用户名: 密码: 验证码:
羟基喜树碱联合靶向Smac基因对前列腺癌细胞凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分前列腺特异性抗原启动子/增强子的克隆及重组质粒的构建和鉴定
     目的:利用前列腺特异性抗原(PSA)组织特异性表达的特点,克隆出其上游增强子(PSAE)和启动子(PSAP)片断并对其表达效率和组织特异性表达进行初步研究。
     方法:从前列腺癌组织提取基因组DNA,并采用PCR方法分别扩增PSA增强子和启动子序列;利用报告基因pEGFP-1,分别构建含不同调控序列的表达载体;脂质体介导基因转染不同细胞并观察绿色荧光蛋白(GFP)的表达情况。
     结果:成功构建质粒pPSAE-EGFP、pPSAP-EGFP、pPSAE-PSAP-EGFP;转染结果显示pPSAE-PSAP-EGFP在前列腺癌细胞PC-3中的荧光强度明显高于pPSAP-EGFP,pPSAE-EGFP同样观察到荧光表达,说明PSA增强子能显著提高PSA启动子的转录能力,并可能具有单独调控基因表达的能力。
     结论:PSA增强子和启动子的共同调控可以提高基因表达的有效性和细胞特异性,为前列腺癌的临床基因治疗提供实验依据。羟基喜树碱;;前列腺肿瘤;;凋亡;;化疗
     第三部分HCPT联合Smac基因对前列腺癌PC-3细胞的促凋亡作用
     目的:利用PSA增强子、启动子构建携带Smac基因、人PSAE/PSAP调控的前列腺特异性真核表达载体,并联合低剂量HCPT,观察其对前列腺癌PC-3细胞的促凋亡作用。
     方法:分子生物学方法构建重组真核表达载体;脂质体介导Smac基因转染前列腺癌PC-3细胞,并联合应用低剂量HCPT促进凋亡,台盼蓝染色观察细胞活性,MTT比色分析检测癌细胞抑制率,流式细胞术检测细胞凋亡,逆转录聚合酶链反应检测Smac、XIAP、caspase-3的表达。
     结果:成功构建由人PSAE-PSAP调节的含Smac基因的重组载体pPSAE-PSAP-Smac;在转染pPSAE-PSAP-Smac的细胞中,只有PC-3细胞观察到明显抑制(P<0.05)。RT-PCR检测发现转染Smac基因后,Smac mRNA表达水平明显增加(P<0.05),PSAE-PSAP调节的Smac的表达也高于CMV启动子调控的Smac表达(P<0.05)。另外XIAP的表达水平在转染Smac及联合化疗药物后分别降低67.53%和76.95% (P<0.01);而caspase-3 mRNA的含量分别是正常对照的3.94倍和4.31倍(P<0.01)。MTT法检测发现,HCPT和Smac基因对细胞均有抑制作用;HCPT组、pPSAE-PSAP-Smac组、HCPT+ pPSAE-PSAP-Smac组的细胞抑制率分别为25.39%、30.76%、70.91%。流式细胞仪检测显示转染组在加入HCPT后,细胞的凋亡率明显增加,较HCPT组和pPSAE-PSAP-Smac组分别增加22.84 %和20.02 % (P<0.01)。
     结论: Smac在癌细胞中的活化表达可以明显增强细胞在刺激信号下的凋亡,其作用机理是通过抑制凋亡抑制蛋白IAPs,解除了对凋亡下游效应半胱氨酸蛋白酶caspase的抑制活性。在与低剂量HCPT联合作用于PC-3细胞时,更能显著增加细胞凋亡率。
PART 1 Construction and Identification of Recombinant Plasmids with Prostate-Specific Antigen Enhancer and Promoter in Gene Expression Regulation
     OBJECTIVE: To study the expression efficiency and specificity of prostate specific antigen (PSA) enhancer/promoter in a possible targeted gene therapy scheme for prostate cancer.
     METHODS: Genomic DNA was obtained from prostate cancer tissues. PSA enhancer and promoter sequences were amplified using PCR method, then the two fragments were cloned into plasmid pEGFP-1 to construct the expression vectors. After transfecting into different cell lines, the expression status was observed in fluorecent microscopic examination method.
     RESULTS: The recombinant plasmids (pPSAE-EGFP, pPSAP-EGFP and pPSAE-PSAP-EGFP) were successfully constructed. In prostate cancer cell PC-3, pPSAE-PSAP-EGFP expressed more GFP than pPSAP-EGFP and the green fluorescence was also observed in pPSAE-EGFP, which showed that PSA enhancer not only could notably increase the transcription efficiency of PSA promoter but also has modulating ability singly used.
     CONCLUSION: The expression efficiency and specificity of gene could be inreased by PSA enhancer/promoter combination which should provide trial evidences for clinical gene therapy of prostate cancer.
     PART 2 Study of Hydroxycamptothecin Promoting Apoptosis of Prostate Cancer Cell Line PC-3
     OBJECTIVE: To observe the effects of hydroxycamptothecin (HCPT) on the apoptosis of prostate cancer cell line PC-3 and to explore the possible mechanisms.
     METHODS: The influence of different concentrations (1×10-1, 1×10-2, 1×10-3, 1×10-4 mg/ml) of HCPT on PC-3 cells proliferation at different time (12, 24, 48 h) was assayed respectively by tetrazolium (MTT) assay. The morphologic changes of apoptosis cells were observed by acridine orange/ethidium bromide dyeing. The DNA of apoptotic cells were analyzed with agarose gel electrophoresis. The apoptosis ratios of HCPT on prostate cacer cells were analyzed with flow cytometry (FCM).
     RESULTS: The growth of PC-3 was inhibited by HCPT in time and dose dependence. The values of IC50 were 6.50×10-2 mg/ml (12 h), 2.35×10-2 mg/ml (24h) and 5.31×10-3 mg/ml (48h) respectively. The typical apoptosis cells in fluorescence microscope showed budding phenomena and apoptotic body. And the DNA ladder was observed in ultraviolet light. FCM analysis exhibited that the apotosis ratios of PC-3 cells were distributed in peak shape which reached the maximal point (35.76 %) at 1×10-3 mg/ml.
     CONCLUTION: HCPT could suppress PC-3 cells proliferation significantly in different ways. However, the mechanism is not clear and need further studies.
     PART 3 Study on the Influence of Hydroxycamptothecin and Smac Gene Regulated by the Prostate Specific Antigen Promoter/Enhancer on PC-3
     OBJECTIVE: To construct an eukaryotic expression vector containing Smac gene controlled by human prostate-specific antigen enhancer/promoter and observe the effect of apoptosis induced by recombinant plasmid and low dose hydroxycamptothecin.
     METHODS: Construct the recombinant vector with molecular biology technique. After transfection into prostate cancer cell line PC-3 and adding low dose HCPT, the status of cells was observed. And then, the in vitro cellular growth activities were assayed by MTT colorimetry and the apoptosis was measured by flow cytometry. Cellular Smac gene, XIAP gene, and caspase-3 gene expression were determined by reverse transcription-polymerase chain reaction.
     RESULTS: The recombinant plasmid of pPSAE-PSAP-Smac was successfully constructed. And only the prostate cancer cell line PC-3 was suppressed after transfection with pPSAE-PSAP-Smac (P<0.05). RT-PCR results showed that Smac mRNA levels were significantly increased (P<0.05) and the expression of Smac regulated by PSA promoter/enhancer was higher comparing to the CMV promoter-driven control vectors (P<0.05). Moreover, we also found that the expression of XIAP in pPSAE-PSAP-Smac group and (HCPT+ pPSAE-PSAP-Smac) group were decreased 67.53% and 76.95% respectively comparing to normal group. However, caspase-3 mRNA levels were as much as 3.94 folds and 4.31 folds comparing to normal control. The growth inhibition rates of PC-3 cells treated with HCPT, pPSAE-PSAP-Smac and (HCPT+ pPSAE-PSAP-Smac) were 25.39%, 30.76% and 70.91% respectively. The cellular apoptosis rates in (HCPT+ pPSAE-PSAP-Smac) group were increased by 22.84 % and 20.02 % (P < 0.01) respectively compared with HCPT group and pPSAE-PSAP-Smac group.
     CONCLUTION: An expression vector containing Smac gene based on elements of the PSA gene regulatory sequences has been developed and shown to function in prostate cancer cell lines. The Smac can inhibit IAPs and enhance caspase activity. Even more, it also increases the apoptosis rate companied with low dose HCPT which provides a solid platform for prostate cancer therapy.
引文
1.叶定伟,李长岭.前列腺癌发病趋势的回顾和展望.中国癌症杂志, 2007, 17(3): 177-180.
    2.叶定伟.前列腺癌的流行病学和中国的发展趋势.中华外科杂志, 2006, 44(6): 362-364.
    3.吴阶平,顾方六,郭应禄等.吴阶平泌尿外科学,第2版,山东,山东科学技术出版社, 2004年, 1083-1089.
    4.张海梁,叶定伟.雄激素抵抗性前列腺癌的化疗.中华泌尿外科杂志, 2005, 26(6): 428-430.
    5.朱耀,叶定伟.局部高危前列腺癌的新辅助化疗.中华泌尿外科杂志, 2006, 27(9): 641-643.
    6. Hussain M, Smith DC, El-Rayes BF, et al. Neoadjuvant docetaxel and estramustine chemotherapy in high-risk/locally advanced prostate cancer. Urology, 2003, 61(4): 774-780.
    7. Pettaway CA, Pisters LL, Troncoso P, et al. Neoadjuvant chemotherapy and hormonal therapy followed by radical prostatectomy: feasibility and preliminary results. J Clin Oncol, 2000, 18(5): 1050-1057.
    8. Harrington KJ, Spitzweg C, Bateman AR, et al. Gene therapy for prostate cancer: current status and future prospects. J Urol, 2001, 166(4): 1220-1233.
    9. Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 2000, 102(1):33-42.
    10. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 2000, 102(1):43-53.
    11. Debes JD, Tindall DJ. Mechanisms of androgen-refractory prostate cancer. NEngl J Med, 2004, 351(15):1488-1490.
    12. Balk SP, Ko YJ, Bubley GJ. Biology of prostate-specific antigen. J Clin Oncol, 2003, 21(2): 383-391.
    13. J萨姆布鲁克, DW拉塞尔.分子克隆实验指南,第3版,北京,科学出版社, 2002年.
    14.卢圣栋,马清钧,刘德培等.现代分子生物学实验技术,第2版,北京,中国协和医科大学出版社, 1999年.
    15. http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=1019900
    16.司徒镇强,吴军正,刘斌等.细胞培养,第1版,西安,世界图书出版社, 2004年.
    17.阳东荣,陈昭典,单玉喜.前列腺特异性抗原的功能研究进展.国外医学泌尿系统分册, 2003, 23(5): 492-493.
    18. Diamandis EP, Yu H. Nonprostatic sources of prostate-specific antigen. Urol Clin North Am, 1997, 24(2): 275-282.
    19. Black MH, Diamandis EP. The diagnostic and prognostic utility of prostate specific antigen for diseases of the breast. Breast Cancer Res Treat, 2000, 59(1): 1-14.
    20. Yu H, Diamandis EP, Levesque M, et al. Prostate specific antigen in breast cancer, benign breast disease and normal breast tissue. Breast Cancer Res Treat, 1996, 40(2): 171-178.
    21. Yousef GM, Diamandis EP. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocrine Reviews, 2001, 22(2): 184-204.
    22.凌世淦,马贤凯.前列腺特异性抗原生物学特性研究进展.国外医学泌尿系统分册, 1997, 17(6): 245-248.
    23. Lilja H. Significance of different molecular forms of serum PSA. The free, noncomplexed form of PSA versus that complexed to alpha 1 antichymotrypsin. Urol Clin North Am, 1993, 20(4): 681-686.
    24. Lilja H. Biology of prostate-specific antigen. Urology, 2003, 62(Suppl 5A): 27–33.
    25.曹琦珍,谭焕然. PSA基因转录调控的研究进展.国外医学泌尿系统分册. 2000, 20(Suppl): 97-98.
    26. Hsieh JT, Wu HC, Gleave ME, et al. Autocrine regulation of prostate specific antigen gene expression in a human prostatic cancer (LNCaP) subline. Cancer Res, 1993, 53(12): 2852-2857.
    27.王健,周建光,黄翠芬. PSA启动子结构和表达调控研究进展.遗传, 2004, 26(5): 739-744.
    28. Riegman PH, Vlietstra RJ, van der Korput JA, et al. The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol, 1991, 5(12): 1921-1930.
    29. Luke MC, Coffey DS. Human androgen receptor binding to the androgen response element of prostate specific antigen. J Androl, 1994, 15(1): 41-51.
    30. Cleutjens KB, van der Korput HA, van Eekelen CC, et al. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol, 1997, 11(2): 148-161.
    31. Schuur ER, Henderson GA, Kmetec LA, et al. Prostate-specific antigen expression is regulated by an upstream enhancer. J Biol Chem, 1996, 271(12): 7043
    32. Shin T, Sumiyoshi H, Matsuo N, et al. Sp1 and Sp3 transcription factors upregulate the proximal promoter of the human prostate-specific antigen gene in prostate cancer cells. Arch Biochem Biophys, 2005, 435(2): 291-302.
    33. Zhang S, Murtha PE, Young CY. Defining a functional androgen responsive element in the 5’-far upstream flanking region of the prostate specific antigen gene. Biochem Biophys Res Commun, 1997, 231 (3): 784-788.
    34. Lu Y, Carraeher J, Zhang Y, et al. Delivery of adenoviral vectors to the prostate for gene therapy. Cancer Gene Ther, 1999, 6(1): 64-72.
    35. Farmer G, Connolly ES Jr, Mocco J, et al. Molecular analysis of the prostate-specific antigen upstream gene enhancer. Prostate, 2001, 46(1): 76-85.
    36. Perez-Stable CM, Pozas A, Roos BA. A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer. Mol Cell Endocrinol, 2000, 167(1-2): 43-53.
    37. Oettgen P, Finger E, Sun Z, et al. PDEF, a novel prostate epithelium specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem, 2000, 275(2): 1216-1225.
    38. Sadar MD, Hussain M, Bruchovsky N. Prostate cancer: molecular biology of early progression to androgen independence. Endocr Relat Cancer, 1999, 6(4): 487-502.
    39. So A, Gleave M, Hurtado-Col A, et al. Mechanisms of the development of androgen independence in prostate cancer. World J Urol, 2005, 23(1): 1-9.
    40. Bostwick DG, Shan A, Qian J, et al. Independent origin of multiple foci of prostatic intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. Cancer, 1998, 83(9):1995-2002.
    41. Craft N, Chhor C, Tran C, et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res, 1999, 59(19): 5030-5036.
    42. Ettinger SL, Sobel R, Whitmore TG, et al. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res, 2004, 64(6): 2212-2221.
    43. Edwards J, Krishna NS, Grigor KM, et al. Androgen receptor gene amplificationand protein expression in hormone refractory prostate cancer. Br J Cancer, 2003, 89(3): 552-556.
    44. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to anti-androgen therapy. Nat Med, 2004, 10(1): 33-39.
    45. Feldman BJ, Feldman D. The development of androgen independent prostate cancer. Nat Rev Cancer, 2001, 1(1): 34-45.
    46.王小慧,于小玲,谢靖等. 45例人前列腺癌雄激素受体基因B-H外显子的突变研究.中国病理生理杂志, 2000, 16(1): 8-11.
    47. Wilson CM, McPhaul MI. A and B forms of the androgen receptor are present in human genital skin fibroblasts. Proc Natl Acad Sci USA, 1994, 91(4): 1234-1238.
    48. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocrine Reviews, 2004, 25(2): 276-308.
    49.方习武,夏术阶,唐孝达.雄激素受体在人类前列腺癌发展中的作用研究.中国病理生理杂志, 2004, 20(7): 1275-1279.
    50. Klee GG, Goodmanson MK, Jacobsen SJ, et al. Highly sensitive automated chemiluminometric assay for measuring free human glandular kallikrein-2. Clin Chem, 1999, 45(6 Pt 1): 800-806.
    51. Culig Z, Hobisch A, Cronauer MV, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res, 1999, 54(20): 5474-5478.
    52. Liu Y, Majumder S, McCall W, et al. Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer. Cancer Res, 2005, 65(8): 3404-3409.
    53. Sato M, Johnson M, Zhang L et al. Functionality of androgen receptor based gene expression imaging in hormone refractory prostate cancer. Clin Cancer Res, 2005, 11(10): 3743-3749.
    54. Yeung Fan, Xiaoyan Li, Ellett Justin, et al. Regions of Prostate-specific Antigen (PSA) promoter confer androgen-independent expression of PSA in prostate cancer cells. J Biol Chem, 2000, 275(52): 40846-40855.
    55. Gilligan T, Kantoff PW. Chemotherapy for prostate cancer. Urology, 2002, 60(3Suppl1): 94-100.
    56.潘显道,王存英.天然抗肿瘤药喜树碱衍生物的研究进展.药学学报, 2003, 38(9): 715-720.
    57.宋云龙,张万年,季海涛等. DNA拓扑异构酶1结构、功能及喜树碱类抗癌药物研究进展.中国药学杂志, 2002, 9(37): 646-650.
    58.曾云,周黎明.喜树碱类药物作用机制及其耐药现状的研究进展.四川生理科学杂志, 2007, 29(1): 31-33.
    59. Wang JC. DNA topoisomerases. Annu Rev Biochem, 1996, 65: 635-692.
    60. Stewart L, Ireton GC, Champoux JJ, et al. The domain organization of human topoisomerase I. J Biol Chem, 1996, 271(13): 7602-7608.
    61. Ulukan H, Swaan PW. Camptothecins: A review of their chemotherapeutic potential. Drugs, 2002, 62(14): 2039-2057.
    62. Liu LF, Desai SD, Li TK, et al. Mechanism of action of camptothecin. Ann N Y Acad Sci, 2000, 922(1): 1-10.
    63.王磊,李玉艳,尤启冬. DNA拓扑异构酶1抑制药—抗肿瘤药喜树碱类衍生物的研究进展.中国药师, 2003, 6(7): 402-405.
    64. Tsao YP, Russo A, Nyamuswa G, et al. Interaction between replication forks and TopoIsomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Cancer Res, 1993, 53(24): 5908-5914.
    65. Laco GS, Collins JR, Luke BT, et al. Human topoisomerase I inhibition: docking camptothecin and derivatives into a structure-based active site model. Biochemistry, 2002, 41(5): 1428-1435.
    66. Lansiaux A, Facompre M, Wattez N, et al. Apoptosis induced by thehomocamptothecin anticancer drug BN80915 in HL260 cells. Mol Pharmacol, 2001, 60(3): 450-461.
    67. Feng LF, Zhong M, Lei XY, et al. Bcl-2 siRNA induced apoptosis and increased sensitivity to 5-fluorouracil and HCPT in HepG2 cells. J Drug Target, 2006, 14(1): 21-26.
    68. Gilligan T, Kantoff PW. Chemotherapy for prostate cancer. Urology, 2002, 60(3Suppl1): 94-100.
    69. Costa-Pereira AP, McKenna SL, Cotter TG. Activation of SAPK/JNK by camptothecin sensitizes androgen-independent prostate cancer cells to Fas-induced apoptosis. Br J Cancer, 2000, 82(11): 1827-1834.
    70. Arah IN, Song K, Seth P, et al. Role of wild-type p53 in the enhancement of camptothecin cytotoxicity against human prostate tumor cells. Anticancer Res 1998, 18(3A): 1845-1849.
    71.赵斌,葛金芳,李俊.喜树碱抗肿瘤作用机制研究进展.安徽医药, 2006, 10(1): 2-5.
    72. Huang TT, Wuerzberger-Davis SM, SeufzerBJ, et al. NF-kappaB activation by camptothecin A linkage between nuclear DNA damage and cytoplasmic signaling events. J Biol Chem, 2000, 275(13): 9501-9509.
    73. Zhou Y, Gwadry FG, ReinholdWC, et al. Transcriptional regulation of mitotic genes by camptothecin-induced DNA damage: microarray analysis of dose- and time- dependent effects. Cancer Res, 2002, 62(6): 1688-1695.
    74. Takimoto CH, Wright J, Arbuck SG, et al. Clinical applications of the camptothecins. Biochim Biophys Acta, 1998, 1400(1-3): 107-119.
    75.邹永平,鲁功成,肖亚军.人前列腺癌细胞对化疗药物敏感性的对比.临床泌尿外科杂志, 2000, 15(1): 31-32.
    76. Cao ZS, Harris N, Kozielski A, et al. Alkyl esters of camptothecin and 9-nitrocamptothecin: synthesis, in vitro pharmacokinetics, toxicity, and antitumoractivity. J Med Chem. 1998, 41(1): 31-37.
    77. Lavergne O, Lesueur-Ginot L, Pla Rodas F, et al. Homocamptothecins: synthesis and antitumor activity of novel E-ring-modified camptothecin analogues. J Med Chem, 1998, 41(27): 5410-5419.
    78.管忠震.羟基喜树碱需进一步规范化临床研究.癌症, 2001, 20(12): 1333-1334.
    79.陈晟,李玉艳,尤启冬.喜树碱类抗肿瘤药物耐药机制的研究进展.中国药物化学杂志, 2005, 15(3): 182-187.
    80. Beretta GL, Perego P, Zunino F. Mechanisms of cellular resistance to camptothecins. Curr Med Chem, 2006, 3(27): 3291-3305.
    81. Rasheed ZA ,Rubin EH. Mechanisms of resistance to topoisomerase I targeting drugs. Oncogene, 2003, 22(47): 7296-7304.
    82. Igney FH, Krammer PH. Death and anti-death: tumor resistance to apoptosis. Nat Rev Cancer, 2002, 2(4): 277-288.
    83. Tapia-Vievra JV, Mas-Oliva J. Apoptosis and cell death channels in prostate cancer. Arch Med Res, 2001, 32(3): 175-185.
    84. Gilligan T, Kantoff PW. Chemotherapy for prostate cancer. Urology, 2002, 60(Suppl 3A): 94-100.
    85. Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun, 2003, 304(3): 499-504.
    86. Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev, 1999, 13(3): 239-252.
    87. Tikoo A, O'Reilly L, Day CL, et al. Tissue distribution of Diablo / Smac revealed by monoclonal antibodies. Cell Death Differ, 2002, 9(7): 710-716.
    88. Roberts DL, Merrison W, MacFarlane M, et al. The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity. J Cell Biol, 2001, 153(1): 221-228.
    89.高飞,郭文.线粒体促凋亡蛋白Smac/DIABLO及其与肿瘤的关系.肿瘤, 2007,27(10): 844-846.
    90. Hunter AM, Kottachchi D, Lewis J, et al. A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac / DIABLO. J Biol Chem, 2003, 278(9):7494-7499.
    91.李洪波,王道荣. Smac基因调控肿瘤化疗敏感性的研究进展.中国现代普通外科进展, 2007, 10(3): 240-242.
    92. Springs SL, Diavolitsis VM, Goodhouse J, et al. The kinetics of translocation of Smac/DIABLO from the mitochondria to the cytosol in HeLa cells. J Biol Chem, 2002, 277(48): 45715-45718.
    93. Srinivasula SM, Datta P, Fan XJ, et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem, 2000, 275 (46): 36152-36157.
    94. Carson JP, Behnam M, Sutton JN, et al. Smac is required for Cytochrome c-induced apoptosis in prostate cancer LNCaP cells. Cancer Res, 2002, 62(1): 18-23.
    95. Ng CP, Bonavida B. X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI (Smac/DIABLO). Mol Cancer Ther, 2002, 1(12): 1051-1058.
    96.曾甫清,汪良,陈方敏等.线粒体促凋亡蛋白促进化疗药物诱导膀胱癌细胞凋亡的分子学机理研究.中华泌尿外科杂志, 2004, 25(10): 655-658.
    97. Creagh EM, Murphy BM, Duriez PJ, et al. Smac/ Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis proteins. J Biol Chem, 2004, 279 (26): 26906-26914.
    98. Yang QH, Du C. Smac/ DIABLO selectively reduces the levels of c-IAP1 andc-IAP2 but not that of XIAP and Livin in HeLa cells. J Biol Chem, 2004, 279 (17):16963-16970.
    99. Yoon K, Jang HD, Lee SY. Direct interaction of Smac with NADE promotes TRAIL-induced apoptosis. Biochem Biophys Res Commun, 2004, 319 (2): 649-654.
    100. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 2001, 410(6824): 112-116.
    101. Ekert PG, Silke J, Hawkins CJ, et al. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol, 2001, 152 (3): 483-490.
    102.郑丽端,童强松,陶凯雄等. Smac基因过表达对胃癌细胞株MKN-45化疗敏感性的影响.癌症, 2004, 23(4): 361-366.
    103. Arnt CR, Chiorean MV, Heldebrant MP, et al. Synthetic Smac/DIABLO peptides enhance the effects of chemotherapeutic agents by binding XIAP and cIAP1 in Situ. J Biol Chem, 2002, 277(46): 44236-44243.
    104. Fulda S, Wick W, Weller M, et al. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med, 2002, 8(8): 808-815.
    105. Miayake H, Tolcher A, Gleave ME. Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J Natl Cancer Inst, 2000, 92(1): 34-41.
    106. Miyake H, Hara I, Kamidono S, et al. Resistance to cytotoxic chemotherapy-induced apoptosis in human prostate cancer cells is associated with intracellular clusterin expression. Oncol Rep, 2003, 10(2): 469-473.
    107. Liu Z, Sun C, Olejniczak ET, et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature, 2000, 408(6815): 1004-1008.
    108. Chai J, Du C, Wu JW, et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature, 2000, 406(6798): 855-862.
    1 Bubendorf L,Schopfer A,Wagner U,et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol,2000,31(5):578-583.
    2 Condon MS. The role of the stromal microenvironment in prostate cancer. Semin Cancer Biol,2005,15(2):132-137.
    3 Dawson NA. Bisphosphonates: their evolving role in the management of prostate cancer-related bone disease. Curr Opin Urol,2002,12(5):413-428.
    4 Lugassy C,Vernon SE,Warner JW,et al. Angiotropism of human prostate cancer cells: implications for extravascular migratory metastasis. BJU Int,2005,95(7):1099-1103.
    5 Aalinkeel R,Nair MP,Sufrin G,et al. Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res,2004,64(15):5311-5321.
    6 Inoue K,Slaton JW,Eve BY,et al. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res,2000,6(5):2104-2119.
    7 Yonou H,Yokose T,Kamijo T,et al. Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res,2001,61(5):2177-2182.
    8 Arya M,Patel HR,McGurk C,et al. The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol,2004,4(4):291-303.
    9 Taichman RS,Cooper C,Keller ET,et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res,2002,62(6),1832-1837.
    10 Kiefer JA,Farach-Carson MC. Type I collagen-mediated proliferation of PC3prostate carcinoma cell line: implications for enhanced growth in the bone microenvironment. Matrix Biol,2001,20(7):429-437.
    11 Yuan TC,Lin MF. Protease-activated receptor 1: a role in prostate cancer metastasis. Clin Prostate Cancer,2004,3(3):189-91.
    12 Cooper CR,McLean L,Walsh M,et al. Preferential adhesion of prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin Cancer Res,2000,6(12):4839-4847.
    13 Kierszenbaum AL,Rivkin E,Chang PL,et al. Galactosyl receptor, a cell surface C-type lectin of normal and tumoral prostate epithelial cells with binding affinity to endothelial cells. Prostate,2000,43(3):175-183.
    14 Dimitroff CJ,Lechpammer M,Long-Woodward D,et al. Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res,2004,64(15):5261-5269.
    15 Simpson MA,Reiland J,Burger SR,et al. Hyaluronan synthase elevation in metastatic prostate carcinoma cells correlates with hyaluronan surface retention, a prerequisite for rapid adhesion to bone marrow endothelial cells. J Biol Chem,2001,276(21):17949-17957.
    16 Koeneman KS,Yeung F,Chung LW. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate,1999,39(4):246-261.
    17 Roodman GD. Mechanisms of bone metastasis. N Engl J Med,2004,350(16):1655-1664.
    18 Penno H,Silfversward CJ,Frost A,et al. Osteoprotegerin secretion from prostate cancer is stimulated by cytokines, in vitro. Biochem Biophys ResCommun,2002,293(1):451-455.
    19 Sung SY , Chung LW. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation,2002,70(9-10):506-521.
    20 Fizazi K,Yang J,Peleg S,et al. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res,2003,9(7):2587-2597.
    21 Goya M,Miyamoto S,Nagai K,et al. Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Res,2004,64(17):6252-6258.
    22 Keller ET. The role of osteoclastic activity in prostate cancer skeletal metastases. Drugs Today (Barc),2002,38(2):91-102.
    23 Nyambo R,Cross N,Lippitt J,et al. Human bone marrow stromal cells protect prostate cancer cells from TRAIL-induced apoptosis. J Bone Miner Res,2004,19(10):1712-1721.
    24 Zhang J,Dai J,Qi Y,et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest,2001,107(10):1235-1244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700