用户名: 密码: 验证码:
自动目标识别评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动目标识别(Automatic Target Recognition,ATR)作为武器装备智能化的核心技术之一,为信息化战争中的目标探测、侦察监视和精确制导提供了有力支持,因而具有广泛的军事应用前景。论文将ATR评估(evaluation)定义为以ATR作为评价对象的行为活动。ATR评估能够为ATR技术的改进提供决策依据,并贯穿其整个研制过程,对促进ATR技术的快速发展具有重要意义。论文围绕ATR技术发展中的现实问题,在概率型指标估计与比较、多指标综合评价和扩展工作条件下技术效率与因素作用测算这三个方面深入开展了评估方法的研究,取得了一定成果。论文的主要内容如下:
     第二章研究ATR评估中最为基础的概率型单指标评估问题,按评估目的分为估计和比较两种情况来讨论。现有估计方法中普遍缺乏测试样本容量的预先分析,针对此情况,基于贝叶斯理论研究了概率型指标区间估计的要素,确定了区间估计方法和样本容量计算准则,定量分析了估计精度与样本容量的关系,以图表形式给出了一些典型估计精度要求下的最小样本容量,并且讨论了实际情况中的样本需求递减效应。针对现有比较方法中缺乏结论可信程度分析的现状,基于不确定推理提出了一种新的概率型指标比较方法,定量分析了典型情况下比较结果置信度与测试样本容量的关系,并且运用该方法揭示了经验做法中隐含的最大似然原理。
     第三章研究更具一般性的多指标综合评估问题,从决策分析角度提出了几种新的评估方法。针对ATR评估中的区间数多属性决策问题,基于分值模型提出了区间加权法和区间TOPSIS法,得到区间数形式的综合评分值,这有助于ATR评估中的柔性决策。针对ATR评估中的混合型多属性决策问题,基于关系模型提出了偏好矩阵法和次序关系法,实现了同时包含实数型、区间型和风险型三类指标的综合比较与排序。对于所提出的这几种多指标评估方法,还分别进行了实例分析。
     第四章研究扩展工作条件下的多指标评估问题,从效率测算角度重新考察了工作条件可变的ATR评估问题。首先针对扩展性及量测性评估方法在实际应用中遇到的困难,基于DEA理论提出了一种ATR技术效率分析方法,研究了求解过程中的技术细节,并结合实例来说明如何分析评估对象的ATR技术效率。然后根据效率分析的思想,针对以往采用性能建模方式的局限,基于Malmquist指数提出了一种非参数的因素作用测算方法,结合课题背景研究了评价指数的计算、分解等问题,并通过评估实例阐明如何度量扩展工作条件下因素变化的影响。
     论文研究虽然是结合了以雷达ATR为技术背景的多个重点科研项目,但是上述评估方法也可以推广到红外、激光和多传感器等ATR技术背景中。
Automatic target recognition (ATR) is one of crucial technologies of intelligence weapon system. ATR gives the opportunity for target detection, surveillance, reconnaissance and precision attacking in the information warfare, so ATR has a broad military application. This dissertation defines ATR evaluation as the behaviors of assessing an ATR. As an important step in ATR development, ATR evaluation provides the decision foundation for its perfection, which is significantly valuable to accelerate the technology development. The dissertation focuses on some practical problems of ATR development, including the probability measure estimation and comparison, the multiple measures comprehensive evaluation, and the technical efficiency and factor influence calculation in extended operation condition (EOC). The main contributions of the dissertation are demonstrated as follows:
     In Chapter 2, two fundamental problems of ATR evaluation which based on a single probability measure are investigated. The estimation method and comparison method are discussed separately according to different evaluation purposes. To the question of lacking prior sample size analysis in the existing estimation methods, the elements of probability measure interval estimation based on Bayesian approach are analyzed. The interval estimation method and the corresponding criteria for sample size calculation are established and then be used to draw the relationship between the estimation precision and the sample size. Using the interval estimation method, the requirements of the minimum sample size for some typical estimation precision are given out with figure or table form, and as its application, the phenomenon of sample size descending in the real testing are also discussed. To the question of lacking confidence analysis in the existing comparison method, a new probability measure comparison method based on uncertainty inference is proposed. Using this new comparison method, the relationship between the confidence of comparison result and the requirement of test sample size is analyzed quantitatively, and as its application, the maximum likelihood principle within the experiential approach is revealed.
     In Chapter 3, the more general multiple measures comprehensive evaluation problems are investigated, and some new evaluation method are proposed in the perspective of decision making. To solve the interval multiple attribute decision making (MADM) problem in ATR evaluation, the interval weighted summation method and the interval TOPSIS method are proposed based on score model. The final interval comprehensive score conduces to a flexible decision for ATR evaluation. To solve the hybrid MADM problem in ATR evaluation, the preference matrix method and the order relation method are proposed based on relational model, which can rank and assess the evaluation objects with real, interval and random measures at the same time. As the illustration of these evaluation methods above, some application examples are also given.
     In Chapter 4, the multiple measures evaluation problems in EOC are investigated. The ATR evaluation concepts in variable operation conditions are surveyed in the perspective of efficiency measurement. Considering the practical difficulties of the extensibility and the scalability evaluation methods, a technical efficiency analytical method based on the data employment analysis (DEA) is proposed firstly. The details of its evaluation procedure are particularly discussed, and an application example is also given to illustrate how to calculate the technical efficiency of an ATR. Then for the sake of overcoming the shortages of performance modeling pattern in factor influence analyzing, a non parametric factor influence measurement method based on Malmquist index is proposed. The calculation and decomposition details of this evaluation index are discussed according to ATR evaluation background, and the application example is also given to demonstrate how to calculate the influence of a factor in EOC. Although the work of the dissertation is associated with some advanced scientific research programs which based on radar ATR technology, these evaluation methods can also be applied to other technical backgrounds, such as the infrared ATR, laser ATR, multi-sensor ATR and so on.
引文
[1]庄钊文,黎湘,刘永祥.智能化武器系统发展的关键技术——雷达自动目标识别技术[J].科技导报, 2005, 23(8): 20-23.
    [2]丛敏,金善良,罗翌.自动目标识别技术的发展现状及其应用[J].飞航导弹, 1999(12): 1-9.
    [3] Barton D K. Sputnik II as observed by C band radar [A]. in 1959 IRE Nat. Conf. Rec. [C], 1959, Vol.7, Pt. 5: 67-73.
    [4]李补莲.自动目标识别(ATR)技术发展述评[J].现代防御技术, 2000, 28(2): 10-14.
    [5] Mohd M A. Performance characterization and sensitivity analysis of ATR algorithms to scene distortions [A]. in Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Target Recognition [C], 1993, Orlando, FL, USA, SPIE 1957: 203-214.
    [6]郁文贤,郭桂蓉. ATR的研究现状和发展趋势[J].系统工程与电子技术, 1994(6): 25-32.
    [7] Nasr H, Sadjadi F. Automatic target recognition algorithm performance evaluation: The bottleneck in the development life cycle [A]. in Aerospace Pattern Recognition [C], 1989, Orlando, FL, USA, SPIE 1098: l56-160.
    [8] Dudgeon D E. ATR performance modeling and estimation [R]: MIT Lincoln Laboratory, Technical Report 1051, 1998.
    [9] Chen Z Y, Zhang G L. A General quantitative approach to performance evaluation of automatic target recognition (ATR) systems [A]. in Visualization and Optimization Techniques Proceeding [C], 2001, London, ON, Canada, SPIE 4553: 179-184.
    [10] Westerkamp L, Wild T, Meredith D. Problem set guidelines to facilitate ATR research, development, and performance assessments [A]. in Automatic Target Recognition XII [C], 2002, Orlando, FL, USA, SPIE 4726: 310-315.
    [11] Okamoto M, Imai H, Takagi K. Performance evaluation of a robust method for mathematical expression recognition [A]. in 6th International Conference on Document Analysis and Recognition Proceedings [C], 2001: 121-128.
    [12] Higdon J M. Utility of experimental design in automatic target recognition performance evaluation [D]. AFB, OH: Air Force Inst. of Tech., School of Engineering and Management, master thesis, 2001.
    [13] Mcneil B J, Nanley J A. The meaning and use of the area under a receiver operating characteristic (ROC) curve [J]. Radiology, 1982, 143: 137-150.
    [14]高倩.基于高分辨雷达距离像的自动目标识别研究[D].南京:南京航天航空大学,硕士学位论文, 2002.
    [15] Bassham C B. Automatic target recognition classification system evaluation methodology [D]. AFB, OH: Air Force Inst. of Tech., School of Engineering and Management, doctor thesis, 2002.
    [16]张尧庭.离散多元分析:理论与实践[M].北京:中国统计出版社, 1998.
    [17] Ross T D, Mossing J C. The MSTAR Evaluation methodology [A]. in Algorithms for Synthetic Aperture Radar Imagery VI [C], 1999, Orlando, FL, USA, SPIE 3721: 705-713.
    [18] Ross T D. Confidence intervals for ATR performancemetrics [A]. in Algorithms for Synthetic Aperture Radar Imagery VIII [C], 2001, Orlando, FL, USA, SPIE 4382: 318-329.
    [19] Mahalanobis P, Mahalanobis A. Statistical inference for automatic target recognition systems [J]. Applied Optics, 1994, 33: 6823-6825.
    [20]何峻,卢再奇,付强. ATR算法稳定性评估方法[J].现代雷达, 2006, 28(9): 59-61.
    [21] Howard E R, Nancy O, Charles E M. Statistical issues in ROC curve analysis [A]. in Medical Imaging IV: PACS Systems Design and Evaluation Proceedings [C], 1989, Newport Beach, CA, USA, SPIE 1234: 111-119.
    [22] Mitsuru I, Takeo I, Kazunobu Y. How to establish equivalence between two treatments in ROC analysis [A]. in Medical Imaging 2003: Image Perception, Observer Performance, and Technology Assessment [C], 2003, SPIE 5034: 383-392.
    [23]邹莉玲,沈其君,陈峰. ROC曲线下面积的ML估计与假设检验[J].中国公共卫生, 2003, 19(1): 127-128.
    [24] Bradley A P. The use of the area under the ROC Curve in the evaluation of machine learning Algorithms [J]. Pattern Recognition, 1997, 30(7): 1145-1159.
    [25] Huang J, Lu J J, Ling C X. Comparing naive Bayes, decision trees, and SVM with AUC and accuracy [A]. in Proc. of the Third IEEE International Conference on Data Mining [C], 2003.
    [26] Hanley J A, McNeil B J. Themeaning and use of the area under a receiver operating characteristic (ROC) curve [J]. Radiology, 1982, 143(1): 29-36.
    [27]宇传华. ROC分析方法及其在医学中的应用[D].广州:第四军医大学, 2000.
    [28]王昌元,谢晋东,李月卿. ROC曲线中AZ的物理意义及数学表达式[J].泰山医学院报, 2003, 24(2): 102-105.
    [29] Alsing S G. Evaluation of competing classifiers [D]. AFB, OH: Air Force Inst. of Tech., School of Engineering, doctor thesis, 2000.
    [30] David J, Hand R, Till J. A simple generalization of the area under the ROC curve for multiple class classification problems [J]. Machine Learning, 2001, 45: 171-186.
    [31]田俊.两个诊断指标的ROC曲线下面积的非参数检验方法[J].数理医学杂志, 2002, 15(3): 201-204.
    [32]孙长亮.基于ROC曲线的ATR算法性能评估方法研究[D].长沙:国防科技大学,硕士学位论文, 2006.
    [33] Wu S, Flach P. A scored AUC metric for classifier evaluation and selection [A]. in Proceedings of the ICML 2005 Workshop on ROC Analysis in Machine Learning [C], 2005, Bonn, Germany.
    [34] Huang J, Ling C X. Using AUC and accuracy in evaluating learning algorithms [J]. IEEE Trans. on Knowledge and Data Engineering, 2005, 17(3): 299-310.
    [35] Ferri C, Hernandez-Orallo J, Salido M A. Volume under the ROC Surface for Multi-class Problems [A]. in Proceedings of the Fourteenth European Conference on Machine [C], 2003, LNAI2837: 108-120.
    [36] Kempf T, Peichl M, Dill S, Sü? H. ATR perfomance at extended operating conditions for highly resolved ISAR-images of relocatable targets [A]. in Radar 2004 - International Conference on Radar Systems [C], 2004, France.
    [37] Smith G E, Vespe M, Woodbridge K, Baker C J. Radar classification evaluation [A]. in 2008 IEEE Radar Conference [C], 2008, Rome, Italy: 1585-1590.
    [38] Parker D R. Uncertainty estimation for target detection system discrimination and confidence performance metrics [D]. AFB, OH: Air Force Inst. of Tech, School of Engineering and Management, doctor thesis, 2006.
    [39] O'Sullivan J A, DeVore M D, Kedia V, Miller M I. SAR ATR performance using a conditional Gaussian model [J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(1): 91-108.
    [40] Li H J, Wang Y D, Wang L H. Matching score properties between range profiles of high-resolution radar targets [J]. IEEE Trans. on A.P., 1996, 44(4): 444-452.
    [41]闫锦.基于高距离分辨像的雷达目标识别研究[D].北京:中国航天第二研究院,博士论文, 2004.
    [42] Mossing J C, Ross T D, Bradley J. An evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions [A]. in Algorithms for Synthetic Aperture Radar Imagery V [C], 1998, Orlando, FL, USA, SPIE 3370: 554-565.
    [43] Marie-Christine S, Jérémie G, Christophe C. NCTR performance assessment methodology [A]. in Radar 2004 - International Conference on Radar Systems [C], 2004, France.
    [44] Ross T D, Minardi M E. Discrimination and confidence error in detector reported scores [A]. in Algorithms for Synthetic Aperture Radar Imagery XI [C], 2004, Bellingham, WA, SPIE 5427: 342-353.
    [45] Kanungo T, Jaisimha M Y, Palmer J. A methodology for quantitative performance evaluation of detection algorithms [J]. IEEE Trans. on Image Processing, 1995, 4(12): 1667-1674.
    [46] Klimack W K, Bassham C B, Bauer K W. Application of decision analysis to automatic target recognition programmatic decisions [R]. Wright-Patterson Air Force Base, OH: Air Force Inst. of Tech., ADA401738, 2002.
    [47] Ross T D, Westerkamp L A, Zelnio E G. Extensibility and other model-based ATR evaluation concepts [A]. in Algorithms for Synthetic Aperture Radar Imagery IV [C], 1997, Orlando, FL, USA, SPIE 3070: 554-565.
    [48]张文东,易轶虎.复杂系统多目标综合评价方法的比较研究[J].青岛大学学报(自然科学版), 2005, 18(4): 85-90.
    [49]苏为华.多指标综合评价理论与方法问题研究[D].厦门:厦门大学,博士学位论文, 2000.
    [50]岳超源.决策理论与方法[M].北京:科学出版社, 2003.
    [51] Klimack B. Hybrid value-utility decision analysis [R]. Military Academy, West Point: Operations Research Center of Excellence, ADA403768, 2002.
    [52] Klimack W K. Robustness of multiple objective decision analysis preference functions [D]. AFB, OH: Air Force Inst. of Tech., School of Engineering and Management, doctor thesis, 2002.
    [53] Bassham C B, Klimack W K, Bauer J, K. W. ATR evaluation through the synthesis of multiple performance measures [A]. in Signal Processing, Sensor Fusion and Target Recognition XI [C], 2002, SPIE 4729: 112-121.
    [54] Teledyne Brown Engineering Inc. Extended Air Defense Simulation (EADSIM) Executive Summary [R]. Huntsville: Teledyne Brown Engineering Information Technology, 2000.
    [55] Teledyne Brown Engineering Inc. Extended Air Defense Simulation (EADSIM) Methodology Manual [R]. Huntsville: Teledyne Brown Engineering Information Technology, 2000.
    [56]黄朝峰.基于模糊DEA的高校办学效益评价方法及应用研究[D].长沙:国防科技大学,博士学位论文, 2005.
    [57]庄钊文,黎湘,李彦鹏,王宏强.自动目标识别效果评估技术[M].北京:国防工业出版社, 2006.
    [58]李彦鹏.自动目标识别效果评估——基础、理论体系及相关研究[D].长沙:国防科技大学,博士学位论文, 2004.
    [59]李彦鹏,黎湘,庄钊文.模糊综合评判在目标识别效果评估中应用研究[A]. in第九届全国雷达会议[C], 2004,烟台, 790-793.
    [60]李彦鹏,黎湘,庄钊文.应用变权模糊综合评判的目标识别效果评估[J].现代雷达, 2004, 26(12): 8-11.
    [61]李彦鹏,黎湘,庄钊文.应用多级模糊综合评判的目标识别效果评估[J].信号处理, 2005, 21(5): 528-533.
    [62]李彦鹏,黎湘,庄钊文.模糊综合评判与数理统计知识结合的目标识别效果评估[J].中国工程科学, 2005, 7(5): 86-90.
    [63]李彦鹏,黎湘,庄钊文.基于模糊综合评判的目标识别效果评估[J].计算机应用研究, 2005, 22(3): 25-27.
    [64]李彦鹏,黎湘,庄钊文. Sugeno模糊积分与数理统计知识结合的目标识别效果评估[J].系统仿真学报, 2005, 17(5): 1175-1178.
    [65] Li Y P, Li X, Zhuang Z W. ATR performance evaluation with the application of fuzzy integration [J].模糊系统与数学, 2005, 19(4): 145-149.
    [66]李彦鹏,黎湘,庄钊文.基于模糊聚类分析的目标识别效果评估[J].现代雷达, 2005, 27(8): 1-5.
    [67]李彦鹏,黎湘,庄钊文.李雅普诺夫稳定性理论在目标识别效果评估中的应用[J].中国工程科学, 2005, 7(7): 39-42.
    [68] Wang F, Li Y P, Li X. Performance evaluation for ATR system based on backward cloud with less samples [A]. in Proc. of the 2008 IEEE International Conference on Radar [C], 2008, Adelaide, Australia: 519-523.
    [69]郁文贤.智能化识别方法及其在舰船雷达目标识别系统中的应用[D].长沙:国防科技大学,博士学位论文, 1992.
    [70] Bhanu B. Automatic target recognition: state of the art survey [J]. IEEE Trans. on Aerospace and Electronic Systems, 1986, 22(4): 364-379.
    [71] Ratches J A, Walters C P, Buser R G, Duenther B D. Aided and automatic target recognition based upon sensory inputs from image forming systems [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(9): 1004-1019.
    [72] Ross T D, Bradley J J, Hudson L J. SAR ATR - So what's the problem? - An MSTAR perspective [A]. in Algorithms for Synthetic Aperture Radar Imagery VI [C], 1999, Orlando, FL, USA, SPIE 3721: 662-672.
    [73] Keydel E R, Lee S W, Moore J T. MSTAR extened operating condtions: a tutorial [A]. in Algorithms for Synthetic Aperture Radar Imagery III [C], 1996, Arlington, VA, USA, SPIE 2757: 228-242.
    [74] Lanterman A, Miller M I, Snyder D L. Automatic target recognition via the simulation of infrared scences [A]. in Proc. of the Sixth Annual Ground TargetModeling and Validation Conference [C], 1995, Keweenaw Research Center, USA: 195-204.
    [75] Meredith D M, Walters C P, Hoover C W. Suitability of synthetic imagery for ATR evaluation [A]. in 30th Applied Imagery Pattern Recognition Workshop [C], 2001, Washington, DC, USA: 51-56.
    [76] Penn J, Nguyen H, Kipp T, Kohler C. The CREATION scene modeling package applied to theater air defense fire control simulation, multispectral missile seekers and sensors [A]. in Proc. of the 1995 Conference on Multi-Spectral Missile Seekers [C], 1995, Huntsville, AL, USA.
    [77] Webber J, Penn J. CREATION and rendering of realistic trees [A]. in SIGGRAPH'95 Computer Graphics Conference Proceedings, Annual Conference Series, ACM SIGGRAPH [C], 1995, Los Angeles, CA, USA: 119-128.
    [78] Lorenzo M, Deaso R, Lu Y, Cha J. DIS IR simulation models for fidelity, signatures and sensor-atmosphere effects [A]. in DIS Systems Applications Conference [C], 1995, Orlando, FL, USA.
    [79] Lorenzo M, Ratches J A, Lu Y, Cha J. Advancements in "Paint-the-Night" real-time synthetic IR scene simulation [A]. in NATO Infrared Imformantion Symposium [C], 1996, Westmingster, England.
    [80]张桂林,熊艳,曹伟烜,李强.一种评价自动目标检测算法性能的方法[J].华中理工大学学报, 1994, 22(5): 46-50.
    [81] Kwan R, Evans A, C., Pike G B. MRI simulation-based evaluation of image-processing and classification methods [J]. IEEE Trans. on Medical Imaging, 1999, 18(11): 1085-1097.
    [82] Biegel G. Validation of RCS simulations with the code CADRCS [A]. in IEEE Radar 2004 Conference [C], 2004, Toulouse, France.
    [83] Andersh D, Moore J, Kosanovich S, Kapp D. Xpatch 4: the next generation in high frequency electromagnetic modeling and simulation software.pdf [A]. in IEEE Internationa Radar Conference [C], 2000, Alexandria, VA, USA: 844-849.
    [84] Seidel H, Stahl C, Bjerkeli F, Skaaren-Fystro P. Assessment of COTS IR image simulation tools for ATR development [A]. in Automatic Target Recognition XV [C], 2005, Bellingham, WA, USA, SPIE 5807: 44-54.
    [85] Ross T D, Bradley J, O'Conner M. MSTAR data handbook for experiment planning [R]. AFB, OH: AFRL/SNA with Sverdrup Technology, 1997.
    [86] Bhattacharyya A. On a measure of divergence between two statistical populations defined by their probability distribution. [J]. Bulletin of the Calcutta Mathematical Society, 1943, 35: 99-100.
    [87] Chernoff H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations [J]. Annals of Mathematical Satistics, 1952, 23: 493-507.
    [88] Ha T M. The optimum class-selective rejection rule [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(6): 608-615.
    [89] O'Sullivan J A, Jacobs S P, Kedia V. Stochastic models and performance bounds for pose estimation using high-resolution radar data [A]. in Algorithms for Synthetic Aperture Radar Imagery V [C], 1998, Orlando, FL, USA, SPIE 3370: 576-587.
    [90] Holt C, Attili J, Schmidt S. Validation of a chi2 model of HRR target RCS variability and verification of the resulting ATR performance model [A]. in Automatic Target Recognition XI [C], 2001, Orlando, FL, USA, SPIE 4379:229-235.
    [91] Horne A M. Information theory for the prediction of SAR target classification performance [A]. in Algorithms for Synthetic Aperture Radar Imagery VIII [C], 2001, SPIE 4382: 404-415.
    [92] Mcclure D E. Vision strategies and ATR performance: a mathematical statistical framework and critique [R]: Brown University, 2002.
    [93] Bhanu B, Jones T L. Image understanding research for automatic target recognition [J]. IEEE AES Systems Magazine, 1993, 8(10): 15-22.
    [94]周川,张桂林,陈鸿翔,彭嘉雄.基于试验设计的ATR算法的性能评价[J].华中科技大学学报, 1996, 24(2): 43-45.
    [95]李敏,周振华,张桂林.自动目标识别算法性能评估中的图像度量[J].红外与激光工程, 2007, 36(3): 412-416.
    [96] Chen Y, Chen G S, Blum R S, Blasch E. Image quality measures for predicting automatic target recognition performance [J]. 2008.
    [97] Nasr H, Bazakos M. Automatic evaluation and adaptation of automatic target recognition systems [A]. in Signal and Image Processing Systems Performance Evaluation [C], 1990, Orlando, FL, USA, SPIE 1310: 108-119.
    [98] English R A, Rawlinson S J, Sandirasegaram N M. ATR workbench for automating image analysis [A]. in Algorithms for Synthetic Aperture Radar Imagery X [C], 2003, Orlando, FL, USA, SPIE 5095: 349-357.
    [99]张桂林,张留洋.数字图像处理算法评估系统的硬件设计[J].计算机与数字工程, 2005, 33(12): 88-91.
    [100]张留洋.评估用数字图像处理系统设计与Kanade-Lucas算法研究[D].武汉:华中科技大学,硕士学位论文, 2005.
    [101] Baumann J M, Jackson J L, Sterling G D, Blasch E P. RT-ROC: a near-real-time performance evaluation tool [A]. in Automatic Target Recognition XV [C], 2005, Bellingham, WA, USA, SPIE 5807: 380-390.
    [102] Klir G J. Fuzzy sets: an overview of fundamentals, applications and personal views [M]. Beijing: Beijing Normal University Press, 2000.
    [103]刘应明,任平.模糊性——精确性的另一半[M].北京:清华大学出版社, 2000.
    [104]杨纶标,高英仪.模糊数学原理及应用(第三版) [M].广州:华南理工大学出版社, 2001.
    [105] Ross T D, Worrell S, Velten V. Standard SAR ATR evaluation experiments using the MSTAR public release data set [A]. in Algorithms for Synthetic Aperture Radar Imagery V [C], 1998, Orlando, FL, USA, SPIE 3370: 566-573.
    [106]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社, 1989.
    [107]吴翊,李永乐,胡庆军.应用数理统计[M].长沙:国防科技大学出版社, 1995.
    [108] Automatic Target Recognition Working Group (ATRWG). Application of confidence Intervals to ATR performance evaluation [R]. AFB OH: Wright Patterson, No. 88-006, 1988.
    [109]贾乃光.统计决策论及贝叶斯分析[M].北京:中国统计出版社, 1998.
    [110] Adcock C J. Bayesian approaches to determination of sample sizes for binomial and multinomial sampling [J]. The Statistician, 1992, 41: 399-405.
    [111]唐雪梅.武器装备小子样试验分析与评估[D].长沙:国防科技大学,博士论文, 2007.
    [112] Berger J O. Statistical decision theory and Bayesian analysis (2nd edition) [M]. New York: Springer-Verlag, 1985.
    [113] Joseph L, Wolfson D B, Berger R. Sample size calculation for binomial proportions via highest posterior density intervals [J]. The Statistician, 1995, 44(2): 143-154.
    [114] Kotz S,吴喜之.现代贝叶斯统计学[M].北京:中国统计出版社, 2000.
    [115] Duran B S, Booker J M. A Bayes sensitivity analysis when using the Beta distribution as prior [J]. IEEE Trans. on Reliability, 1988, 37(2): 239-247.
    [116] Pham T G, Turkkan N. Bayes binomial sampling by attributes with a General-Beta prior distribution [J]. IEEE Trans. on Reliability, 1992, 41(2): 310-316.
    [117] Moore R E. Method and Application of Interval Analysis [M]. London: Prentice-Hall, 1979.
    [118]吴江,黄登仕.区间数排序方法研究综述[J].系统工程, 2004, 22(8): 1-4.
    [119]徐扬.不确定性推理[M].成都:西南交通大学出版社, 1994.
    [120] Catlin A E, Bauer J K W, Mykytka E F. System comparison procedures for automatic target recognition system [J]. Naval Research Logistics, 1999, 46: 357-371.
    [121] Guyon I, Marhoul J, Schwartz R, Vapnik V. What size test set gives good error rate estimates [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(1): 52-64.
    [122] Gibbons J D, Olkin I, Sobel M. Selecting and Ordering Populations: A New Statistical Methodology [M]. New York: Wiley, 1977.
    [123] Wald A. Sequential Analysis [M]. New York: John Wiley & Sons, 1947.
    [124] Shaffer J P. Modified sequentially rejective multiple test procedures [J]. Journal of the American Statistical Association, 1986, 81(395): 826-831.
    [125] Hwang C L, Yoon K S. Multiple attribute decision making [M]. Berlin: Spring-Verlag, 1981.
    [126]徐玖平.目标值不确定的协调多指标决策模型[J].应用数学与计算数学学报, 1996(1): 73-81.
    [127]王效俐,吴健中.风险型多目标决策的非线性规划模型[J].决策与决策支持系统, 1995(1): 54-59.
    [128]姜宁,李登峰,胡维礼.不完全信息多属性决策的集成模型与方法[J].系统工程与电子技术, 2001, 23(2): 71-73.
    [129]于义彬.具有不确定信息的风险型多目标决策理论及应用[J].中国管理科学, 2003(6): 9-13.
    [130]罗党,刘思峰.灰色多指示风险性决策方法研究[J].系统工程与电子技术, 2004, 26(8): 1057-1059,1116.
    [131]姚升保,岳超源.基于组合赋权的风险型多属性决策方法[J].系统工程与电子技术, 2005, 27(12): 2047-2050.
    [132]姚升保,岳超源,张鹏,吴春诚.风险型多属性决策的一种求解方法[J].华中科技大学学报(自然科学版), 2005, 33(11): 83-85.
    [133]仇国芳.评估决策的信息集结理论与方法研究[D].西安:西安交通大学,博士学位论文, 2003.
    [134]徐玖平,吴巍.多属性决策的理论与方法[M].北京:清华大学出版社, 2006.
    [135] Kamentezky R D. The relationship between the analytic hierarchy process and the additive valued function [J]. Decision Sciences, 1982, 13(4): 702-713.
    [136] Chankong V, Y. H Y. Multiobjective decision making: theory and methodology [M]. New York: Elsevier Science, 1983.
    [137] Moore R E. Interval analysis [M]. New York: Prentice-Hall, 1966.
    [138]徐泽水,达庆利.区间数的排序方法研究[J].系统工程, 2001, 19(6): 94-96.
    [139] Senguta A, Pal T K. On comparing interval numbers [J]. European Journal of Operation Research, 2000, 127: 28-43.
    [140]张吉军.区间数的排序方法研究[J].运筹与管理, 2003, 12(3): 18-22.
    [141]郭均鹏.区间评估理论方法与应用研究[D].天津:天津大学博士学位论文,博士学位论文, 2003.
    [142]尤天彗.区间数多属性决策的理论与方法研究[D].沈阳:东北大学,博士学位论文, 2004.
    [143]樊治平,张全.不确定性多属性决策的一种线性规划方法[J].东北大学学报, 1998, 19(4): 419-421.
    [144]樊治平,张全.具有区间数的多属性决策问题的分析方法[J].东北大学学报(自然科学版), 1998, 19(4): 432-434.
    [145]樊治平,张全.一种不确定性多属性决策模型的改进[J].系统工程理论与实践, 1999(12): 42-47.
    [146]樊治平,胡国奋.区间数多属性决策的一种目标规划方法[J].管理工程学报, 2000, 14(4): 50-52.
    [147]达庆利,徐泽水.不确定多属性决策的单目标最优化模型[J].系统工程学报, 2002, 17(1): 50-55.
    [148]姜艳萍,樊治平.给出方案偏好信息的区间数多指标决策方法[J].系统工程与电子技术, 2005, 27(2): 250-252.
    [149]张吉军,樊玉英.权重为区间数的多指标决策问题的逼近理想点法[J].系统工程与电子技术, 2002, 24(11): 76-77.
    [150]尤天慧,樊治平.区间数多指标决策的一种TOPSIS方法[J].东北大学学报(自然科学版), 2002, 23(9): 840-843.
    [151]尤天慧,樊治平.一种基于决策者风险态度的区间数多指标决策方法[J].运筹与管理, 2002, 11(5): 1-4.
    [152]高峰记,黄咏芳,任晓燕.多指标区间决策的理想点贴近法[J].数学的实践与认识, 2005, 35(1): 30-33.
    [153]黄德才,郑河荣.理想点决策方法的逆序问题与逆序的消除[J].系统工程与电子技术, 2001, 23(12): 80-83.
    [154] Keeney R L. Value focused thinking, a path to creative decision making [M]. Cambridge: Harvard University Press, 1992.
    [155]胡永宏,贺思辉.综合评价方法[M].北京:科学出版社, 2000.
    [156]徐泽水,达庆利.区间数排序的可能度法及其应用[J].系统工程学报, 2003, 18(1): 67-70.
    [157]徐泽水.求解不确定多属性决策问题的一种新方法[J].系统工程学报, 2002, 17(2): 177-181.
    [158]徐泽水,达庆利.区间型多属性决策的一种新方法[J].东南大学学报(自然科学版), 2003, 33(4): 498-501.
    [159]徐泽水.不确定多属性决策方法及应用[M].北京:清华大学出版社, 2004.
    [160]宋业新,张曙红,陈绵云.基于模糊模式识别的时序混合多指标决策[J].系统工程与电子技术, 2002, 24(4): 1-4.
    [161]夏勇其,吴祈宗.一种混合型多属性决策问题的TOPSIS法[J].系统工程学报, 2004, 19(6): 630-634.
    [162]徐一帆,黎放,杨建军.基于模糊相似度的混合型多属性决策方法[A]. in中国系统工程学会决策科学专业委员会第六届学术年会[C], 2005,北京: 114-121.
    [163]闫书丽,肖新平.混合型多属性决策的一种新方法[A]. in 2006年灰色系统理论及其应用学术会议[C], 2006,北京: 223-231.
    [164]饶从军,肖新平.风险型动态混合多属性决策的灰矩阵关联度法[J].系统工程与电子技术, 2006, 28(9): 1353-1357.
    [165]卫贵武,罗玉军,姚恒申.权重信息不完全的混合型多属性决策方法[A]. in 2006中国控制与决策学术年会[C], 2006,天津: 1161-1164.
    [166]王威,崔明明.混合型多属性决策问题的熵方法[J].数学的实践与认识, 2007, 37(3): 55-59.
    [167]卫贵武.混合型多属性决策的灰色关联分析法[J].数学的实践与认识, 2008, 38(7): 12-14.
    [168]丁传明,黎放,齐欢.一种基于相似度的混合型多属性决策方法[J].系统工程与电子技术, 2007, 29(5): 732-740.
    [169]闫书丽,杨万才,肖新平.属性权重未知的混合型多属性决策方法[J].统计与决策, 2008(253): 16-18.
    [170]曾三云,龙君.无偏好信息的混合型多属性决策问题的TOPSIS方法[J].桂林电子科技大学学报, 2007, 27(5): 992-104.
    [171]徐泽水,孙在东.一类不确定型多属性决策问题的排序方法[J].管理科学学报, 2002, 5(3): 35-39.
    [172]姜艳萍.基于模糊互补判断矩阵的决策理论与方法研究[D].沈阳:东北大学,博士学位论文, 2002.
    [173]徐泽水.模糊互补判断矩阵排序的一种算法[J].系统工程学报, 2001, 16(4): 311-314.
    [174]刘志迎.基于效率理论的高技术产业增长研究[D].南京:南京农业大学,博士学位论文, 2006.
    [175]魏权龄.评价相对有效性的DEA方法[M].北京:中国人民大学出版社, 1988.
    [176]盛昭瀚,朱乔,吴广谋. DEA理论方法和应用[M].北京:科学出版社, 1996.
    [177]许晓东.高等学校规模效益评价的理论和应用研究[D].武汉:华中理工大学,博士学位论文, 2000.
    [178]魏权龄.数据包络分析[M].北京:科学出版社, 2004.
    [179] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units [J]. European Journal of Operation Research, 1978, 2: 429-444.
    [180]孟令杰.中国农业增长的效率分析[D].南京:南京农业大学,博士学位论文, 1999.
    [181] Malmquist S. Index number and indifference surfaces [J]. Trabajos de Estadistica, 1953, 4: 209-242.
    [182] Shephard R W. The Theory of Cost and Production Functions [M]. Princeton: Princeton University Press, 1970.
    [183] Caves D W, Christensen L R, Diewert W E. The economic theory of index numbers and the measurement of input, output and productivity [J]. Econometrica, 1982, 50(6): 1394-1414.
    [184] Fare R, Grosskopf S, Norris M, Zhang Z. Productivity growth, technical progress, and efficiency change in industrialized countries [J]. The American Economic Review, 1994, 84(1): 66-84.
    [185] Charnes A, Cooper W W, Wei Q L. Cone ratio data envelopment analysis and multi-objective programming [J]. International Journal of System Science, 1989, 20: 1099-1118.
    [186] Saaty T L. The Analytic Hierarchy Process [M]. New York: McGraw-Hill, 1980.
    [187]吴育华,曾祥云,宋继旺.带有AHP约束锥的DEA模型[J].系统工程学报, 1999, 14(4): 330-333.
    [188]《运筹学》教材编写组.运筹学(第三版) [M].北京:清华大学出版社, 2005.
    [189]崔逊学.多目标进化算法及其应[M].北京:国防工业出版社, 2006.
    [190]曾祥云.随机数据包络分析(SDEA)理论与方法研究[D].天津:天津大学,博士学位论文, 1999.
    [191]郭均鹏,吴育华.区间数据包络分析的主客观求解[J].天津工业大学学报, 2004, 23(3): 77-84.
    [192]曾祥云,吴育华,郑道英.随机DEA的确定等量变换[J].天津大学学报, 2000, 33(4): 435-438.
    [193]曾祥云,吴育华.随机DMU相对有效性评价的期望值方法及其应用[J].系统工程学报, 2000, 15(3): 247-252.
    [194] Charles A, Cooper W W. Chance-constrained programming [J]. Management Science, 1959, 6(1): 73-79.
    [195]王金德.随机线性规划[M].上海:上海科学技术出版社, 1988.
    [196]边馥萍,黄焘.随机DEA的机会约束模型[J].系统工程与电子技术, 2005, 27(5): 837-840.
    [197]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社, 2003.
    [198] Williams R, Westerkamp J. Automatic target recognition of time critical moving targets using 1D high range resolution (HRR) radar [J]. IEEE AES Systems Magazine, 2000: 37-43.
    [199] Rosenbach K, Schiller J. Non con-operative air target identification using radar imagery: identification rate as a function of signal bandwidth [A]. in IEEE International Radar Conference [C], 2000: 305-309.
    [200]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社, 2005.
    [201]熊艳,张桂林,彭嘉雄.自动目标识别算法性能评价的一种方法[J].自动化学报, 1996, 22(2): 190-194.
    [202] Grifell-TatjéE, Lovell C A K. A generalized Malmquist productivity index [J]. Sociedad de Estadistica e Investigacion Operativa, 1999, 7(1): 81-101.
    [203] Ray S C, Desli E. Productivity growth, technical progress, and efficiency changein industrialized countries: comment [J]. The American Economic Review, 1997, 87(5): 1033-1039.
    [204]李发勇.基于定向技术距离函数的技术效率测算及应用[D].成都:四川大学,硕士学位论文, 2005.
    [205] Ray S C, Mukherjee K. Decomposition of the Fisher ideal index of productivity: a nonparametric analysis of U.S. Airline data [J]. The Economic Journal, 1996, 106: 1659-1678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700