellar tendon allograft, while the other side was reconstructed with patellar tendon autograft.The remained 6 rabbits were classified as control group.At the 3rd week, 6th week, 12th week after surgery,specimens were collected and processed for histological, immunohistochemical observation and the expression degree ofⅢprocollagen mRNA was detected using method of RT-PCR.The complex of femur-graft-tibia was biomechanical analysis.
     Results After implantation ,the autografts and allografts underwent a gradually heal process including cellular migration, collagen formation and remodeling. The negative expression of type III collagen were obseved in nomal ACL and fresh-frozen patellar tendon allografts and autografts.The amount of typeⅢprocollagen mRNA of patellar tendon autografts reached a maximum at 6 th weeks after the operation,while typeⅢprocollagen mRNA of fresh-frozen patellar tendon allografts at 12th weeks after the operation remain highly. Mechanical properties deteriorated obviously due to a process of the increase of type III collagen in the grafts. Mechanical properties of the grafts can not reach the lever of nomal.
     Conclusion The results suggested that the increase in type III collagen produced by cells of the extrinsic origin may be one of the mechanisms that induce mechanical deterioration of fresh-frozen allograft and autograft .The synthetized type III collagen were significant in allograft.A more thorough mechanism of changes in the graft matrix after cruciate ligament reconstruction is critical to the development of a successful means of enhancing remodeling after cruciate ligament reconstruction.
     PartⅡAngiogenic effect of allgraft freeze-dried achilles treated by Plasma rich in Platelet—released Growth Factors in ACL reconstruction at early stage
     Objective To observe angiogenic effect of allograft freeze-dried achilles treated by PRGF in ACL reconstruction at early stage.
     Methods 14 rabbits were used in the experiment .12 rabbits were removed two sides of ACL. Allograft freeze-dried achilles treated by PRGF was transplanted into one side knee to substitute the original ACL, while the other side only treated by saline as control. 2 rabbits were classified as sham group.The grafts were harvested 2nd、4th and 6th week from the 12 rabbits, respectively.The groups were compared on the basis of histologic and immunohistochemical staining method . MVD was measured by Weidner method, an indicator of revascularization.
     Results When compared with PRGF at the same time ,MVD of group PRGF were significant higher than that of group NS (p<0.01) . Moreover, PRGF promoted MVD of PRGF group was significantly greater than that of NS group. MVD of group NS and PRGF was 2.52±0.45,3.41±0.44,2.57±0.51 and 3.56±0.81,4.91±0.46,3.01±0.75 , respectively(p<0.01). The time of neovascular formation and the depth of vascular penetration into the grafts of the group PRGF are superior to those in the group of NS.
     Conclusion PRGF significantly promoted angiogenesis of the freeze-dried achilles in ACL reconstruction at early stage .
     PartⅢCollagen expression and biomechanical effect of allograft freeze-dried achillis treated by Plasma rich in Platelet—released Growth Factors in ACL reconstruction
     ObjectiveTo observe the effect of the Achilles allograft treated with PGGF on the biomechanical and collagen expression on the reconstruction of Anterio rcruciate ligament(ACL) in rabbits . Methods 46 rabbits were used in the experiment .40 rabbits were removed two sides of ACL. Allograft freeze-dried achillis treated by PRGF was transplanted into one side knee to substitute the original ACL, while the other side only treated by normal saline as control. 6 rabbits were sham group.The grafts were harvested 3rd、6th、12th and 24 th weeks and compared on the basis of histologic ;The expression of Type III Collagen and TypeⅠCollagen were analysised by confocal laser scanning microscopy (CLSM).The complex of femur-graft-tibia was biomechanical analysis.
     Results Many inflammatory cells from recipien covered the surface of the graft at 3rd week after operation, however, the PRGF group was less than NS group. Cells gradually migrated into the deeper part of the graft in two groups. At 3 th week after operation, the proportion of Type III Collagen increased and TypeⅠCollagen decreasing in both groups.As the time passed, the proportion of Type III Collagen gradually increased between 3 th -12 th week after operation ,but compared with in PRGF group,the increasing of Type III Collagen is more significantly in NS group . At 12 th week after operation,TypeⅠCollagen gradually increased and Type III Collagen began to decrease.However, the decreasing of Type III Collagen and the increasing of TypeⅠCollagen in PRGF group was faster than that of in NS group. Mechanical properties of both group begin to increase following the decreasing of the proportion of Type III Collagen and the increasing of TypeⅠCollagen.The increasing of mechanical properties in PRGF group was more significantly than that of in NS group. At 24 th week after operation ,the mechanical properties in PRGF group was superior to that of in NS group . Conclusion The biomechanical and collagen remodeling of allograft freeze-dried achillis treated with PRGF could be promoted on the reconstruction of ACL .
     PartⅣHistology Study of Terylene Polyester Type LARS after reconstruction of anterior cruciate ligament in rabbits
     Objective To study histology characteristics and ultrastructure of Terylene Polyester Type LARS artificial ligament after reconstruction of anterior cruciate ligament in rabbits. Methods 12 rabbits were removed one side of ACL. The Terylene Polyester Type LARS was transplanted to substitute the original ACL, and the transplanted Terylene Polyester Type LARS were covered with the remnant of ACL in 9 rabbits(A group), while only Terylene Polyester Type LARS were transplanted in 3 rabbits , which no covering with the remnant of ACL(B group).The grafts were harvested 1st ,3rd and 6th month and compared on the basis of histologic characteristics , and ultrastructural findings and compatibility.
     Results After 1 th months surgery , the grafts were covered with recipient connective tissues in group A ,but were not covered anything after 6 th months operation in group B; After 3 th months surgery there were irregularly aligned collagen fiber bundles slightly or in some portions, additionally, there was moderate to severe inflammatory cell reaction or foreign body reaction immediately adjacent to the LARS fibers in bone tunnel even in long-term specimens postsurgery. After 6 th months surgery , there were irregularly aligned collagen fiber bundles slightly or in some portions, collagen fiber couldn’t parallel to stress. The tissue inside the LARS ligament as a whole showed no mature ligamentization and was not well functioning. Electron microscopy investigation showed the tissue near LARS fibers was highly cellular with a matrix of frequant, thin collagen fibrils. Among the collagen fiber bundles of the stroma were numerous osteoblasts and fibroblasts that were elongated, with large nuclei and an abundant, granular endoplasmic reculum. Light examination of these specimens revealed marked trabecular bone ingrowth into the periphery of the prosthesis and the incorporation of the LARS fibers into the bone matrix. Inflammatory cell reaction or foreign body reaction began to diminish.
     Conclusion The results suggest that Terylene Polyester Type LARS could be covered by recipient connective tissues.However, the recipient connective tissues was immaturity and could not develop into fiber parallel to stress. Terylene Polyester Type LARS was designed as a permanent replacement for the anterior cruciate ligament ,and used Terylene Polyester Type LARS in repairig and the reconstruction of cruciate ligament tissue ,however, may act as partly ,
引文
1 Zaffagnini S, De Pasquale V, Marchesini Reggiani L, et al. Neoligamentization process of BTPB used for ACL graft: Histological evaluation from 6 months to 10 years.The Knee, 2007, (14)2: 87-93.
    2 Lawrence V, Gulotta, Scott A, et al. Biology of Autograft and Allograft Healing in Anterior Cruciate Ligament Reconstruction .Clinics in Sports Medicine, 2007, 26(4): 509-524.
    3 Shine K, Horibe S, Hamada M ,et al. Allograft anterior cruciate ligament reconstruction. Techniques in Knee Surgery, 2002, 1(2):78-85.
    4 Poddevin N, King MW, Guidoin RG. Failure mechanisms of anterior cruciate ligament prostheses :in vitro wear study .J Bio med Mater Res, 1997, 38(4):370-381.
    5 Amis AA, Kampson SA. Failure mechanism of polyester fiber Anterior cruciate ligament implants: a human retrieval and laboratory study. Biomed Mater Res, 1999, 48:534-539.
    6 Frank CB, Jackson OW. The science of reconstruction of the Anterior cruciate ligament. J Bone Joint Sury, 1997, 79 A : 1556-1576.
    7王毅.前交叉韧带重建术后移植物生物学变化.国外医学创伤与外科学基础.1999,1: 27-29.
    8 Jackson DW, Grood ES, Wilcox P, et al. The effects of processing techniques on the mechanical properties of' bone-anterior cruciate ligament-bone autograft: an experiment study in goals. Am Sports Med, 1988, 16: 101-105.
    9 Harukazu Tohyama ,Kazunori Yasuda ,Hisaya Uchida .Is the increase in type III collagen of the patellar tendon graft after ligament reconstruction really caused by‘‘ligamentization’’of the graft? Knee Surg Sports Traumatol Arthrosc 2006, 14:1270–1277
    10 Yoshikawa T, Tohyama H, Katsura T, etal. Effects of local administration of vascular endothelialgrowth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstructionin sheep. Am J Sports Med, 2006, 34(12): 1918-1925.
    11张春礼,范宏斌,徐虎,等.碱性成纤维细胞生长因子促进冻干肌腱移植重建前交叉韧带后早期血管生成的组织学观察.中华创伤骨科杂志, 2006, 8(2):157-160.
    12 Eduardo Anituaa, Mikel Sa′nchezb, Gorka Orive, et al.The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials , 2007, 28(31): 4551–4560.
    13 Martha M, Murray, Kurt P, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. Journal of Orthopaedic Research ,2007, 25( 1): 81-91.
    14 Amiel D, Kleiner JB, Roux RD, et al.The phenomenon of‘‘ligamentization’’: anterior cruciateligament reconstruction with autogenous patellar tendon. J Orthop Res 1986, 4(2): 162–172.
    15 Trieb K, Blahovec H, Brand G et al. In vivo and in vitro cellular in growth into a new generation of artificial ligaments. Eur Surg Res, 2004, 36(3):148-151.
    16 Laboureau JP,Marnat-Perrichet F.Isometric reconstruction of the anterior cruciate ligament. Determination of the femoral and tibial tunnels. Acta Orthop Belg, 1996, 62 (Suppl1): 166-177.
    1 Zaffagnini S, De Pasquale V, Marchesini Reggiani L, et al. Neoligamentization process of BTPB used for ACL graft: Histological evaluation from 6 months to 10 years.The Knee, 2007,(14)2: 87-93.
    2 Amiel D, Frank C, Harwood F, et al.Tendons and ligaments.A morphological and biochemical comparison, J Orthop Res,1984,1:257-165.
    3蒋青,林共周,曲绵域,等.前交叉韧带重建后Ⅲ型胶原的表达.中华骨科杂志,1999, 19 (7):431-433.
    4 Lawrence V. Gulotta, Scott A. Rodeo. Biology of Autograft and Allograft Healing in Anterior Cruciate Ligament Reconstruction .Clinics in Sports Medicine, 2007, 26(4):509-524.
    5 Aaron J, Krych, Jeffrey D, et al. A Meta-analysis of Patellar Tendon Autograft Versus Patellar Tendon Allograft in Anterior Cruciate Ligament Reconstruction Arthroscopy.The Journal of Arthroscopic & Related Surgery, 2008, 24(3): 292-298.
    6 Maeda, Akira, Shino, Konsei ,Horibe, Shuji . Remodeling of Allogeneic and Autogenous Patellar Tendon Grafts in Rats. Clinical Orthopaedics and Related Research, 1997,335(2): 298-309.
    7 David Amiel, Jeffrey B. Kleiner, et al. The Phenomenon of‘‘Ligamentization”: Anterior Cruciate Ligament Reconstruction with Autogenous Patellar Tendon. Journal of Orthopuedic Research, 1986,4:162-172.
    8 Harukazu Tohyama , Kazunori Yasuda , Hisaya Uchida .Is the increase in type III collagen of the patellar tendon graft after ligament reconstruction really caused by‘‘ligamentization’’of the graft? Knee Surg Sports Traumatol Arthrosc, 2006,14:1270–1277
    9 Sakai H, Koibuchi N, Ohtake H, Tamai K, Fukui N, Oda H, Saotome K .Type I and type III procollagen gene expressions in the early phase of ligament healing in rabbits: an in situ hybridization study. J Orthop Res, 2001,19(1):132–135
    10 Samuel D. Young III and Alison P. Toth Complications of Allograft Use in Anterior Cruciate Ligament Reconstruction Operative Techniques in Sports Medicine. 2006,14(1): 20-26.
    11 Matthew L. Busam, John-Paul H. Rue and Bernard R. Bach Jr.Fresh-Frozen Allograft Anterior Cruciate Ligament Reconstruction Clinics in Sports Medicine, 2007, 26(4), 607-623
    12 Steven B. Cohen and Jon K. Sekiya. Allograft Safety in Anterior Cruciate Ligament Reconstruction Clinics in Sports Medicine,2007,26(4) 597-605.
    13 Jackson DW, Simon TM. Donor cell survival and repopulation after intraarticular transplantation of tendon and ligament allografts.Microsc Res Tech..2002, 58(1) ;25-33.
    14刘平,敖英芳,胡跃林,等.兔异体前交叉韧带移植重建后交叉韧带的组织学研究.中国运动医学杂志. 2006, 25(1):9-14.
    1 Shine K,Horibe S, Hamada M ,etal. Allograft anterior cruciate ligament reconstruction. Techniques in Knee Surgery,2002,1(2):78-85.
    2 Shino K. Inoue M. Horibe S. Nakata K. Maeda A. Ono K. Surface blood flow and histology of human anterior cruciate ligament allografts. Arthroscopy,1991,7(2):171-176.
    3 Churl Hong Chun, Hong Jun Han,Byoung Chang Lee,et al.Histologic Findings of Anterior Cruciate Ligament Reconstruction with Achilles Allograft. Clin Orthop Relat Res, 2004,421 (4):273-276
    4 YoshikawaT,TohyamaH, KatsuraT, etal. Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semit-endinosus tendon graft affer anterior cruciate ligament reconstructionin sheep.Am J Sports Med, 2006,34(12):1918-1925.
    5张春礼范宏斌徐虎等.碱性成纤维细胞生长因子促进冻干肌腱移植重建前交叉韧带后早期血管生成的组织学观察.中华创伤骨科杂志,2006,8(2):157-160.
    6李峰陈连旭张继英等.应用植入转染血小板源性生长因子基因的骨髓间充质干细胞的灭活同种异体跟腱重建兔前交叉韧带效果的实验研究.中国运动医学杂志,2007 ,26(4): 419-426.
    7 Hirotaka Azuma, Kazunori Yasuda, Harukazu Tohyama,et al.Timing of administration of transforming growth factor-beta and epidermal growth factor influences the effect on material properties of the in situ frozen-thawed anterior cruciate ligament. Journal of Biomechanics 2003,36:373–381.
    8 Anitua E, Andia I, Sanchez M, et al. Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J Orthop Res,2005,23(2):281–286.
    9 Sa′nchez M, Azofra J, Anitua E, et al.Comparison of surgically repaired Achilles tendon tears using PRGF.Am J Sports Med ,2007,35(2):245–251.
    10 Landesberg R,Roy M,Glickman RS. Quantification of growth factor levels using a simplified method of platelet- rich plasma gel preparation. J Oral Maxillofac Surg, 2000, 58(3):297- 300.
    11 Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst.1992,84(24): 1875-1887.
    12 Yoshikawa T,Tohyama H,Enomoto H,et al. Expression of vascular endothelial growth factor and angiogenesis in patellar tendon grafts in the early phase after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc,2006,14: 804–810.
    13 Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol ,2001,19:1029–1034.
    14 Sakai T. Yasuda K. Tohyama H. Azuma H. Nagumo A. Majima T. Frank CB. Effects of combined administration of transforming growth factor-beta1 and epidermal growth factor on properties of the in situ frozen anterior cruciate ligament in rabbits. Journal of Orthopaedic Research, 2002, 20(6):1345-51.
    15 Sanchez, M et al. Use of autologous plasma rich in growth factors in arthroscopic surgery. Cuader. Artroscopia .2003,10:12–19.
    16 Anitua E, Andia I, Sanchez M, et al. Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J Orthop Res,2005,23(2):281–286.
    1 Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med , 2003;33:381-394.
    2 Agarwal C, Britton ZT, Alaseirlis DA, et al. Healing and normal fibroblasts exhibit differential proliferation, collagen production, a-SMA expression, contraction. Ann Biomed Eng, 2006;34(4):653-659.
    3 Amiel D, Ishizue KK, Harwood FL, et al. Injury of the anterior cruciate ligament: The role of collagenase in ligament degeneration. J Orthop Res. 1989, 7(4):486-493.
    4 John P, Goldblatt, Sean E, et al .Reconstruction of the Anterior Cruciate Ligament: Meta-analysis of Patellar Tendon Versus Hamstring Tendon Autograft .Arthroscopy, 2005, 21(7):791-803.
    5 Landesberg R,Roy M,Glickman RS. Quantification of growth factor levels using a simplified method of platelet- rich plasma gel preparation. J Oral Maxillo fac Surg, 2000,58(3):297- 300.
    6 Maeda, Akira, Shino, Konsei ,Horibe, Shuji .Remodeling of Allogeneic and Autogenous Patellar Tendon Grafts in Rats. Clinical Orthopaedics and Related Research, 1997,335(2): 298-309.
    7 Aaron J,Krych,Jeffrey D,et al. A Meta-analysis of Patellar Tendon Autograft Versus Patellar Tendon Allograft in Anterior Cruciate Ligament Reconstruction. The Journal of Arthroscopic and Related Surgery, 2008, 24(3): 292-298.
    8 Bosch U, Kasperczyk WJ. Healing of the patellar tendon autograft after posterior cruciate ligament reconstruction a process of ligamentization ? An experimental study in a sheep model. Am J Sport Med, 1992,20:558-566.
    9张轶超,侯树勋,章亚东,等.关节镜下应用深低温冷冻异体骨跟腱复合体重建膝前交叉韧带.创伤外科杂志, 2007, 9(6):496-499.
    10 Arnoczky SP,Warren RF,Ashlock MA. Replectment of the anterior cruciate ligament using a patellar tendon allograft.J Bone Joint Surg(Am),1986, 68(3):376-385.
    11 Pasa L, Pokorny V, Adler J. Arthroscopic treatment of the unstable knee joint by ligament reconstruction using allografts . Acta Chir Orthop Trauma tol Cech, 2001, 68(1):31-38.
    12 Harner CD, Olson E, Irrgang JJ, et al. Allograft versus autograft anterior cruciate ligament reconstruction: 3 to 5 year outcome. Clin Orthop Relat Res,1996, (324):134-144.
    13 Amiel D, Frank C, Harwood F, et al.Tendons and ligaments.A morphological and biochemical comparison, J Orthop Res,1984,1:257-165.
    14王健,敖英芳.后十字韧带重建后移植物组织学与胶原表型的变化.中华骨科杂志, 2006, 26(1):47-49.
    15 Jones C W , Smolinski D, Keogh A, et al. Confocal laser scanning microscopy in orthopaedic research. Progress in Histochemistry and Cytochemistry. 2005,40 :1–71.
    16 Marui, T , Niyibizi, C , Georgescu, H I, et al . Effects of growth factors on matrix synthesis byligament fibroblasts. J. Orthop. Res. 1997,15:18–23.
    17 Tohyama H, Onodera S , Minami A , et al . Effects of growth factors on the tendon autograft after intrinsic fibroblast necrosis. Biomechanical and gene expression analyses using the in situ freeze–thaw technique. Trans. Orthop Res Soc, 2003, 28, 800.
    18 Akira Nagumo, Kazunori Yasuda , Hironori Numazaki, et al. Effects of separate application of three growth factors (TGF-beta1,EGF, and PDGF-BB) on mechanical properties of the in situ frozen–thawed anterior cruciate ligament. Clinical Biomechanics, 2005,20:283–290.
    19 Sakai T,Yasuda K, Tohyama H, et al. Effects of combined administration of transforming growth factor-beta1 and epidermal growth factor on properties of the in situfrozen anterior cruciate ligament in rabbits. J. Orthop Res, 2002,20, 1345–1351.
    20 Andre F, Steinert, Meike Weber, et al. In situ IGF-1 gene delivery to cells emerging from the injured anterior cruciate ligament .Biomaterials, 2008, 29(7):904-916.
    21李峰,陈连旭,张继英,等.应用植入转染血小板源性生长因子基因的骨髓间充质干细胞的活同种异体跟腱重建兔前交叉韧带效果的实验研究.中国运动医学杂志, 2007 , 26(4): 419-426.
    22 Cordeiro MF. Beyond mitomycin:TGF-beta and wound healing. Prog Retin Eye Res, 2002,21(1):75.
    23 Breitbart AS, Grande DA, LaserJ, etal. Treatment of ischemic wounds using cultured dermal fibroblasts transduced retrovirally with PDGF-B and VEGF 121 genes. Ann Plast Surg, 2001, 46:555-562.
    24 Hildebrand KA, Woo SL,Smith DW, etal.The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med, 1998, 26:549-554.
    25 Letson AK, Dahners LE. The effect of combinations of growth factors on ligament healing. ClinOrthop, 1994, 308: 207-212.
    26 Blakytny R, Ludlow A, Martin GEM, et al. Latent TGF-b1 activation by platelets. J Cell Physiol ,2004,199(1):67–76.
    27 Yoshikawa T,Tohyama H, KatsuraT , etal. Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft affer anterior cruciate ligament reconstruction in sheep. Am J Sports Med, 2006, 34(12): 1918-1925.
    1 Robin V, West MD, Christopher D, et al.Graft Selection in Anterior Cruciate Ligament Reconstruction[J].J Am Acad Orthop Surg ,2005,13(3):197-207.
    2 Zaffagnini S V,De Pasquale L,Marchesini Reggiani A,et al.Neoligamentization process of BTPB used for ACL graft: Histological evaluation from 6 months to 10 years[J].The Knee,2007,14(2):87–93.
    3 Barrett GR, Line LL, Shelton WR, Manning JO, Phelps R. The Dacron ligament prosthesis in anterior cruciate ligament reconstruction:a four year review[J]. Am J Sports Med,1993,21:367-273.
    4 Barry M,Thomas SM,Rees A..Histological changes associated with an artificial anterior cruciate ligament[J]. Journal of Clinical Pathology, 1995, 48(6):556-559.
    5 Sherman OH, Banffy MB. Anterior cruciate ligament reconstruction: Which graft is best. Arthroscopy,2004,20(9):974-980.
    6 Trieb K, Blahovec H, Brand G et al. In vivo and in vitro cellular in growth into a new generation of artificial ligaments[J]. Eur Surg Res,2004,36(3):148-151.
    7董启榕,徐又佳,陈海南,等.LARS人工韧带修复后交叉韧带和后外侧复合结构损伤.江苏医药, 33(10):987-988.
    8 Laboureau JP,Marnat-Perrichet F.Isometric reconstruction of the anterior cruciate ligament. Determination of the femoral and tibial tunnels.Acta Orthop Belg,1996,62 (Suppl1): 166-177.
    9慕小瑜.涤纶毡片与腓肠肌腱膜修复陈旧性跟腱断裂.中华创伤杂志,1997,13(6):386.
    10慕小瑜,官众,李洪等.涤纶毡片重建喙锁韧带治疗陈旧性肩锁关节脱位.中华外科杂志,1997,35(12):752.
    11侯春林,陈爱民,苟三怀.生物聚酯人工韧带临床初步应用.中国修复重建外科杂志,1997,11(4):218-220.
    12陈百成.人工韧带在重建膝关节交叉韧带中的应用.国外医学骨科学分册,2005,26(2):75-77.
    1 Eduardo Anituaa, Mikel Sa′nchezb, Gorka Orive,et al.The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials ,2007,28(31): 4551–4560.
    2 Leitner GC, Gruber R, Neumu¨ller J, et al. Platelet content and growth factor release in platelet rich plasma: a comparison of four different systems. Vox Sanguinis 2006;91:135–139.
    3申军,镇万新.富血小板血浆的研究进展及其在骨科的应用.中国矫形外志, 2006,14(18):1400 -1403.
    4 Eduardo Anitua, Mikel Sa′nchez, Alan T. et al.New insights into and novel applications for platelet-rich fibrin therapies. TRENDS in Biotechnology,2006,24 (5):227-234.
    5 Raghoebar, G.M. et al. Does platelet-rich plasma promote remodeling of autologous bone grafts used for the augmentation of the maxillary sinus floor? Clin. Oral Implants Res,2005,16(3), 349–356.
    6刘彩霞,周健,王银龙,等.不同方法制备的富血小板血浆对牵张成骨的影响.临床口医学杂志, 2007 , 23 (1):6-8.
    7 Fréchette JP, Martineau I, Gagnon G. Platelet-rich Plasmas: Growth Factor Content and Roles in Wound Healing. J Dent Res ,2005,84(5):434-439.
    8 Tsay RC, Vo J, Burke A, et al.Differential growth factor retention by platelet rich plasma composites .J Oral Maxillofac Surg,2005,63(4):521–528.
    9 Anitua E, Andia I, Sanchez M, et al. Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J Orthop Res,2005,23(2):281–286.
    10 Anitua E. Enhancement of osseointegration by generating a dynamic implant surface. J Ora Implantol, 2006;32(2):72–76.
    11 Barbero JEF, Moreno PG, Ortiz GA, et al. Flow cytometric and morphological characterization of platelet rich plasma gel. Clin Oral Implants Res,2007,17(6):687–693.
    12 Hock JM , Canalis E .Platelet-derived growth factor enhances bone cell replication, but not differentiated function of osteoblasts.Endocrinology, 1994,134:1423-1428.
    13 Maeda S, Hayasi M, Komiya S, et al.Endogenous TGF-beta signalling suppresses maturation of osteoblastic mesenchymal cells. Embo J, 2004, 23(3):552–563.
    14 Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003,9(6):669–676.
    15 Minami T, Horiuchi K, MiuraM, et al. Vascular endothelial growth factor- and thrombin induced termination factor, Down syndrome critical region-1, attenuates endothelial cell proliferation and angiogenesis. J Biol Chem ,2004,279(48): 50537-50554.
    16 Amonlirdviman K, Khare NA, Tree DRP, et al.Mathematical modelling of planar cell polarity to understand domineering nonautonomy. Science, 2005, 307(21): 423-426.
    17 Piero Borzini, Laura Mazzucco .Platelet gels and releasates. Current Opinion in Hematology 2005, 12:473-479.
    18 Marx R E.Platelet rich plasma:evidence to support its use . J Oral Maxillo fac Surg, 2004, 62(4): 489-496.
    19张森林,毛天球.富含血小板血浆在骨组织工程中的应用进展.医学研究生学报,2006,19(8) :737-744.
    20 Weibrich, G. et al. Effect of platelet concentration in plateletrich plasma on perimplant bone regeneration. Bone,2004,34:665–671.
    21 Blakytny R, Ludlow A, Martin GEM, et al. Latent TGF-b1 activation by platelets. J Cell Physiol ,2004,199(1):67–76.
    22 Fréchette JP, Martineau I, Gagnon G. Platelet-rich Plasmas: Growth Factor Content and Roles in Wound Healing. J Dent Res ,2005,84(5):434-439.
    23 Sanchez, M. et al. Use of autologous plasma rich in growth factors in arthroscopic surgery. Cuader. Artroscopia,2003,10:12–19.
    24 Virchenko O, Aspenberg P. How can one platelet injection aftertendon injury lead to a stronger tendon after 4 weeks? Interplay between early regeneration and mechanical stimulation. Acta Orthop, 2006,77(5):806–812.
    25 Sa′nchez M, Azofra J, Anitua E, et al.Comparison of surgically repaired Achilles tendon tears using PRGF.Am J Sports Med ,2007,35(2):245–251.
    26 Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med, 2007,34(11):1774–1778.
    27 Seth C. Gamradt, Scott A. et al. Warren.Platelet Rich Plasma in Rotator Cuff Repair.Techniques in Orthopaedics, 2007,22(1):26–33 .
    28 Cugat R, Carrillo JM, Serra I, et al. Articular cartilage defects recontruction by plasma rich in growth factors. Bologna, Italy: Timeo Ed,2006,801–807.
    29 Sa′nchez M, Azofra J, Anitua E, et al. Plasma rich in growth factors to treat an articular cartilage avulsion: a case report. Med Sci Sports Exerc, 2003,35(10): 1648–1652.
    30 Everts PA, Devilee RJ, Oosterbos CJ, et al. Autologous platelet gel and fibrin sealant enhance the efficacy of total knee arthroplasty: improved range of motion, decreased length of stay and a reduced incidence of arthrofibrosis. Knee Surg Sports Traumatol Arthros ,2007, 15(7) :1433-7347.
    31 Gruber, R. et al. Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, microparticles and membranes. Clin. Oral Implants Res, 2002, 13(5):529–535.
    32 Weibrich, G. et al. Growth stimulation of human osteoblast-like cells by thrombocyte concentrates in vitro. Mund Kiefer Gesichtschir,2002,6(3):168–174.
    33 Suba Z, Takacs D, Gyulai-Gaa S, et al. Facilitation of beta-tricalcium phosphate-induced alveolar bone regeneration by platelet-rich plasma in beagle dogs: a histologic and histomorphometric study.. Int J Oral Maxillofac Implants ,2004,19(6):832–838.
    34 Kitoh H, Kitakoji T, Tsuchiya H, et al.Transplantation of culture expanded bone marrow cells andplatelet rich plasma in distraction osteogenesis of long bones. Bone ,2007,40(2):522–528.
    35 Lowery G, Kulkarni S, Pennisi A. Use of autologous growth factorsin lumbar spinal fusion. Bone, 1999,25( 2 Suppl):47s–50s.
    36 Hee H, Madj M, Holt R, et al. Do autologous growth factors enhance transforaminal lumbar interbody fusion? J Eur Spine,2003,12(4):400–4007.
    37 Weiner B,Walker M. Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine, 2003,28:1968–1970.
    38 Frank P,Castro FP Jr. Role of activated growth factors in lumbar spinal fusions. J Spinal Disord Tech, 2004 ,17(5):380-384.
    1 Robin V, West MD, Christopher D, et al.Graft Selection in Anterior Cruciate Ligament Reconstruc -tion[J].J Am Acad Orthop Surg ,2005,13(3):197-207.
    2 Zaffagnini S V, De Pasquale L,Marchesini Reggiani A,et al.Neoligamentization process of BTPB used for ACL graft: Histological evaluation from 6 months to 10 years[J].The Knee,2007, 14(2):87–93.
    3 Barrett GR, Line LL, Shelton WR, Manning JO, Phelps R. The Dacron ligament prosthesis in anter -ior cruciate ligament reconstruction:a four year review[J]. Am J Sports Med,1993, 21:367-273.
    4 Barry M,Thomas SM,Rees A..Histological changes associated with an artificial anterior cruciate ligament [J]. Journal of Clinical Pathology, 1995, 48(6):556-559.
    5 Trieb K,Blahovec H,Brand G,el a1.In vivo and in vitro cellular ingrowth into a new generation of artificial ligaments[J].Eur Surg Res,2004,36(3):148-151.
    6 Nau T, Lavoie P, Duval N. A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament[J]. J Bone Joint Surg [Br] ,2002,84-B:356-60.
    7 Lavoie P, Fletcher J, Duval N.Patient satisfaction needs as related to knee stability and objective findings after ACL reconstruction using The LARS artificial ligament[J].Knee, 2000,7(3) : 157-163.
    8 Besnard P, Goutallier D.Suture of the anterior cruciate ligament reinforced with carbon fibers. Anatomic results and articular degradation after 8-year follow-up[J]. Rev Chir Orthop Reparatrice Appar Mot. 1998 ,84(2):162-171.
    9 Jenkins DHR,Forster IW,Mckibbin B,et al.Induction of tendon and ligament formation by Carbon implants[J]. J. Bone Joint Surg(Br),1977 ,59B:53-57.
    10 Debnath UK ,Fairclough JA,Williams RL. Long-term local effects of carbon fibre in the knee[J]. The Knee. 2004 ,11(4):259-264.
    11 M?kisalo SE, Visuri T, Viljanen A, et al..Reconstruction of the anterior cruciate ligament with carbon fibres: unsatisfactory results after 8 years[J]. Knee Surg Sports Traumatol Arthrosc. 1996,4(3): 132-136.
    12陈百成,孙然,绍德成,等.工韧带在膝关节外科领域的应用[J].中华外科杂志,2007,45(2):96-98.
    13 Eiki Nomura,Motoyasu Inoue, Hitoshi Sugiura.Histological evaluation of medial patellofemoralligament reconstructed using the Leeds–Keio ligament prosthesis[J]. Biomaterials 2005,26(15): 2663–2670.
    14 Alastair W,Murray M F. Macnicol MF.10–16 year results of Leeds-Keio anterior cruciate ligament reconstruction[J]. The Knee ,2004,11(1),9–14.
    15 Fujikawa K, Iseki F, and Seedhom BB.Arthroscopy after anterior cruciate reconstruction with the Leeds-Keio ligament [J]. J Bone Joint Surg [Br] 71B,(4), 566-570 .
    16 Macnicol MF, Penny ID, Sheppard L.Early results of the Leeds-Keio anterior cruciate ligament replacement[J] . J Bone Joint Surg [Br] 1991 ,73B :377-380.
    17 Ochi M,Yamanaka T,Sumen Y,et al.Arthroscopic and histologic evaluation of anterior cruciate liga ments reconstructed with the leeds-Keio ligament[J].J Arthrosc,1993,9(4):387-393.
    18 Prescott RJ, Ryan WG, Bisset DL.Histopathological features of failed prosthetic Leeds-Keio Ante -rior cruciate ligaments[J].J Clin Pathol,1994,47(4):375-376.
    19 Zaffagnini S, De Pasquale V, Montanari C,et al..Histological and ultrastructural evaluation of Leeds -Keio ligament six years after implant. A case report[J].Knee Surg Sports Traumatol Arthrosc.1997, 5(2):89-94.
    20 Matsumoto Hideo and Fujikawa Kyosuke.Leeds-Keio artificial ligament: a new concept for the Anterior cruciate ligament reconstruction of the knee[J].Keio J Med, 2001,50 (3):161-166.
    21 Sugihara A, Fujikawa K, Watanabe H ,et al.Anterior cruciate reconstruction with bioactive Leeds -Keioligament(LKII):preliminaryreport[J].J Long Term Eff Med Implants, 2006,16(1):41-49.
    22 Bosch U,Kasperczyk W J,Decker B,et al. The morphological effects of synthetic augmentation in posterior cruciate ligament reconstruction :An experimental study in a sheep model[J].Arch Orthop Trauma Surg ,1996,115(3-4):176-181.
    23 McCarthy JA, Blomstrom G, Shively RL, et al. Maturation of biologic ACL reconstructions:the effect of augmentation over time. Trans Orthop Res Soc,1991,16:202.
    24 Asahina S, Muneta T, Skai H, et al.Biomechanical and histological study of ACL reconstruction Aug -mented with LAD in rabbits[J]. Trans Orthop Res Soc , 1992,17:247.
    25 Hanley P, Lew WD, Lewis JL, Hunter RE, Kirstukas S, Kowalczyk C. Load sharing and graft forces in ACL reconstructions with the LAD[J]. Am J Sports Med ,1989,17:414-422.
    26 Kock HJ. Sturmer KM. Biocompatibility and ingrowth of Trevira prostheses following replacement of the cruciate ligaments[J]. Medical and Biological Engineering and Computing. 1992,30(4): 13-16.
    27 Steven P,Arnoczky SP,et al.Biologic fixation of ligament prostheses and augmentations ,An Evaluation of bone ingrowth in the dog[J].American Opthopaedic society for sports medicine 16(2):106-112.
    28 Schiavone Panni A, Denti M, Franzese S, Monteleone M.The bone-ligament junction: acomparison between biological and artificial ACL reconstruction[J].Knee Surg Sports Traumatol Arthrosc. 1993,1(1):9-12.
    29 McPherson GK, Mendenhall HV, Gibbons, DF,et al. Experimental mechanical and histological Evaluation of the Kennedy ligament augmentation device[J]. Clin Orthop,1985, 196: 186–195.
    30 Matsumoto H. Fujikawa K. Leeds-Keio artificial ligament:a new concept for the anterior Cruciate ligament reconstruction of the knee[J]. Keio Journal of Medicine. 2001, 50(3): 161-166.
    31 Poddevin N, King MW,Guidoin RG. Failure mechanisms of anterior cruciate ligament prostheses: in vitro wear study[J].J Bio med Mater Res,1997,38(4):370-381.
    32 Amis AA, KampsonSA. Failure mechanism of polyester fiber Anterior cruciate ligament implants:a human retrieval and laboratory study[J].Biomed Mater Res,1999,48:534-539.
    33 Frank CB, Jackson OW. The science of reconstruction of the Anterior cruciate ligament[J]. J Bone Joint Sury, 1997, 79A: 1556-1576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700