用户名: 密码: 验证码:
基于支持向量机和模糊系统的机器学习方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器学习是现代智能技术中十分重要的一个方面,主要研究如何从观测数据出发得出目前尚不能通过原理分析得到的规律,利用这些规律去分析客观现象,对未来数据或无法观测的数据进行预测。简单地说就是用计算机来模拟人的学习能力,以达到自动获取知识的目的。有三类基本的机器学习问题,它们分别是模式识别、函数逼近以及概率密度估计。在过去十几年的时间里,基于支持向量机和模糊系统的机器学习方法及其应用得到了广泛研究和迅猛发展,并在信号处理、智能控制、模式识别、系统辨识、生物信息学、医疗和行为科学及商业等领域取得了丰硕的成果。
     本文针对基于支持向量机和模糊系统的机器学习方法中的几个问题进行了研究,包括支持向量机的学习速度、支持向量机的泛化能力、一型和二型模糊系统的可解释性以及一型和二型模糊系统跟概率理论和微积分理论的结合。本文的创造性研究成果主要有:
     (1)利用微分逼近理论提出了一种改进核函数的方法:将原来的核函数乘以一个融入数据信息的正定函数。改进后的核函数增大了分类间隔,改善了支持向量机的性能。实验结果表明改进后的核函数不但提高了分类精度,而且具有很少的支持向量,从而加快了学习速度。
     (2)利用再生核理论提出了一类新的核函数——再生核核函数。这类新核函数是再生核空间的再生核。由于再生核核函数兼具多项式核函数和高斯核函数的优点,所以它不仅具有良好的全局性质,而且还具有很强的内推能力。
     (3)利用超椭球面坐标变换公式构造出了一类核函数——同维映射超椭球坐标变换核。由于是同维映射,而且增大了分类间隔,所以支持向量机的性能得到了很大改善。对人工数据集和标准数据集的实验结果表明,使用坐标变换核的支持向量机学习速度快,推广能力强。
     (4) Epanechnikov混合模型和Mamdani-Larsen(abbr. ML)模糊系统之间的对应关系被建立:任何一个Epanechnikov混合模型都唯一对应着一个Mamdani-Larsen模糊系统,在一定条件下,Epanechnikov混合模型的条件均值和Mamdani-Larsen模糊模型的输出是等价的。因此可用概率的方法来设计Mamdani-Larsen模糊系统,如期望最大化算法等。将设计的模糊系统应用于时间序列预测,仿真结果表明:利用概率方法设计的Mamdani-Larsen模糊系统精度高,抗噪性强。
     (5)基于广义Epanechnikov混合模型提出了一种新的模糊系统——具有多维隶属度函数的规则中心化模糊系统。Epanechnikov混合模型的条件期望输出恰好是规则中心化模糊系统的去模糊化输出。因此可以从概率的角度解释模糊系统,反之亦然,即在概率和模糊之间搭建起了一座桥梁。模糊系统的规则后件恰好是其输出在规则中心的一阶Taylor级数展开式,所以模糊系统具有高度解释性且将模糊理论和微分理论相结合;采用的多维隶属度函数考虑了数据间的相关性,因此模糊系统更符合实际。将该系统应用于时间序列和动态系统预测,不但精度高、速度快,而且有很好的鲁棒性。
     (6)建立了不确定的高斯混合模型和具有可加性的二型Takagi-Sugeno-Kang (TSK)模糊系统之间的对应关系:任何一个不确定的高斯混合模型都唯一对应着一个二型模糊系统,不确定高斯混合模型的条件均值和二型模糊系统的去模糊化输出是等价的。因此可以从概率的角度解释、研究和训练二型模糊系统。这种新颖的训练方法提高了二型模糊系统的精度和抗噪性。不同类型数据的实验结果表明了该模型的优良性能。
     (7)针对模糊系统缺乏优化结构的辨识方法的问题,提出了一种新颖的基于再生核空间理论的模糊系统。该模糊系统的结构辨识算法由再生核函数的的逼近性质给出,简单易处理;并且参数学习只涉及前件的学习,降低了系统的复杂度。仿真结果验证了这种模糊系统及其结构辨识算法的有效性。
Machine learning is one of important tasks of modern intelligence technoloy, it studies mainly how to summarize the laws which is drived from the observed data but can’t be obtained by analyzing the principles at present. And use these laws to analyse objective phenomenon, predict further data or the data which can’t be obseved. To be short, in order to gain the knowledge automatically, it uses computers to simulate the human learning ability. There are there kinds of basic machine learning problems, including pattern recognition, function approximation and probability density estimation.
     In the past decades, machine learning methods and applications which are based on Support Vector Machine (abbr. SVM) and fuzzy system are studied widely and develop rapidly. And it also achieves fruitful achievements in the fields of signal processing, intelligent control, pattern recognition, system identification, bioinformatics, medical treatment, behavioral science and business.
     This paper is aimed at several issues based on SVM and fuzzy system, including the learning speed and generalization ability of SVM, the interpretability of type-1 and type-2 fuzzy system, the combination of type-1 and type-2 fuzzy system and probability and calculus theory. In this paper, the creative research results are:
     (1) A novel method of improving the performance of a support vector machine classifier is presented by modifying kernel function. The method based on the differential approximation of metric merges data information into dynamic kernel by a positive scalar function. The separability is increased by enlarging margin around the separating hyper-plane. Example is given specifically for modifying Gaussian Radial Basis Function kernel. Simulation results for both artificial and real data show remarkable improvement of generalization ability and computational cost.
     (2) A kind of novel kernel functions are obtained from the reproducing kernels of Hilbert spaces associated with special inner product. The kernel functions with the advantages of both polynomial kernel and Gauss kernel, not only have a good global property, but also have a strong ability to interpolate. SVM with the proposed kernel functions only need less support vectors to construct two-class hyperplane than that with Gaussian kernel functions, so the proposed kernel functions have the better generalization capability. SVM applied to Wisconsin breast cancer data and artificial data using the proposed kernel functions, and demonstrate that it provides remarkable improvement of support vectors and training time compared with that of SVM with the Gaussian kernels. Especially, the proposed kernel functions become more and more efficient with the increase of orders of the space.
     (3) The conventional support vector machine classifier is a nonlinear classifier by mapping a low-dimensional data space into its high-dimensional feature space where it may become linearly separable using kernel functions. The SVM solution (an optimal hyper-plane) is obtained through maximizing the margin between the separating hyper-plane and data in the feature space. The performance of SVM depends heavily on the kernel functions. A class of new kernel functions is proposed, which are named as hyper-ellipsoid coordinate transform kernels using hyper-ellipsoid coordinate transformation formula. The performance of SVM with hyper-ellipsoid kernels may be enhanced as a result of the same dimensional mapping between input space and the feature space and the enlarged spatial resolution. Another advantage is much less support vectors to be required, resulting in faster learning and better generalization capability than the conventional SVM with Gaussian kernels. Experimental results for both artificial and real data confirm the effectiveness of the proposed hyper-ellipsoid support vector machine classifier.
     (4) Epanechnikov Mixture Model (abbr. EMM) can be translated to Mamdani-Larsen fuzzy system. The mathematical equivalence is proved between the conditional mean of an EMM, and the defuzzified output of a Mamdani-Larsen fuzzy system. The result provides a study of the new perspective of Mamdani-Larsen fuzzy system by interpreting it from a probabilistic viewpoint. Instead of estimating the parameters of the fuzzy rules directly, the parameters of an Epanechnikov mixture model can be firstly estimated using any popular probability density estimation algorithm, such as Expectation Maximization (abbr. EM). Simulation results show Mamdani-Larsen fuzzy system trained by the new way has high accuracy and strong anti-noise ability.
     (5) Generalized Epanechnikov mixture model can be translated into a rule- centered generalized fuzzy system (abbr. RCGFS) with multidimensional membership functions. The conditional mean of a generalized EMM is the defuzzified output of a RCGFS. A bridge is built between probability model and fuzzy system. The distinctive advantage of the proposed fuzzy system induced by a generalized EMM is easy to manipulate and highly interpretable, due to the fact that the coefficients in the consequent polynomials of fuzzy rules can be exactly interpreted as Taylor series coefficients. Moreover, the proposed system is also rooted at multidimensional membership functions that take into account the correlation among data components, which results in a more effective partition of the input space. The power of the proposed system is experimentally demonstrated by means of three benchmark examples: piecewise function, Mackey-Glass chaotic time series and a nonlinear dynamic system.
     (6) Uncertain Gaussian mixture model (abbr. UGMM) can be translated to an additive type-2 Takagi-Sugeno-Kang (abbr. TSK) fuzzy logic system. The mathematical equivalence is proved between the conditional mean of a UGMM, and the defuzzified output of a type-2 TSK fuzzy system (abbr. T2-TSK-FS). The results provide a study of the new perspective of type-2 fuzzy systems by interpreting them from a probabilistic viewpoint. T2-TSK-FS can be obtained from UGMM using any popular density estimation algorithm, such as EM. The new way of training a fuzzy model has two advantages, one is diversification of estimating parameters, and another is that T2-TSK-FS has high accuracy and stronger anti-noise ability. After comparing the simulation results with the ones obtained from other system modeling tools, it can be claimed successful results are achieved.
     (7) The existing methods of fuzzy system identification hardly keep good trade-off between precision and fuzzy meaning. One of the main reasons is short of systematic optimal structure identification methods.Thus, a novel fuzzy system whose fuzzy membership functions are the reproducing kernel functions is constructed based on the theorey of the reproducing kernel space. An adaptive learning algorithm for structure identification of the new fuzzy system is proposed using Fuzzy C-Means (abbr. FCM) algorithm and the approximating property of the reproducing kernel functions. Simulation results show the efficiency of the fuzzy system and its structure identification algorithm.
引文
1. Vapnik V N. The Nature of Statistical Learning Theory[M], NY: Springer Verlag, 1995张学工译,统计学习理论的本质[M].北京:清华大学出版社,2000.23-47
    2.边肇祺,张学工.模式识别(第二版)[M].北京:清华大学出版社,2000. 284-303
    3.张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42
    4. V apnik V N. Estimation of Dependencies Based on Empirical Data [M]. Berlin: Springer-Verlag, 1982.
    5. Cherkassky V, Mulier F. Learning from Data: Concepts, Theory and Methods [M]. N Y: John Viley & Sons, 1997.
    6. Vapnik V N. Statistical Learning Theory [M], NY: John Wiley and Sons, 1998.
    7. Ding C H Q, Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks [J]. Bioinformatics, 2001,17(1):349-358
    8. GIORGIO V. Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles [ J ] .Artificial Intelligence in Medicine , 2002 , 26(3) : 281 - 304
    9. DENIZ O, CASTRILLON M, HERNANDEZ M. Face recognition using independent component analysis and support vector machines [J]. Pattern Recognition Letters, 2003, 24 (11): 2153 - 2157.
    10. WANG Y, CHUA C, HO Y. Facial feature detection and face recognition form 2D and 3D images [J]. Pattern Recognition Letters, 2002 , 23(6) : 1191 - 1202.
    11. Chen Datong, Bourlard H,Thiran J P. Text Identification in Complex Background Using SVM[C].In: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). Hawaii:CVPR, 2001.621-626
    12. Kotropoulos C. Segmentation of ultrasonic images using support vector machines [J]. Pattern Recognition Letters, 2003, 24(7): 715-727
    13. Ganapathiraju A, Hamaker JE, Picone J. Applications of support vector machines to speech recognition [J]. IEEE Trans. on Signal Processing, 2004, 52(8):2348-2355
    14. Pontil M, Verri A. Support vector machines for 3D object recognition [J]. IEEE Trans on Pattern Analysis & Machine Intelligence,1998, 20(6):637-646
    15. Suykens, J A K. Least squares support vector machines for classification and nonlinear modeling [J]. Neural Network World, 2000, 10(1):29-47
    16. Ganyun L V, Cheng Haozhong, Zhai Haibao and Dong Lixin. Fault diagnosis of power transformer based on multi-layer SVM classifier [J]. Electric Power Systems Research, 2005,74(1):1-7
    17.王立新著,王迎军译.模糊系统与模糊控制[M].北京:清华大学出版社,2003.1-11
    18.邓乃扬,田英杰著.数据挖掘中的新方法:支持向量机[M].北京,科学出版社,2004.49-93
    19. NELLO CRISTIANINI, JOHN SHAWE-TAYLOR. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge, UK: Cambridge University Press, 2000.李国正等译.支持向量机导论[M].北京:电子工业出版社, 2004.82-106
    20. TAYLOR J S, CRISTIANINI N. Kernel Methods for Pattern Analysis [M]. Cambridge, UK: Cambridge University Press, 2004.赵玲玲等译,模式分析的核方法[M].北京:机械工业出版社,2006.24-51
    21. Scholkoph B Smola A J Bartlett P L. New support vector algorithms [J]. Neural Computation, 2000,12(5):1207-1245
    22. Girosi F, Jones M J, Poggio T. Regularization Theory and Neural Networks Architectures [J]. NeurComp, 1995, 7(2):219-269
    23. Cortes C and Vapnik V. Support vector networks [J]. Machine Learning,1995,20(2) : 273-297
    24. Domeniconi C, Gunopulos D. Incremental support vector machine construction [C]. In:Proceedings of IEEE International Conference on Data Mining (ICDM). San Jose:ICDM, 2001.589 - 592
    25. Osuna E, Freund F, Girosi F. Training Support Vector Machines: An Application to Face Detection[C].In: Proc. Computer Vision and Pattern Recognition (CVPR).San Juan, Puerto Rico:CVPR, 1997.130- 136
    26. Platt J C. Advances in kernel methods: support vector learning. MA USA: M IT Press , 1999. 185 - 208
    27. Xu P, Chan A K. Support vectormachines for multi-class signal classification with unbalanced samples [C]. In:Proceedings of the International Joint Conference on Neural Networks(IJCNN). Portland: IJCNN, 2003. 1116 - 1119
    28. Hsu Chih-Wei, Lin Chih-Jen. A comprison of methods for muliclass support vector machines [J]. IEEE Trans on Neural Networks,2002,13(2):415-425
    29. SUYKENS J A K, VANDEWALE J. Least Squares Support Vector Machine Classifiers [J]. Neural Processing Letters, 1999, 9(3):293-300
    30.范昕炜.支持向量机算法的研究及其应用[D]:[博士学位论文].杭州:浙江大学计算机系, 2003
    31. L in ChunFu,Wang ShengDe. Fuzzy support vector machines [ J ]. IEEE Transaction on Neural Network, 2002, 3 ( 2 ) :464 - 471
    32. Olvi L, David R. Musicant. Robust Linear and Support Vector Regression[J]. IEEE Trans Pattern Anal Machine Intellegence, 2000,22(9): 950-955
    33. Hadzic, I, Kecman V. Support vector machines trained by linear programming: theory andapplication in image compression and data classification[C].In: Proceedings of the 5th Seminar on Neural Network Applications in Electrical Engineering(NEUREL).Belgrade Yugoslavia:NEUREL,2000.18-23
    34. Bart Baesens, Stijn Viaene, Tony Van Gestel,etal. An empirical assessment of kernel type performance for least squares support vector machine classifiers[C]. In:t he Fourth International Conference on Knowledge-Based Intelligent Information Engineering Systems & Allied Technologies(KES). Brighton, UK:KES, 2,2000. 313-316
    35. Glenn Fung, Mangasarian O L. Multicategory proximal support vector machine classifiers [J].Machine Learning,2005,59(1): 77-97
    36. Mangasarian O L. Mathematical programming in data mining[J]. Data Mining and Knowledge Discovery, 1997,42(1):183-201
    37.吴涛.核函数的性质、方法及其在障碍检测中的应用[D ].[博士学位论文].长沙:国防科学技术大学,2003.
    38. Osuna E R, Girosi F. Training Support Vector Machines: AnApplication to Face Detection[C].In: Proc. Computer Vision and PatternRecognition (CVPR). San Juan, Puerto Rico :CVPR,1997.130-136.
    39. ROCCO C M , MORENO J A. Fast monte-carlo reliability evaluation using support vector machine [ J ] . Reliability Engineering and System Safety, 2002 (76) : 237 - 243.
    40. TONY V , JOHAN A , DIRKEMMA B. Financial time series prediction using least squares support vector machines within the evidence framework [ J ] . I EEE Trans. on Neural Networks, 2001 , 12 (4) : 809 - 821
    41. TIAN X , DENG F Q. An improved mult-class SVM algorithm and its application to the credit scoring model [C] . Proceedings of the Fifth World Congress on Intelligent Control and Automation(ICA).Hangzhou:ICA , 2004.1940 - 1944
    42. Girosi F, Jones M and Poggio T. Regularization Theory And Neural Network Architectures[J]. Neural Computation,1995, 20(2):1455-1480
    43. Smola A J Scholkopf B and Muller K R. The Connection between Regularization Operator and Support Kernels [J]. Neural Networks,1998,11(3):637-649
    44. Evgeniou T.,Pontil M. and Poggio T. Regularization Networks And Support Vector Machines [J]. Advances in Computational Mathematics,2000,13(1):1-50
    45. Antoine Bordes,Seyda Ertekin,Jason Westou, Leon Bottou. Fast Kernel Classifiers with Online And Active Learning [J]. Journal of Machine Learning Research,2005, 6(4):1579-1619
    46. Ming Rui Wu , Bernhard Scholdopf, Gokhan Bakir. A Direct Method for Building Sparse Kernel Learning Algorithm[J]. Joural of Machine Learning Research,2006, 7 (1):603-624
    47. Steinwart J. On the Optimal Parameter Choice forν-support Vector Machines [J]. IEEE Transactions on Pattern Analysis And Machine Intelligence, 2003, 25(10):1274-1284.
    48. Chang,c.-c., Lin, C.-J. Trainingν-support Vector Classifiers: Theory And Algorithm [J]. Neural Computation, 2001,13(9):2119-2147
    49. Nello Cristianini and John Shawe-Taylor. An Introduction to SVMs And Other Kernel-based Learning Methods [M]. Cambridge :Cambridge University Press,2000.82-108.
    50. V. Vapnik. An Overview of Statistical Learning Theory [J]. IEEE Transactions on Neural Networks,1999,10(5):988-999
    51. Zhang Qinli. The Numerical Methods for Solving Euler System of Equations in Reproducing Kernel Space H 2 (R)[J], Journal of Computational Mathematics, 2001,3(19):327--336
    52. Sánchez V D A. Advanced support vector machines and kernel methods [J]. Neurocomputing, 2003,19(2):5-20
    53. Mamdani E H, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller [J]. International Journal Man-Machine Studies,1974,7(2):1--13
    54. WANG Lixin, JERRY Mendel. Fuzzy basis funcitons, univesal approximation, and orthogonal least-squares learning [J]. IEEE Transaction on Neural Networks,1992, 3(5): 807—814
    55. ZENG Xiaojun, MADAN G. Singh approximation theory of fuzzy systems-SISO case[J]. IEEE Transaction on fuzzy system, 1994,2(2):162-176
    56. ZENG Xiaojun, MADAN G. Singh approximation theory of fuzzy systems-MISO case [J]. IEEE Transaction on fuzzy system, 1995,3(2):219--235
    57. HAO Ying. Sufficient condition on general fuzzy systems as function approximators [J]. Automatica, 1994, 30(3):521—525
    58. Takagi T and Sugeno M. Fuzzy identification of systems and its application to modeling and control [ J ] . IEEE Trans on System ,Man , and Cybernetics , 1985 ,15 (1) :116-- 132
    59. HAO Ying. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators [J]. IEEE Transaction on Fuzzy Systems, 1998, 6(4):582—587
    60.曾珂,徐文立,张乃尧。典型T-S模糊系统是通用逼近器[J].控制理论与应用, 2001, 18(2):294—297
    61. WANG Lixin. Universal approximation by hierarchicalfuzzy systems[J ] . Fuzzy Set s and Systems , 1998 , 93 (4):223 -- 230
    62. Buckley J. J., Hayashi Y. Fuzzy neural networks: A survey [J]. Fuzzy sets and systems, 1994 , 66(1):1--13
    63. Wang L. X., Mendel J. M. Back-propagtion fuzzy system as nonlinear dynamic system identifiers[C]. In: Proc. Of IEEE International Conference on fuzyy systems(FS).San Diego:FS,1992.1409-1418
    64. Egusa Y., Akahori H., Morimura A., Wakami N. An application of fuzzy set theory for an electronic video camera image stabilizer [J]. IEEE Trans. On Fuzzy System, 1999, 3(3):351-356
    65. Wang L. X., Mendel J. M. Fuzzy basis functions, universal approximation, and orthogonal least-squres learning [J]. IEEE Trans. On Neural Networks, 1992,3(5):807-814
    66. Wang S. D., Lin C. K. Adaptive tuning of the fuzzy controller for robots [J]. Fuzzy sets and systems, 2000,110(3):351-363
    67. Simon D, EI-Sherief H. Fuzzy logic for Digital Phase-Locked Loop Filter Design[J]. Fuzzy sets and systems, 2002,132(2):189-199.
    68. Chen J Q, Xi Y G, Zhang Z J. A clustering algorithm for fuzzy model identification[J]. Fuzzy sets and systems, 1998,98(2):319-329.
    69. Figueiredo M, Gomide F. Design of fuzzy systems using neurofuzzy networks[J]. IEEE Trans. On Neural Networks, 1999,10(4):815-827
    70. Guillaume S. Design fuzzy inference systems from data: an interpretability-oriented review[J]. IEEE Trans. On Fuzzy System, 2001, 9(3):426-443
    71. Ishibuchi H. Effect of rule weights in fuzzy rule-based classification systems[J]. IEEE Trans. On Fuzzy System, 2001, 9(4):506-515
    72. Chen Shyi-Ming, Huang Chung-Ming. Generating weighted fuzzy rules from relational database systems for estimating values using genetic algorithms[J]. IEEE Trans. On Fuzzy System, 2003, 11(4):495-506
    73. Ishibuchi H, Murata T, Turksen I B. Single-objective and two-objective genetic algorithms for selecting linguistic roles for pattern classification problems[J]. Fuzzy sets and systems, 1997,89(2):135-150
    74. Smith S M, Comer D J. Utomitated calibration of a fuzzy logic controller using a cellstate space algorithm[J]. IEEE Trans. On control systems magzine, 1991,11(5):18-28
    75. Wu R, Chen S. A new method for constructing membership functions and fuzzy rules from training examples[J]. IEEE Trans. On System Man Cybernet-part B,1999,29:25-40
    76. Castro J L, Zurita J M. An inductive learning algorithm in fuzzy systems[J]. Fuzzy sets and systems, 1997,89(2):193-203
    77.徐海,刘石,马勇,蓝鸿翔.基于改进的粒子群游优化的模糊逻辑系统自学习算法[J].计算机工程与应用,2000,147(7):62-63
    78.李丽香,彭海朋,杨义先.混沌蚂蚁群算法设计T-S模糊系统[J].物理学报,57(2):703-708
    79. Pal N R, Bezdek J C. On cluster validity for fuzzy c-means model[J]. IEEE Trans. On Fuzzy System, 1995, 3(3):370-379
    80. Chudy L, Farkas I. Prediction of chaotic time-series using dynamic cell structure and local linear models[J]. Neural network world,1998, 8(5):481-489
    81. Sugeno M, Tanaka K. Successive identification of a fuzzy model and its application to prediction of a complex system[J]. Fuzzy sets and systems, 1991,42(2):315-334
    82. Wang Shitong , Chung F L. Shen HongBin, Hu Dewen. Cascaded centralized TSK fuzzy system:universal approximator and high interpretation[J]. Applied Soft Computing, 2005,5(2):131-145
    83. Takagi T, Sugeno M. Fuzzy identification of system and its application to modeling and control[J]. IEEE Trans. On System Man Cybernet-part B,1985, 15(1):116-132
    84. Zadeh L A. Probability theory and fuzzy logic are complementary rather than competitive [J]. Technometrics, 1995, 37(3): 271–276
    85. Dubois D and Prade H. Fuzzy sets and probability: Mis- understandings, bridges, and gaps[C]. In: Proc. of 2nd IEEE Int. Conf. Fuzzy Systems(FS), San Francisco: FS, 1993.1059– 1068
    86. Mendel J. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions [M]. New York: Prentice Hall, 2000.
    87. Gan Ming-Tao and Madasu Hanmandlu. From a Gaussian Mixture Model to Additive Fuzzy Systems[J]. IEEE Transactions on Fuzzy System, 2005, 13(3):303-316
    88. Nishchal K. Verma and Madasu Hanmandlu. From a Gaussian Mixture Model to Non-additive Fuzzy Systems[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(2): 1-19.
    89. Janos Abonyi, Robert Babuska and Ferenc Szeifert. Fuzzy modelling with multivariate membership functions: Gray-box identification and control design[J]. IEEE Trans. on Systems, Man, and Cybernetics. 2001, 31(5):755:767
    90. Euntai Kim, Minkee Park, Seungwoo Kim and Mignon Park. A tansformed input-domain approach to fuzzy moeling[J]. IEEE Trans. Fuzzy Systems, 1998, 4(6):596-604
    91.Andreas Kroll. Identification of functioanal fuzzy models using multidimensional reference fuzzy sets[J]. Fuzzy sets and systems, 1996, 80(22):149-158.
    92. George Kollios, Dimitrios Gunopulos, Nick Koudas and Stefan Berchtold. Efficient Biased Sampling for Approximate Clustering and Outlier Detection in Large Data Sets[J]. IEEE transactions on Knowledge and Data Engineering. 2003, 15(5):1170-1187
    93. Robert Jenssen, Indefinite Parzen window for spectral clustering[C]. In: Proceedings of IEEE workshop on Machine Learning for Signal Processing. Thessaloniki (MSSPT). Greece:MSSPT, 2007. 390-395
    94. Wand M and Jones M. Kernel Smoothing[M]. London:Chapman and Hall, 1995.
    95. Azeem M F, Hanmandlu M, and Ahmad N. Generalization of adaptive neuro-fuzzy inference systems[J]. IEEE Trans. Neural Networks, 2000, 11(6):1332-1346
    96. Guo Qingchang , Chang Xiaojuan, Chu Hongxia. Mean-shift of Variable Window Based on the Epanechnikov Kernel[C]. In: Proceedings of IEEE International Conference on Mechatronnics and Automation(ICMA). Harbin:ICMA,2007. 2314-2319
    97. Mendel J M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions[M]. New York: Prentice Hall, 2000.
    98. Buckley J J, Hayashi Y. Fuzzy neural networks: A survey[J]. Fuzzy sets and systems, 1994 , 66(1):1-13
    99. Liang Qilian and Jerry M. Mendel. An introduction to Type-2 TSK Fuzzy Logic Systems[C]. In Proc. IEEE International Fuzzy systems conference(IFS).Seoul: IFS, 1999.1534-1539
    100. Karnik N N, Mendel J M. Centroid of a Type-2 Fuzzy Set[J]. Information Sciences , 2001, 132(2): 195-220.
    101. Karnik N N, Mendel J M. Liang Q. Type-2 fuzzy logic systems [J ]. IEEE Trans. Fuzzy Syst. , 1999, 7(3): 643-658.
    102. Liang Q ,Mendel J M. Interval type-2 fuzzy logic systems: Theory and design [J ]. IEEE Trans. Fuzzy Syst. , 2000, 8(3) : 535- 550.
    103. Mendel J M, Robert I John and Liu Feilong. Interval Type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Systems, 2006,4(5): 808-821.
    104 . Mendel J M. Type-2 fuzzy sets and systems: an overview [J], IEEE Computational Intelligence Magazine. 2007, 2(1):20-29
    105. John R, Coupland S. Type-2 fuzzy logic: a historical view[J], IEEE Computational Intelligence Magazine, 2007, 2(1):57-62
    106. Hwang C and Chung-Hoon Rhee. Uncertain Fuzzy Clustering:Interval Type-2 Fuzzy Approach to C-Means[J]. IEEE Trans. Fuzzy Syst, 2007, 15(1): 107-120
    107. Tong R M. The evaluation of fuzzy models derived from experimental data[J]. Fuzzy Sets Syst., 1980, 13(4): 1–12
    108. Pedrycz W. An identification algorithm in fuzzy relational systems [J]. Fuzzy Sets Syst., 1984, 13(4): 153–167.
    109. Xu C W and Lu Y Z, Fuzzy model identification and self-learning for dynamicsystems[J]. IEEE Trans. Syst., Man, Cybern., 1987,17(3): 683–689
    110. Box G E P and Jenkins G M. Time Series Analysis, Forecasting and Control [M]. San Francisco: Holden Day, 1970
    111. Sugeno M and Yasukawa T. A fuzzy-logic-based approach to qualitative modeling [J]. IEEE Trans. Fuzzy Syst, 1993, 1(1): 7–31
    112. Wang L and Langari R. Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques [J]. IEEE Trans. Fuzzy Syst.,1995, 3(3):454–458
    113. Sugeno M and Tanaka K. Successive identification of a fuzzy model and its applications to prediction of a complex system [J]. Fuzzy Sets Syst.,1991, 42(2):315–334
    114. Lin Y and Cunningham G A. A new approach to fuzzy neural modeling [J]. IEEE Trans. Fuzzy Syst., 1995, 3(2):190–197
    115. Kim E, Park M. A new approach to fuzzy modeling [J]. IEEE Trans. Fuzzy System, 1997, 5(2): 328–337
    116.王立新.模糊系统:挑战与机遇并存——十年研究之感悟[J].自动化学报,2001,27(4):585-590
    117.胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干问题[J].自动化学报,2001,27(4):567-584
    118. Jang S R. ANFIS: Adaptive-networks-based fuzzy inference system[J]. IEEE Trans. On System, Man and Cybernetics, 1993, 23(3):665-694
    119. Abe Shigeo, Lan M S. Fuzzy rules extraction directly from numerical data for function approximation [J]. IEEE Trans. On System, Man and Cybernetics, 1995, 25(1):119-129
    120. Lin Cheng-Jian, Lin Chui-Ten. Reinforcement learning for an ART-based fuzzy adaptive learning control network [J]. IEEE Trans. On Neural Networks, 1996, 7(3):709-731
    121. Lorenz E N. Deterministic Nonperiodic Flow [J]. Journal of the atmospheric sciences, 1963, 20(2):130-141
    122. Wang L and Langari R. Complex systems modeling via fuzzy logic[J]. IEEE Trans. on Syst., Man, Cybern, 1996, 26(1):100-106
    123. Peng X and Wang P. On generating linguistic rules for fuzzy models [J]. Lectures Notes Computing Science Uncertainty Intellegence. System,1988, 313(2):185-192
    124. Yoshinary Y, Pedrycz W and Hirota K. Construction of fuzzy models through clustering techniques [J]. Fuzzy Sets System, 1993, 54(1):157-165
    125. Nie J H. Constructing fuzzy model by self-organizing counterpropagation network [J]. IEEE Transaction System, Man and Cybernetics,1995,25(5):963-970
    126. Pedrycz W, Lam P and Rocha A F. Distributed fuzzy system modeling [J]. IEEE Transaction System, Man and Cybernetics, 1995, 25(5):971-980
    127. Delgado M, Gomez-Skarmeta A F and Martin F. Fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling [J]. IEEE Transaction On Fuzzy System, 1997, 5(2): 223-233
    128. Joo Y H, Hwang H S, Kim K B, et al. Fuzzy system modeling by fuzzy partition and GA hybrid schemes [J]. Fuzzy Sets System, 1997, 86(3):279-288
    129. Lin Y, Cunningham G A,and Coggeshall S V. Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network[J]. IEEE Transaction Fuzzy System, 1997, 5(4):614-621
    130. Chen J Q, Xi Y G and Zhang Z J. A clustering algorithm for fuzzy model identification [J]. Fuzzy Sets System, 1998, 98(2):319-329
    131. Wang Y and Rong G. A self-organizing neural-network-based fuzzy system [J]. Fuzzy Sets System,1999, 103(1):1-11
    132. Lo J C and Yang C H. A heuristic error-feedback learning algorithm for fuzzy modeling [J]. IEEE Transaction on System, Man and Cybernetics, 1999, 29(4):686-691
    133. Kang S J, Woo C H, Hwang H S, et al. Evolutionary design of fuzzy rule base for nonlinear system modeling and control [J]. IEEE Transaction On Fuzzy System, 2000,8(1):37-45
    134. Kukolj D and Levi E. Identification of complex systems based on neural and Takagi-Sugeno fuzzy model [J]. IEEE Transaction on System, Man and Cybernetics Part B, 2004,34(1):272 -282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700