用户名: 密码: 验证码:
基于GNSS的分布式SAR卫星系统空间状态确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式SAR卫星系统采取小卫星编队飞行搭载SAR的方式,通过编队卫星与星载SAR协同工作,可实现传统单星SAR无法完成的多项测绘任务,是一种具有巨大潜力的新概念新体制雷达系统,其实现在基础理论和技术层面上面临许多挑战。其中首要问题之一就是确定卫星系统的空间状态。空间状态确定方法取决于状态测量方案、小型航天器设计等因素,服务于有效载荷任务、编队协同控制等方面。获取高精度卫星空间状态是分布式SAR任务成功实现的重要保障。出于合理有效利用未来空间资源的思想,本文探索性地开展了将多频率多星座GNSS观测数据用于分布式SAR卫星系统空间状态确定的研究。
     本文的研究工作和贡献主要体现在以下几个方面:
     第一,在明确分布式SAR卫星系统空间状态概念与模型的基础上,给出了精度需求分析与参数内在联系。通过需求分析说明了空间状态特别是相对位置确定在整个分布式SAR卫星系统中的重要地位,明确了空间状态与InSAR干涉基线在系统中的层次;分析空间状态自身特征以给出提高确定精度的思路,对分类中的绝对状态与相对状态之间的相互作用关系加以关联建模与误差分析,从而为分布式SAR卫星系统的顶层设计提供参考。
     第二,完整建立了分布式InSAR卫星系统测量基线与干涉基线的关联,实现了二者的转换与精度分析。细致分解了由测量基线获取干涉基线的全过程,将空间状态中除相对位置之外的其它参数作为影响转换流程的边界条件,明确了转换中的参数信息流程,进行了精度分析。针对非自主式测量模式,兼顾自主式测量模式,建立了从测量基线到干涉基线的空间域转换模型,对误差传播关系进行了全面系统的研究;针对测量数据采样率的不足,研究了从低数据率基线到高数据率基线的时间域转换方法,从函数逼近角度分析了基线的保精度高数据率插值方法中的逼近误差和随机误差综合影响,并考虑配准偏移量的影响,完善了由测量基线到干涉基线的转换流程。
     第三,建立了基于多频GNSS星间相对定位的节省参数样条表示模型,并提出了适合编队环境的多频GNSS整周模糊度解算方法。一方面,综合利用观测数据与待估参数的几何关系以及待估参数随历元连续变化的约束,基于函数逼近和节省参数建模理论,提出了基于多频GNSS的相对定位样条表示模型,展示了多频数据相对于双频数据、样条表示模型相对于传统逐点模型在改善星间相对位置解算精度方面的理论基础与仿真实例。另一方面,研究了GNSS相对定位中的模糊度解算这一关键问题,基于几何无关或相关模型、原始或组合观测值、搜索或序贯取整等不同条件所带来的性能差异,给出基于几何相关和整数降相关变换后取整的层叠式三频模糊度固定方法,具有在编队环境下单历元固定模糊度的性能和较好的抗差能力。
     第四,进行了基于组合GNSS的卫星空间状态确定性能评价,提出了面向分布式InSAR性能的导航卫星优选准则。定性给出了组合GNSS共用的优势;利用抗差性、载波相位整周模糊度解算成功率特别是观测几何等定量评价指标,给出了组合GNSS模式带来空间状态确定性能提高的全面仿真算例和严格理论依据。综合考虑观测数据冗余及其贡献,联合GNSS空间状态测量子系统和InSAR测高子系统,从面向高程精度重建的角度提出了新的导航卫星优选准则,在相同观测条件下可提升分布式SAR的性能。
The distributed SAR satellite system is realized by fixing the synthetic aperture radars on formation flying small satellites. Through the collaboration of the formation flying satellites and the spaceborne SAR, the system is capable of performing various surveying and mapping tasks which cannot be imagined under the conventional single satellite SAR mode. It is a kind of new conceptual radar systems with enormous potential. There are many challenges in both the basic theories and the technical level before it comes into reality. One of the most important issues is the determination of the spatial states of the satellite system. The determination method depends on several factors, such as the states measurement schemes and the small spacecraft design. It also serves the payload missions, the formation cooperative control, and so on. The acquisition of high-precision satellite spatial states is the important guarantee for the success of distributed SAR missions. Based on the idea of utilizing the future space resources properly and effectively, this dissertation tries to probe into the spatial states determination method of distributed SAR satellite system based on the multi-frequency and multi-constellation GNSS observations.
     The researches and contributions are mainly embodied in the following areas.
     Firstly, the precision requirement analysis and internal relationships of parameters are presented based on the concepts and models arrangements of the distributed SAR satellite system spatial states. The significances of the spatial states determination, especially the relative position determination are illustrated through requirement analysis of the entire distributed SAR satellite system. The levels of the spatial states and the InSAR interferometric baseline are defined in the system. The characteristics of the spatial states are analyzed to study the clues of accuracy improvement. The interactions between the absolute and relative states in the classifications are associated with modeling and error analysis. The work can offer references for the top-level design of the distributed SAR satellite system.
     Secondly, the whole relationship is established between the measurement baseline and the interferometric baseline of the distributed InSAR satellite system. The conversion and precision analysis are also carried out. The entire process from the measurement baseline to the interferometric baseline is decomposed in detail. The parameters among the spatial states, except the relative position, function as boundary conditions of the conversion. The parameters information flow and precision analysis are put forward. The conversion models in the space domain are established from the measurement baseline to the interferometric baseline. The non-autonomous measurement mode with the autonomous one is taken into account in the modeling, and comprehensive studies are performed on error propagation relationships. Due to the reality of the low measurement sampling rate, the conversion models in the time domain are established from the low rated spatial states to the high one. The precision-keeping and high-rate interpolation method for the baseline is raised and the combined influences of approximation errors and random errors are analyzed from the perspective of function approximation. The influences of coregistration offset are also taken into consideration, which makes the conversion from the measurement baseline to the interferometric baseline complete.
     Thirdly, the parameter-saving spline representation model for the inter-satellite relative positioning based on the multi-frequency GNSS is established. On the one hand, the multi-frequency GNSS ambiguity resolution methods are raised tailored for the formation flying environment. The geometric relationship between the observation data and the estimated parameters is utilized, combining with the constraint of the continuous variation of the estimated parameters with epochs. Based on the function approximation and parameter-saving modeling theory, the relative positioning spline representation model is brought forward based on multi-frequency GNSS. The theoretical basis and simulation results of the relative positioning precision improvement are presented. The advantages of multi-frequency data over dual-frequency data and the ones of spline representation model over the traditional pointwise model are shown. On the other hand, the key issue of ambiguity resolution in the GNSS relative positioning is investigated. The performance diversity introduced by different conditions is illustrated, such as the geometry-free or geometry-based model, the original or combinational observations, and searching or sequential rounding strategies. A cascade tri-frequency ambiguity fixing method is presented, based on geometry-based model and rounding following integer decorrelation transformation. It is capable of instantaneous ambiguity fixing and robust to observation errors in the formation environment.
     Finally, the evaluation for the satellite spatial states determination performances based on multi-GNSS is given, and the navigation satellites selection criteria are raised oriented the distributed InSAR performance. The advantages of integrated GNSS are presented qualitatively. The quantitative performance evaluation indices are given for the satellite spatial states determination, such as the internal and external reliability, the success rate of carrier phase integer ambiguity resolution, and the observation geometry in particular. The comprehensive simulation examples and rigid theoretical foundations for the performance enhancement are presented. The redundancy and contributions of the observation data are considered synthetically. By combing the GNSS measurement sub-system and the InSAR sub-system, a novel selection criterion for the navigation satellites is raised from the aspect of elevation accuracy inversion, and higher elevation reconstruction accuracy is achieved under the same observation conditions.
引文
[1]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究[J].中国科学(E辑), 2004, 34(6): 654-662
    [2]吴霞,郑建华.基于STK的编队飞行队形保持控制及仿真[J].计算机仿真, 2007, 24(3): 66-68
    [3]吴宝林,曹喜滨,任子武.一种长期稳定的卫星编队队形优化设计方法[J].航空学报, 2007, 28(1): 167-172
    [4] Zink M, Fiedler H, Hajnsek I, et al. The TanDEM-X Mission Concept [C]. Proc. of IGARSS 2006, 1938-1941
    [5]钟兴旺,陈豪.卫星运动对星间双向法时间同步的影响分析与校正[J].中国空间科学技术, 2007, 6: 54-58
    [6]刘洋,易东云,王正明.编队卫星的状态测量方法综述及可行的高精度星间基线测量方案研究[J].航天控制, 2006, 24(3): 65-69
    [7] Stadter P A, Chacos A A, Heins R J, et al. Confluence of navigation, communication, and control in distributed spacecraft systems [J]. IEEE AESS Systems Magazine, 2002(5): 26-32
    [8] Bamler R, Hartl P. Synthetic aperture radar interferometry [J]. Inverse Problems, 1998(14): R1-R54
    [9] Massonnet D. Capabilities and limitations of the interferometric cartwheel [J]. IEEE Trans Geoscience and Remote Sensing, 2001, 39(3): 506-520
    [10]刘宝泉,冯大政,武楠,等.基于点特征的干涉合成孔径雷达复图像自动配准算法[J].航空学报, 2007, 28(1): 161-166
    [11] Zebker H A, Werner C L, Rosen P A, et al. Accuracy of topographic maps derived from ERS-1 interferometric radar [J]. IEEE Trans Geoscience and Remote Sensing, 1994, 32(4): 823-836
    [12] Eineder M, Krieger G. Interferometric digital elevation model reconstruction - experiences from SRTM and multi channel approaches for future missions [C]. Proc. of IGARSS 2005, 2664-2667
    [13] Kohlhase A O, Kroes R, D'Amico S. Interferometric baseline performance estimations for multistatic synthetic aperture radar configurations derived from GRACE GPS observations [J]. Journal of Geodesy, 2006, 80(1): 28-39
    [14]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社, 2002
    [15]陈杰,周荫清,李春升.分布式星载干涉SAR基线设计与性能分析[J].电子学报, 2004, 32(12): 1974-1977
    [16] Sansosti E. A simple and exact solution for the interferometric and stereo SAR geolocation problem. IEEE Trans Geoscience and Remote Sensing, 2004, 42(8): 1625-1634
    [17] Knedlik S, Loffeld O, Nies H. Sensitivity of DEMs generated from interferometric cartwheel configurations [C]. 2003 IEEE: 3805-3807
    [18] Kroes R. Precise Relative Positioning of Formation Flying Spacecraft using GPS [D]. Ph.D. dissertation, Netherlands: Delft University of Technology, 2006
    [19]黄海风,梁甸农,何峰.主星带辅星编队单基线InSAR定位、测高两种方法[J].电子学报, 2005, 33(6): 1084-1087
    [20]何峰,梁甸农,刘建平.星载双基地SAR干涉测高误差分析[J].系统工程与电子技术, 2005, 27(9): 1519-1521
    [21] Bauer F H, Hartman K, How J P, et al. Enabling spacecraft formation flying through spaceborne GPS and enhanced automation technologies [C]. 1999 ION-GPS Conference, Nashville, TN, September 15, 1999
    [22] Kun Ren, V. Prinet, Xiangquan Shi, et al. Comparison of satellite baseline estimation methods for interferometry applications [C]. Proc. of IGARSS 2003, Toulouse, France
    [23] Small D, Pasquqli P, Fuglistaler S. A comparison of phase to height conversion methods for SAR interferometery [C]. Proc. of IGARSS 1996: 342-344
    [24] Impact of precise orbits on SAR interferometry [EB/OL]. Earthnet online, ESA
    [25] Liu J Y, Zhu J B, Hu Z H, et al. Error compensation and high-precision baseline estimation in InSAR geolocation using GCPs [C]. Proc. of SPIE, 6418: 64180L-1-64180L-7, 2006
    [26] Liu G X. Mapping of earth deformations with satellite SAR interferometry: a study of its accuracy and reliability Performances [D]. Ph.D. dissertation, Hong Kong: The Hong Kong Polytechnic University, 2003
    [27] Singh K, Stussi N, Keong K L, et al. Baseline estimation in interferometric SAR [C]. Proc. of IGARSS 1997, 454-456
    [28] Zheng F, Ma D, Pei H. A new baseline estimation approach based on the periodic interferometric phase [C]. Proc. of IGARSS 2004
    [29] Monti Guarnieri A, Biancardi P, D'Aria D, et al. Accurate and Robust Baseline Estimation [C]. FRINGE
    [30] Colmenarejo P, Sotto E D, Barrena V. Low-cost relative navigation sensing: GNSS-like devices hosted on deployed tethers [J]. Acta Astronautica, 2006, 59(8): 873-881
    [31] Mitchell M L. CDGPS-based relative navigation for multiple spacecraft [D]. Master Thesis, USA: Massachusetts Institute of Technology, 2004
    [32]陈谷仓,王元钦,王天祥,等.编队小卫星相对位置和相对姿态解算模型与精度分析[J].系统仿真学报, 2005, 17(11): 2600-2603
    [33] Purcell G, Kuang D, Lichten S, et al. Autonomous Formation Flyer (AFF) Sensor Technology Development [C]. TMO Progress Report 42-134, August 15, 1998
    [34] Deininger W D, Noecker M, Weimer D, et al. Space Technology Three: Mission overview and spacecraft concept description [J]. Acta Astronautica, 2003, 52: 455-465
    [35] Deininger W D, Bladt J, Carpenter B, et al. Formation flying activities and capabilities at Ball Aerospace [C]. Aerospace Conference, 2003. Proc. of IEEE: 2599-2614
    [36] Gill E, Steckling M, Butz P. Gemini: A milestone towards autonomous formation flying [C]. ESA Workshop on On-Board Autonomy, Noordwijk: ESTEC, 2001: 415-419
    [37] Gotsmann M, Steckling M, Gill E. Miniflex satellite concept for precursor and commercial missions [C]. Proc. of the 3rd IAA Symposium on Small Satellites for Earth Observation. IAA-B3-1501, Germany: Berlin, 2001: 423-427
    [38]刘洋.编队卫星的星间基线确定方法研究[D].博士学位论文.长沙:国防科技大学, 2007
    [39] Bertiger S W, et al. GRACE: millimeters and microns in orbit [C]. Proc. of ION GPS 2002, Poland, 2002: 24-27
    [40] GRACE Payload [EB/OL]. http://op.gfz-Potsdam.de/grace/payload/payload. html, 2004
    [41] Kang Z, Tapley B, Bettadpur S, et al. Precise orbit determination for GRACE using accelerometer data [J]. Advances in Space Research. 2006, 38(9): 2131-2136
    [42] Kang Z, Tapley B, Bettadpur S, et al. Precise orbit determination for the GRACE mission using only GPS data [J]. Journal of Geodesy, 2006, 80: 322-331
    [43] Steyskal H, Schindler J K, Franchi P, et al. Pattern synthesis for TechSat21 - a distributed space-based radar system [J]. IEEE Antennas and Propagation Magazine. 2003, 45(4): 19-25
    [44] Martin M, Stallard M J. Distributed satellite missions and technologies - The Techsat21 Program [C]. Proc. of the AIAA Defense and Civil Space Programs Conference and Exhibit. USA: A9942052, 1999: 28-30
    [45] AFRL Space Vehicles Directorate, TechSat-21 Program Overview [EB/OL]. http://www.vs.afrl.af.mil/factsheets/TechSat21.html, 1998
    [46] Mohammed J L. SpaceCAPS: automated mission planning for the TechSat 21 formation flying cluster experiment [J]. aaai
    [47] Sherwood R, Chien S, Burl M, et al. The Techsat-21 autonomous sciencecraft constellation demonstration.
    [48] Martin M, Klupar P, Kilberg S, et al. TechSat 21 and revolutionizing space missions using microsatellites. AIAA.
    [49] Amiot T, Krieger G, Douchin F, et al. TerraSAR-L Interferometric cartwheel: digital elevation model performance estimation [C]. Proc. of RADAR2004
    [50] Forcade J. Mission analysis and orbit control of interferometric wheel formation flying [C]. Proc. of the 18th International Symposium on Space Flight Dynamics, October 2004
    [51] Zink M, Krieger G, Amiot T. Interferometric performance of a cartwheel constellation for TerraSAR-L. Proc. of FRINGE 2003 Workshop, Frascati, Italy, 1-5 December 2003
    [52] Fiedler H, Krieger G, Jochim F, et al. Analysis of bistatic configurations for spaceborne SAR interferometry [C]. Proc. of EUSAR2002, Cologne, Germany: 29-32
    [53] Krieger G, Wendler M. Comparison of the interferometric performance for spaceborne parasitic SAR configurations [C]. Proc. of EUSAR2002. Berlin, 2002: 467-470
    [54] Amiot T, Douchin F, Thouvenot E, et al. The interferometric cartwheel: a multi-purpose formation of passive radar microsatellites [C]. IEEE 2002: 435-437
    [55] Willis P, Jayles C, Bar-Sever Y. DORIS: From orbit determination for altimeter missions to geodesy [J]. Comptes Rendus Geosciences, 2006, 338(14-15): 968-979
    [56] Krieger G, Fiedler H, Hajnsek I, et al. The TanDEM-X Mission Concept and Performance Analysis [C]. Proc. of IGARSS 2005
    [57] Krieger G, Moreira A, Hajnsek I, et al. A Tandem TerraSAR-X Configurationfor Single-Pass SAR Interferometry [C]. Proc. of RADAR2004
    [58] Moreira A, Krieger G, Hajnsek I, et al. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry. Proc. of IGARSS 2004: 1000-1003
    [59] Fiedler H, Krieger G, Jochim F, et al. Analysis of satellite configurations for spaceborne SAR Interferometry [C]. International Symposium of Formation Flying: Missions & technologies, Toulouse, October 2002
    [60] Krieger G, Moreira A. Tandem-X: mission concept, product definition and performance prediction [C]. EUSAR 2006, May 2006, Dresden Germany
    [61] Fiedler H, Krieger G. The Tandem-X mission design and data acquisition plan [C]. EUSAR 2006, May 2006, Dresden Germany
    [62] Krieger G. TanDEM-X: mission performance and product definition [C]. First TanDEM-X Science Team Meeting. 15 May 2006, Dresden
    [63] Krieger G, Moreira A, Hajnsek I, et al. The TanDEM-X mission proposal [C]. ISPRS Hannover Workshop 2005
    [64]袁建平,罗建军,岳晓奎,等.卫星导航原理与应用[M].北京:中国宇航出版社, 2003
    [65] J?ggi A, Hugentobler U, Bock H, et al. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data [J]. Advances in Space Research, 2007, 39(10): 1612-1619
    [66] Dai L W, Han S W, Rizos C. Performance analysis of integrated GPS-GLONASS carrier phase-based positioning [J]. Geo-spatial Information Science, 2001, 4(4): 9-18
    [67]夏南银.航天测控系统[M].北京:国防工业出版社, 2002
    [68]孙才红.轻小型星敏感器研制方法和研制技术[D].中国科学院博士论文, 2002
    [69] Dalla T A, Caporali A, Praticelli N, et al. Interferometric attitude and direction sensor using GPS carrier phase data [C]. Proc. of the 18th International Symposium on Space Flight Dynamic (ESA SP-548), Oct 11-15, German: Munich, 2004
    [70]屠善澄.卫星姿态动力学与控制[M].北京:宇航出版社, 2001
    [71]梁开莉,贾鑫,吴冲华.倒GPS技术在小卫星星座定轨中的应用研究[J].指挥技术学院学报, 2000, 11(4): 38-42
    [72]岳晓奎,袁建平,吴琼.伪卫星技术发展和应用综述[J].全球定位系统, 2005, 30: 47-51
    [73]杜小平,赵继广,崔占忠,等.基于计算机视觉的航天器间相对状态测量系统[J].光学技术, 2003, 29(6): 664-666
    [74] Sergey K, Sergey R, Suriya T. GLONASS as a key element of the Russian positioning service [J]. Advances in Space Research, 2007, 39(10): 1539-1544
    [75] Gunter W H. From GPS and GLONASS via EGNOS to Galileo - positioning and navigation in the third millennium [J]. GPS Solutions, 2000, 3(4): 39-47
    [76] Alvaro M-G, Esperanza H-M, Ana B M-P, et al. Galileo constellation design [J]. GPS Solutions, 2001, 4(4): 9-15
    [77] Lewis R, Kennedy M, Ghashghai E, et al. Building a multinational global navigation satellite system: an initial look [R]. 2005, ADA435665 (MG-284-AF)
    [78] Communications Research Laboratory. Quasi-Zenith Satellite System - a new satellite positioning system of Japan [C]. Proc. of 16th Meeting of CCTF, Tokyo,Japan, 2004
    [79] India Defense. Indian Regional Navigation Satellite System approved [EB/OL]. http://www.india-defence.com/reports/1894. 2006.5.9
    [80] Hewitson S, Wang J L. GNSS receiver autonomous integrity monitoring (RAIM) performance analysis [J]. GPS Solutions, 2006, 9(10): 155-170
    [81]初海彬.多种卫星导航定位系统共用关键技术研究[D].博士学位论文.哈尔滨:哈尔滨工业大学, 2004
    [82] Beidleman S W. GPS versus Galileo: balancing for position in space [R]. ADA453360, Air Univ Press, Maxwell AFB, 2006, 89 pages
    [83] Detoma E, Lisi M. Interoperability and compatibility issues for global navigation satellite systems [C]. Proc. of 18th AIAA International Communications Satellite Systems Conference, Oakland, CA, 2000, 663-669
    [84] Detoma E, Beard R L, Fruehauf H, et al. Panel discussion on GNSS interoperability [C]. 36th Annual Precise Time and Time Interval (PTTI) Meeting, 2005, 319-338
    [85] Guenter W H, Jeremie G. Status of Galileo frequency and signal design [C]. Proc. of ION GPS 2002. Portland, Oregon, 2002, 266-277
    [86]韩玲,朱文耀. Galileo系统及其在中国的应用[J].天文学进展, 2005, 23(1): 10-28
    [87]李纬,刘长征,丁辰,等. Galileo系统频率和信号设计现状[J].全球定位系统, 2003, 28(6): 1-4
    [88]华仲汉. GNSS99l6(GPS/GLONASS)接收机[J].遥测遥控, 2000, 21(5): 33-37
    [89]徐卫东. GPS+GLONASS+GALILEO三星跟踪技术[J].全球定位系统, 2006, 31(1): 16-18
    [90] Spelat M, Dovis F, Girau G., et al. A flexible FPGA/DSP board for GNSS receivers design [C]. Research in Microelectronics and Electronics 2006: 77-80
    [91] De Wilde W, Sleewaegen J-M, Simsky A, et al. Fast signal acquisition technology for new GPS/Galileo receivers [C]. 2006 IEEE ION: 1074-1079
    [92] Mattos P G. Hardware and Algorithm Implications of Adding Galileo Capability to an SPS GPS Receiver [C]. ION NTM 2007
    [93]宋长峰,滕继涛,王艳东,等. GPS/GLONASS定位仿真器的设计与实现[J].北京航空航天大学学报, 2004, 30(9): 872-875
    [94] Liu X L, Liu J N, Li T, et al. Combined software GPS/Galileo receiver and applications. International Conference on Space Information Technology [C]. 2005, Proc. of SPIE, 5985: 598552-1-8
    [95] Le A Q, Tiberius C. Single-frequency precise point positioning with optimal filtering [J]. GPS Solutions, 2006, DOI 10.1007/s10291-006-0033-9
    [96] Wu S C, Yunck T P, Thornton C L. Reduced-dynamic technique for precise orbit determination of low earth satellites [J]. Journal of Guidance, Control, and Dynamics, 1991, 14(1): 24-30
    [97] Svehla D, Rothacher M. Kinematic and reduced-dynamic precise orbit determination of low earth orbiters [J]. Advances in Geosciences, 2003, (1): 47-56
    [98] Oscar L C, Scott B L. Kinematic point positioning of a LEO with simultaneous reduced-dynamic orbit determination [C]. Proc. of Institute of Navigation GNSS2004 meeting, Long Beach, California, 2004
    [99] Montenbruck O, Van H T, Kroes R, et al. Reduced dynamic orbit determinationusing GPS code and carrier measurements [J]. Aerospace Science and Technology, 2005, 9: 261-271
    [100]刘基余. GPS卫星导航定位原理与方法[M].北京:科学出版社, 2003. 1-46
    [101] Kroes R, Montenbruck O, Bertiger W, et al. Precise GRACE baseline determination using GPS [J]. GPS Solutions, 2005, 8(9): 21-31
    [102] Park C W. Precise relative navigation using augmented CDGPS [D]. Ph.D. dissertation, USA: Stanford University, 2001
    [103]王正明,易东云.测量数据建模与参数估计[M].长沙:国防科技大学出版社, 1996: 15-17
    [104]谷德峰,易东云,聂鹏程,等.基于样条模型的高精度星间相对定位与定姿[J].宇航学报, 2006, 27(3): 442-447
    [105]刘洋,易东云,王正明,等.基于双频GPS观测信息和星间距离测量的高精度星间相对定位方法[J].宇航学报, 2007, 28(2): 315-321
    [106]韩崇昭,朱洪艳,段战胜,等.多源信息融合[M].北京:清华大学出版社, 2006: 2-3
    [107]刘广军.组合导航系统的数据处理与仿真[D].博士学位论文.郑州:信息工程大学, 2002
    [108] Rao N S V. On fusers that perform better than best sensor [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2001, 23(8): 904-909
    [109] Wang W, Liu Z Y, Xie R R. Quadratic extended Kalman filter approach for GPS/INS integration [J]. Aerospace Science and Technology, 2006, 10(8): 709-713
    [110] O'Keefe K. Availability and reliability advantages of GPS/Galileo integration [C]. Proc. of ION GPS 2001, Salt Lake City, UT, 2001, 2096-2104
    [111] DeRidder J-J, Legenne J, Bousquet M. Performance of satellite navigation systems in urban areas with augmentations [C]. Proc. of 21st AIAA International Communications Satellite Systems Conference, Yokohama, Japan, 2003
    [112] O'Keefe K, Julien O, Cannon M E, et al. Availability, accuracy, reliability, and carrier-phase ambiguity resolution with Galileo and GPS [J]. Acta Astronautica, 2006, 58(8): 422-434
    [113]滕宇. GPS/GLONASS共用关键问题研究[D].硕士学位论文,哈尔滨:哈尔滨工业大学, 2004
    [114]王泽民,孟泱,伍岳,等. GPS、Galileo及其组合系统导航定位的DOP值分析[J].武汉大学学报?信息科学版, 2006, 31(1): 9-11,38
    [115]李建文,郝金明,李军正,等. GPS/GLONASS载波相位测量模糊度解算方法[J].测绘学院学报, 2004, 21(3): 163-165
    [116]李克昭,袁建平,岳晓奎,等. Galileo系统对卫星导航系统的增强作用[J].飞行力学, 2005, 23(3): 89-92
    [117] Tiberius C, Pany T, Eissfeller B, et al. 0.99999999 confidence ambiguity resolution with GPS and Galileo [J]. GPS Solutions, 2002, 5(6): 96-99
    [118]赵春梅,欧吉坤,文援兰.基于GALILEO及GPS-GALILEO组合系统的仿真分析[J].系统仿真学报, 2005, 17(4):1008-1011
    [119]赵春梅,欧吉坤,袁运斌.基于单点定位模型的GALILEO及GPS-GALILEO组合系统的定位精度和可靠性的仿真分析[J].科学通报, 2005, 50(8): 811-819
    [120] Ochieng W Y, Sheridan K F, Sauer K, et al. An assessment of the RAIM performance of a combined Galileo/GPS navigation system using the marginally detectable errors (MDE) algorithm [J]. GPS Solutions, 2002, 5(3): 42-51
    [121] Chao C C, Gick R A. Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO [J]. Advances in Space Research, 2004, 34(5): 1221-1226
    [122] Bruyninx C. Comparing GPS-only with GPS + GLONASS positioning in a regional permanent GNSS network [J]. GPS Solutions, 2007, 11(2): 97-106
    [123] Melbourne W G. The case for ranging in GPS-based geodetic systems [C]. Proc. of the 1st International Symposium on Precise positioning with the Global Positioning System. Rockville, Maryland, 1985, 373-386
    [124] Wübbena G. Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements [C]. Proc. of the 1st International Symposium on Precise positioning with the Global Positioning System, Rockville, Maryland, 1985, 403-412
    [125] Teunissen P J G. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation [J]. Journal of Geodesy, 1995, 70(1): 65-82
    [126]欧吉坤,王振杰.单频GPS快速定位中模糊度解算的一种新方法[J].科学通报, 2003, 48(24): 2572-2575
    [127] Joosten P, Teunissen P J G, Jonkman N. GNSS three carrier phase ambiguity resolution using the LAMBDA-method [C]. GNSS'99, Genova, 1999, 367-372
    [128] Martín-Neira M, Toledo M, Pelaez A. The Null space method for GPS integer ambiguity resolution [C]. Proc. DSNS-95, Bergen, 1995, paper no. 31
    [129] Fernández-Plazaola U, Martín-Guerrero T M, Entrambasaguas-Mu?oz J T, et al. The Null method applied to GNSS three-carrier phase ambiguity resolution [J]. Journal of Geodesy, 2004, 78(1): 96-102
    [130] Fernández-Plazaola U, Martín-Guerrero T M, Entrambasaguas J T. A new method for three-carrier GNSS ambiguity resolution [J]. Journal of Geodesy, 2008, 82(4): 269-278
    [131] Vollath U. The factorized multi-carrier ambiguity resolution (FAMCAR) approach for efficient multi-carrier ambiguity estimation [C]. Proc. of ION GNSS04, Long Beach, 2004
    [132] Feng Y M. GNSS three carrier phase ambiguity resolution using ionosphere-reduced virtual signals [J]. Journal of Geodesy, 2008, in press, DOI 10.1007/s00190-008-0209-x
    [133] Manuel H-P, Zornoza J M J, Subirana J S, et al. Feasibility of wide-area subdecimeter navigation with GALILEO and modernized GPS [J]. IEEE Trans Geoscience and Remote Sensing, 2003, 41(9): 2128-2131
    [134] Werner W, Winkel J. TCAR and MCAR options with Galileo and GPS [C]. Proc. of ION GPS/GNSS, Portland, OR, 2003: 790-800
    [135] Teunissen P J G, Odijk D. Rank-defect integer estimation and phase-only modernized GPS ambiguity resolution [J]. Journal of Geodesy. 2003, 76(9-10): 523-535
    [136]王泽民,柳景斌. Galileo卫星定位系统相位组合观测值的模型研究[J].武汉大学学报?信息科学版, 2003, 28 (6): 723-727
    [137]伍岳.第二代导航卫星系统多频数据处理理论及应用[D].博士学位论文.武汉:武汉大学, 2005
    [138]常青,易冰歆,张其善,等. Galileo系统与GPS卫星定位系统相位组合观测值的模型研究[J].空间科学学报, 2007, 27(1): 77-82
    [139] Richert, T, N El-Sheimy. Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems [J]. GPS Solutions, 2007, 11(1): 11-19
    [140] Ji S Y, Chen W, Zhao C M, et al. Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods [J]. GPS Solutions, 2007, in press, DOI 10.1007/s10291-007-0057-9
    [141] Odijk D, Teunissen P J G. ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models [J]. Journal of Geodesy, 2008, in press, DOI 10.1007/s00190-007-0197-2
    [142] Formation flying: The afternoon "A-Train" satellite constellation[R]. NASA Facts:The Earth Science Enterprise Series. FS-2003-1-053-GSFC. Mar.2003, 1-6
    [143]张玉锟,戴金海.卫星编队飞行的地球扁率摄动分析[J].宇航学报, 2002, 23(3):73-76
    [144]杨颖,王琦. STK在计算机仿真中的应用[M].北京:国防工业出版社, 2005
    [145] Liebe C C. Accuracy performance of star trackers - A tutorial [J]. IEEE Trans Aerospace and Electronic Systems, 2002, 38(2): 587-599
    [146]林玉荣,邓正隆.基于星敏感器估计卫星姿态的预测Kalman滤波算法[J].中国科学(E辑), 2002, 32(6): 817-823
    [147]刘一武,陈义庆.星敏感器测量模型及其在卫星姿态确定系统中的应用[J].宇航学报, 2003, 24(2): 162-167
    [148]程英容,张奕群.一种双星定姿方法的误差分析[J].航天控制, 2005, 23(1): 23-26
    [149]田宏.影响星敏感器姿态计算精度的因素分析[J].导航与航天运载技术. 2004(5): 14-17
    [150]杨大明.空间飞行器姿态控制系统[M].哈尔滨:哈尔滨工业大学出版社, 2000
    [151]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003: 57-73; 256-259
    [152]武汉大学测绘学院测量平差学科组,误差理论与测量平差基础[M].武汉:武汉大学出版社, 2003
    [153]刘林.航天器轨道理论[M].北京:国防工业出版社, 2000
    [154]周忠谟,易杰军,周琪. GPS卫星测量原理与应用.第2版(修订本)[M].北京:测绘出版社, 1997: 138-139, 148-150
    [155]刘洋,易东云,王正明.地心惯性坐标系到质心轨道坐标系的坐标转换方法[J].航天控制, 2007, 25(2): 4-8
    [156]范建军,王飞雪. GPS接收机天线相位中心变化对基线解的影响[J].宇航学报, 2007, 28(2): 298-304
    [157] Schmid R, Steigenberger P, Gendt G, et al. Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas [J]. Journal of Geodesy, 2007, 81(12): 781-798
    [158]刘洋,王正明,易东云.分布式SAR空间状态与测高基线的关联建模及误差分析[J].系统仿真学报, 2007, 19(15): 3468-3472
    [159]李庆扬,易大义,王超能.现代数值分析[M].北京:高等教育出版社, 1995: 22-26
    [160] GPS Antenna Calibration-Calibrated Antennas: Trimble Antennas [EB/OL]. http://www.ngs.noaa.gov/cgi-bin/query_cal_antennas.prl?Model=TRM&Antenna=TRM5800. 2007
    [161]范国清,王威,郗晓宁.联合CDGPS技术和星间相对测量进行编队星座状态确定[J].空间科学学报, 2005, 5(3): 218-223
    [162]胡利民,王威,郗晓宁. GPS和类GPS测距技术在双星编队星座状态确定中的联合应用[J].空间科学学报, 2006, 26(3): 197-202
    [163]李征航,赵晓峰,蔡昌盛.利用双频GPS观测值建立电离层延迟模型[J].测绘信息与工程, 2003, 28(1): 41-44
    [164] Brunner F K, Gu M. An improved model for the dual frequency ionospheric correction of GPS observations [J]. Manuscripta Geodetica, 1991, 16: 205-214
    [165]伍岳,孟泱,王泽民,等. GPS现代化后电离层折射误差高阶项的三频改正方法[J].武汉大学学报?信息科学版, 2005, 30(7): 601-603,608
    [166] Blewitt G. An automatic editing algorithm for GPS data [J]. Geophysical Research Letters, 1990, 17(3): 199-202
    [167]郑作亚,程宗颐,黄珹,等.对Blewitt周跳探测与修复方法的改进[J].天文学报, 2005, 46(2): 216-224
    [168] Park C W, How J P, Capots L. Sensing technologies for formation flying spacecraft in LEO using CDGPS and an inter-spacecraft communication system[C]. ION GPS 2000, 1595-1607
    [169]赵春梅,欧吉坤.星载GPS低轨卫星跟踪数据的建模与仿真[J].系统仿真学报, 2004, 16(6): 1132-1134, 1138
    [170] Mohino E, Gende M, Brunini C, et al. SiGOG: simulated GPS observation generator [J]. GPS Solutions, 2005, 8(9): 250-254
    [171] Teunissen P J G. An optimality property of the integer least squares estimator [J]. Journal of Geodesy, 1999, 73(11): 587-593
    [172] Teunissen P J G. The GPS integer least-squares statistics [J]. Phys. Chem. Earth, 2000, 25(9-11): 613-617
    [173] Verhagen S. Integer ambiguity validation: an open problem? [J]. GPS Solutions, 2004, 8(1): 36-43
    [174] Verhagen S, Teunissen P J G. On the probability density function of the GNSS ambiguity residuals [J]. GPS Solutions, 2006, 10(1): 21-28.
    [175]范建军,王飞雪.基于几何无关模型的GNSS三频模糊度解算方法研究.宇航学报, 2007, 28(6): 1593-1599
    [176] Zhang W T. Triple frequency cascading ambiguity resolution for modernized GPS and GALILEO [R]. UCGE Report, Number 20228, 2005
    [177] Verhagen S, Joosten P. Algorithm for design computations for integrated GPS-Galileo [C]. Proc. ION GNSS 2003, Portland OR, September 9-12
    [178] Teunissen P J G. Integer least-squares statistics for three frequency GPS/GNSS ambiguity resolution [C]. Proc. of 18th AIAA International Communications Satellite Systems Conference, Oakland, CA, 2000, 838-846
    [179] Liu G C. Ionosphere weighted global positioning carrier phase ambiguity resolution [D]. Master Thesis, Canada: University of Calgary, 2001
    [180] Zhu J J. Calculation of Geometric Dilution of Precision [J]. IEEE Trans Aerospace and Electronic Systems, 1992, 28(3): 893-895
    [181]郑作亚,黄珹,冯初刚,等. 4颗卫星情况的几何优化法修正[J].天文学报, 2003, 44(3): 310-317
    [182]蒋虎,李国通,余金培. GALILEO卫星导航和定位系统PDOP仿真[J].天文研究与技术(国家天文台台刊), 2006, 3(3): 258-263
    [183]王党卫,贾长江.多卫星组合系统研究[J].导航, 2006,(2): 17-26
    [184]帅平,曲广吉.卫星导航定位方程的病态条件[J].飞行器测控学报, 2006, 25(1): 1-5
    [185]丛丽, Ahmed I Abidat,谈展中.卫星导航几何因子的分析和仿真[J].电子学报, 2006, 34(12): 2204-2208
    [186] Nielsen R O. Relationship between dilution of precision for point positioning and for relative positioning with GPS [J]. IEEE Trans Aerospace and Electronics Systems, 1997, 33(1): 333-338
    [187] Teunissen P J G. A proof of Nielsen's conjecture on the GPS dilution of precision [J]. IEEE Trans Aerospace and Electronics Systems, 1998, 34(2): 693-695
    [188] Park C. Comments on "Relationships between dilution of precision for point positioning and for relative positioning with GPS" [J]. IEEE Trans Aerospace and Electronics Systems, 2000, 36(1): 315-316
    [189] Jow D J, Lai C C. Neural network-based GPS GDOP approximation and classification [J]. GPS Solutions, 2007, 10(11): 51-60
    [190]许国志,顾基发,车宏安,等.系统科学[M].上海:上海科技教育出版社, 2000
    [191] Zhang Y J, Liu J N. Combined GPS/GLONASS Data Processing [J]. Geo-spatial Information Science, 2002, 5(4):32-36
    [192] Wang J L, Rizos C, Stewart M P, et al. GPS and GLONASS integration: modeling and ambiguity resolution issues [J]. GPS Solutions, 2001, 4(1): 55-64
    [193]高星伟,李毓麟,葛茂荣. GPS/GLONASS相位差分的数据处理方法[J].测绘科学, 2004, 29(2): 22-24
    [194]袁运斌,霍星亮,欧吉坤.精确求定GPS信号的电离层延迟的模型与方法研究[J].自然科学进展, 2006, 16(1): 40-48
    [195]张东和,萧佐.利用GPS计算TEC的方法及其对电离层扰动的观测[J].地球物理学报, 2000, 43(4): 451-458
    [196] Eberhard O. Ionospheric error removal in the positioning of LEO satellites based on low cost GPS receivers [C]. The 16th International Symposium on Spaceflight Dynamics, Pasadena, 2001: 1-3
    [197] Bilitza D. 35 years of International Reference Ionosphere - Karl Rawer's legacy [J]. Advances in Radio Science, 2004, 2: 283-287
    [198]刘俊,张思东,张宏科. GPS系统建模与仿真技术研究[J].系统仿真学报, 2001, 13(3): 329-330
    [199]帅平,陈定昌,江涌. GPS广播星历误差及其对导航定位精度的影响[J].数据采集与处理, 2004, 19(1): 107-110
    [200] Liu X. A comparison of stochastic models for GPS single differential kinematic positioning [C]. Proc. of ION GPS 2002, Portland, 2002: 1830-1841

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700