用户名: 密码: 验证码:
水电站优化运行与风险分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水电站水库调度过程中存在着许多不可预见因素,这些不可预见因素的存在必然会对水库的运行调度带来风险。主要包括:来水风险、决策放水风险、发电效益风险。而来水风险起决定性作用。风险决策分析的目的就是采用相关方法对产生风险的各种可能的误差进行分析和评估,找出风险效益匹配或风险偏好最合适的决策方案。在本论文中,主要针对水库时段来水风险及电站调度期发电效益风险进行研究。
     对水库调度期面临时段而言,调度风险主要来自于入库径流的不确定性。由于时段入库径流的不确定性,导致决策结果的不确定性。目前得到较多应用的水文预报模型,预报制作单位都把它们视作确定性的,作为它们输出的预报值一般以确定值的形式发布给用户。然而,水文过程的发生与发展取决于气象因素和地理因素,是一个复杂的动态过程;水文预报模型接受水文、气象等多种输入,运用概化的模型参数,只是客观水文过程的仿真。这些复杂的因素导致了水文预报(入库径流预报)必然存在不确定性。
     基于马尔可夫过程的水库发电优化调度,受到广泛研究的优化准则是收益期望值最优。然而,期望准则对风险是不敏感的,不适宜需要直接对风险有所反映或限制的优化问题。在水电站水库优化调度中,为保证一定水平的发电收益,调度策略在尽可能使年期望总发电量大的同时,还要求平时发电量低于某个给定值的概率不得大于某个预定值。仅限于以收益期望值为优化目标是不够的,有必要选择其他的优化目标来反映实际问题的风险及决策者的意愿或风险偏好。
     在阅读和研究大量水库调度领域文献的基础上,研究了中长期优化调度以及发电调度风险评估问题。论文主要内容及创新成果包括如下几部分:
     第一部分(第三章)介绍了一种水库中长期补偿优化调度方法。对其建模原理、特点及求解方法进行了详细评述,并对实例的优化结果进行了详细分析。
     第二部分(第四章)介绍了一种水库调度时段风险分析法。采用贝叶斯概率水文预报理论,将实时气象因子与历史水文数据序列相结合,综合利用各种信息以提高入库径流预报精度。采用因子灰关联预报模型对流域中长期降水进行预报,建立流域降水径流确定性预报模型和贝叶斯概率水文预报模型,并以概率分布形式定量地描述水文预报的不确定度。以隶属东北电网的丰满水库为例,对所建立的模型进行了检验。
     第三部分(第五章)则给出一种水库优化调度收益最小风险模型。该模型以事件风险概率为优化目标,寻求最优策略。具体可描述为:对预给定的调度期发电总收益水平,寻求最优的水库调度控制策略,使得收益低于此预收益值的概率风险最小。此模型有利于决策者根据自己风险承受能力及风险偏好,选择不同的控制策略。
     最后,对全文进行了总结与展望。在对全文研究工作进行总结的基础上,对今后有待于深入研究的问题及研究方向进行了展望。
There exist many unpredictable factors during the hydro scheduling process, which cause many kinds of risk for the actual operation such as: inflow risk, decision-making risk, power generation revenue risk. The reservoir inflow risk is the potential one and plays a decisive role. Risk analysis for the decision-making is to take related methods to analyze and assess various possible errors and identify the most suitable decision-making with risk-benefit or risk preference matching. The inflow risk and generation revenue risk are studied.
     For the facing period of the whole regulation horizon, the main scheduling risk comes from the runoff uncertainty, which causes the uncertainty of the decision-making results and expectations. For the general adept hydrological forecasting model in applications, they are treated as certainty ones. The output of the forecast variable is always released to the users as a determinant value. However, the occurrence and development of the hydrological phenomenon is a complex dynamic process depending on the meteorological and geographical factors. Hydrological forecasting model accepts hydrological, meteorological and other inputs, using overviewed parameters and those are only the simulations of the objective hydrological process. All those complex factors lead the hydrological (runoff forecasts) forecasting to be uncertainty.
     For the reservoir generation operation based on the Markov process, the extensively applied optimization criterion is the optimal expectations revenue. However, the expectations criterion is not sensitive to the risk. and is not suitable for the optimal problems which need to reflect or limit the risk directly. For the optimal operation of hydropower, in order to guarantee a certain level of generation revenue, the operation strategy adopted should ensure the probability of the generation revenue beyond a given one to be lager than some given value while pursuing the expectations revenue to be more lager. Limited only to the expectation revenue as the optimization objective is not enough, it is necessary to choose other optimal goal to reflect the actual risk or the policy-makers’will or risk preferences.
     Based on reading and studying large number of literatures about reservoir scheduling, the long-term optimization scheduling problem and the scheduling risk assessment are studied. The main thesis content and innovative achievements include the following parts:
     A long-term compensation optimization scheduling method is introduced in chapter 3. The principles and characteristics and solving method of the model are introduced in detail. A detailed analysis on the results of the example is given too.
     One risk analysis method for the period scheduling in introduced in chapter 4. Bayesian statistic forecasting theory is adopted to formulate the reservoir long-term runoff forecasting model, which describes the uncertainty of hydrological forecast by distribution function. Gray correlation prediction model of meteorological factors is presented to count the uncertainty of the input factor. Real-time meteorological information and history hydrological data are coupled effectively, which breakthrough the limitations on information utilization and samples learning of the determined forecast method and improve the accuracy of hydrological forecast. The established model is tested on the runoff forecast of the Feng-man reservoir.
     A minimum risk control model for the reservoir long-term generation optimization is presented in chapter 5. The optimal scheduling criterian is the probability that the expected generation of the whole period not exceeding the pre-set generation target to be smallest. Compared with the generally used guidance of the largest expectation power generation model, this model is fitted for the decision-making in which the risk is needed to be limited to reflect the risk preference of the policy makers.
     Finally, a summarization of the dissertation is given in the last part (Chapter 6), and also proposes problems that need to be settled in the future and some suggestions for further study.
引文
[1] Alfredo H-S, Wilson H-Tang. Probability Concepts in Engineering Planning and Design Decision[J]. Risk and Reliability, 1984, Volume II: 406~409
    [2] Bellman R R. Dynamic Programming[M]. Princeton University Press, Princeton, N.J, 1957:1~200
    [3] Little J D C. The use of storage water in a hydroelectric system. Oper. Res, 3 Volume, 1955
    [4] Howard R A. Dynamic Programming and Markov processes. MIT: Press, Cambridge, Mass, 1960:1~250
    [5] Turgeon A. Optimial short-term Hydroscheduling from the priciple of Progressive optimizality[J]. Water Resources Res, 1981, 17(3):481~486
    [6] Mujumdar P P.; Nirmala B. A. Bayesian stochastic optimization model for a multi-reservoir hydropower system[J]. Water Resources Management, 2007, 21(9): 1465~1485
    [7] Kim, Young-Oh; Eum, et al. Optimizing operational policies of a Korean multireservoir system using sampling stochastic dynamic programming with ensemble streamflow prediction[J]. Journal of Water Resources Planning and Management, 2007, 133(1): 4~14
    [8] Archibald T W.; McKinnon K.I.M.; Thomas L C. Modeling the operation of multireservoir systems using decomposition and stochastic dynamic programming[J]. Naval Research Logistics, 2006, 53(3): 217~225
    [9] Cervellera, Cristiano; Chen, et al. Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization[J]. European Journal of Operational Research, 2006, 171(3): 1139~1151
    [10] Mousavi S.J., Ponnambalam K., Karray F. Reservoir operation using a dynamic programming fuzzy rule-based approach[J]. Water Resources Management, 2005, 19(5):655~672
    [11] Maceira M.E.P.; Damazio J.M. The use of PAR(p) model in the stochastic dual dynamic programming optimization scheme used in the operation planning of the brazilian hydropower system[C]. 2004 International Conference on Probabilistic Methods Applied to Power Systems, 2004: 397~402
    [12]吴沧浦.年调节水库的最优运用[J].科学记录, 1962年第2期: 1~50
    [13]张勇传.优化理论在水库调度中的应用[M].长沙:湖南科学技术出版社, 1985
    [14]梅亚东,熊莹,陈立华.梯级水库综合利用调度的动态规划方法研究[J],水利发电学报, 2007, 26(2): 1~5
    [15]刘攀,郭生练,张文选等.梯级水库群联合优化调度函数研究[J],水科学进展, 2007, 18(6):816~822
    [16] Trott, WilliamTrott, William J.; et al. optimization of multiple reservoir system[J]. ASCE J Hydraul Div,1973, 99(HY10):1865~1884
    [17] H.R.Howson. A new Algorithm for the Solution of Multistage Dynamic Programming Problems[J], Math Programming, 1975, 8(1)
    [18] Larson R. State Increment Dynamic programming[M] . Elsevier, New York, 1968;
    [19]董子敖.水库群调度与规划的优化理论与应用[M].济南:山东科学技术出版社, 1989. 86~88
    [20] Heidari M V T, Chow P V, Kokotovic, et al. Discrete differential dynamic programming approach to water resources systems optimization[J]. Water Resources Res., 1971, 7(2): 273~282
    [21] Chow V T, D. R. Maidment, G. W.Tauxe. Computer time and memory requirements for DP and DDDP in Water resources systems analysis[J]. Water Resour Res, 1975, 11(5)
    [22]高仕春;万飚;梅亚东;张雪桂.三峡梯级和清江梯级水电站群联合调度研究[J].水利学报, 2006, 37(4): 504~510
    [23]张玉山,李继清.可变电价下的混联水电站联合优化调度[J].水力发电学报, 2004, 23(2):2~3
    [24]梅亚东,熊莹,陈立华.梯级水库综合利用调度的动态规划方法研究[J].水力发电学报, 2007, 26(2): 1~4
    [25] M.D.Mesarovic, D.Macko & Y.Takahara. Theory of Hierarchical Multilevel System[J]. Academic Press, 1970
    [26] Y.Y.Haimes. Hierarchical Analysis of Water Resources System: Modeling and Optimization of Large Systems[M], Mc Graw-Hill, New York, 1977
    [27] Turgeon A. Optimal Operation of Multi-Reseroir Powers Systems with Stochastic Inflows[J]. Water Resource Research, 1980, 16(20): 275 ~ 283
    [28] Vaddes J B, J.M.D. Fillipps, M. S. Kenneth, P. J.Restrepo. Aggregation-Disaggregation Approach to Multireseroir Operation[J]. Waterresource Planning & Management, ASCE, 1992, 118(4):423~443
    [29]胡振鹏,冯尚友.多维决策的多目标动态规划方法及其应用[J].水利学报, 1986年第7期: 56~57
    [30]朱文彬,周之豪.水电站水库群优化调度中NCS模型与NSO模型的递阶优化算法[J].水电能源科学, 1994, 12(4):215~222
    [31]陈森林.水库(群)调度基本理论及自动化系统研究[D].武汉:武汉大学图书馆, 2002
    [32]高仕春,万飚,梅亚东等.三峡梯级和清江梯级水电站群联合调度研究[J].水利学报, 2006, 37(4): 504~510
    [33]陈广娟,谭忠富,乞建勋.水电站经济运行的优化模型及其分解协调求解方法研究[J].水电能源科学, 2007, 25(3):77~81
    [34] Goldberg D E. Genetic algorithm in search, optimization, and machine learning[M]. MA: Addison Wesley. 1989: 257 ~ 293
    [35] Robin Wardlaw, Mohd Sharif. Evaluation of Genetic Algorithms for Optimal Reservior Resources[J]. Journal of Water Resource Planning and Management 1999, 125(1): 25~33
    [36]伍永刚,王定一.二倍体遗传算法求解梯级水电站日优化调度问题[J].水电能源科学, 1999, 17(3): 31~34
    [37]王文川,程春田,徐冬梅.基于混沌遗传算法的水电站优化调度模型及应用[J],水利发电学报, 2007, 26(6):8~11
    [38]万星,周建中.自适应对称调和遗传算法在水库中长期发电调度中的应用[J],水科学进展, 2007, 18(4):599~605
    [39]郑毅,吴斌.由鸟群和蚂蚁想到的-基于主题的仿真和群集智能的研究[J].微电脑世界, 2001第16期: 89~91
    [40] Marco Dorigo, Vittorio Maniezzo, Alberto Colorni. Ant System Optimization by ant colonies[C]. Proc 1st European conf Artificial Life . Pans, France: Elsevier, 1991: 134~142
    [41]曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社, 2004
    [42]李崇浩,纪昌明,李文武.基于微粒群算法的梯级水电系统短期优化调度研究[J].水力发电学报, 2006, 25(2):94~98
    [43]张双虎,黄强,吴洪寿等.水电站水库优化调度的改进粒子群算法[J].水力发电学报, 2007, 26(1):1~5
    [44] Ming Zhang, Chengjun Li, Yongchuan Zhang. An Improved PSO and itsApplication in Research on Reservoir Operation Function of Long-term ,ICNC’07-FSKD’07, IEEE, 2007, Vol(4): 118~122
    [45] R.Naresh, J. Sharma. Hydro system scheduling using ANN approach[J]. IEEE Trans. on Power Systems, 2000, 15(1): 388~394.
    [46] Wong K P, Wong Y W. Combined genetic algorithm-simulated annealing-fuzzy set approach to short-term generation scheduling with take-or-pay fuel contract[J]. IEEE Trans. on Power Systems, 1996, 11(1): 128~136
    [47] B.A.Faber, J.R. Stedinger. Reservior optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts[J]. Journal of Hydrology, 2001: 113~133.
    [48] Aihara K, Takabe, Toyoda M. Chaotic neural networks[M]. Phys Lett A, 1990, 144(6/7): 333~340
    [49] Zhou D, Yasuda K, Yokoyama R. A method to combine chaos and neural-network based on the fixed-point theory[J]. Trans. of IECE of Japan, 1997, 117-C (5):599-665
    [50] R. Naresh, J. Sharma. Short term hydro scheduling using two-phase neural network[J]. Electric Power & Systems, 2002, 24: 583~590
    [51] Zhou C.S., Chen T.L. Chaotic annealing for optimization[J]. Physical review. 1997, 55(3): 2580 ~ 2587
    [52] Poths J.C., Giddens T.D., Yadaw S.B. The development and evaluation for an improved genetic algorithm based on migration and artificial selection. IEEE Trans on SMC, 1994, 24(1): 73~86
    [53]刘卫林,董增川,王德智.混合智能算法及其在供水水库群优化调度中的应用[J],水利学报, 2007, 38(12):1427~1443
    [54] Blue J A, Bennet K P. Hybrid extreme point tabu search[J]. European J of operational research. 1998, 106(2/3): 676~688
    [55] Gil C., Ortega J. Meta-heuristic for circuit partition in parallel test generation[J]. Parallel and distributes processing, 1998: 315~323
    [56] Victoire T A A, Jeyakumar A E. Unit commitment by a tabu-search-based hybrid-optimisation technique[J]e. Generation, Transmissin and Distribution, IEE proceedings, 2005, 152(4): 563~574
    [57] Adiguzel R,. Ilker; Coskunoglu, ea al. Descriptive decision process model for hierarchical management of interconnected reservoir systems[J]. Water ResourcesResearch, 1984, 20(7): 803~811
    [58] Bonazountas M.; Camboulives J M. Multi-decision analysis for large-scale river-basin reservoir systems[J]. Journal of Hydrology, 1979, 51(1-4): 139~149
    [59] Momtahen Sh; Dariane A B. Direct search approaches using genetic algorithms for optimization of water reservoir operating policies[J]. Journal of Water Resources Planning and Management, 2007, 133(3): 202~209
    [60] Jothiprakash V.; Shanthi. Ganesan Single reservoir operating policies using genetic algorithm[J]. Water Resources Management, 2006, 20(6): 917~929
    [61] Nagesh Kumar D.; Raju K. Srinivasa, Ashok B. Optimal reservoir operation for irrigation of multiple crops using genetic algorithms[J]. Journal of Irrigation and Drainage Engineering, 2006, 132(2): 123~129
    [62] Nagesh Kumar D.; Janga Reddy M. Multipurpose reservoir operation using particle swarm optimization[J]. Journal of Water Resources Planning and Management, 2007, 133(3): 192~20
    [63] Yeh.W.W-G, Reservoir Management and Operations Models: A state-of-the-art Review. 1985, 21(2):1797~1818
    [64]张勇传,王乘.数字流域―数字地球的一个重要区域层次[J].水电能源科学, 2001, 19(3): 1~3
    [65] Donald H.Burn, Henry D.Venem Slobodan Psimonovic. Risk-bade performance criteria for real-time reservoir operation[J]. Canadian Journal of Civil Engineering. 1981, Vol.18: 648~651
    [66] Kao Jehng-jun and Shyang-fu bau. Risk analysis for flow duration curve based seasonal discharge management programs[J]. Water Resources Res, 1996, 30(6):1369~1376
    [67]熊福生.风险理论[M].武汉:武汉大学出版社. 2005: 1~15
    [68] L.德克斯坦, E.J.勃兰特.水资源工程可靠性与风险.吴媚玲王俊德译.北京:水利电力出版社, 1993. 1~200
    [69] Vogel R M. Reliability indices for water supply systems[J]. Water Resource Plan Manage, 1987, 113(4): 563~579
    [70] Hasan Yazicigil and Mak H. Houck. The effects of Risk and Reliability on Optimal Reservoir Design[J]. Water Resource Bull, 1984, 20(3): 417~423
    [71] Tsuyoshi Hashimoto, Jery R. Stedinger, Daniel P.Loucks. Reliability Resiliency and vulnerability criteria for water resources system performance evaluation[J]. WaterResources Research, 1982, 18(1): 14~20
    [72] Donald H.Burn, Henry D.Venem Slobodan Psimonovic. Risk-bade performance criteria for real-time reservoir operation[J]. Canadian Journal of Civil Engineering, 1981, Vol(18).: 648~651
    [73] Vijay P.Singh. Dam breach modeling technology[M]. Kluwer academic publishers. 1996: 1 ~ 200
    [74] D.L.Fread, .M.Lewis, WS FLDWAV MODEL. Hydrologic Research Laboratory Office of Hydrology[J], National Weather Service, 1998: 946~951
    [75] ANCOLD (Australian National Committee on Large Dams), Guidelines on Risk Assessment[C]. 2001: 98 ~ 105
    [76]楼渐逵.加拿大BC Hydro公司的大坝安全风险管理.大坝与安全, 2000: 7~12
    [77] Cabero.Jordi, Baillo Alvaro, Cerisola Santiago. A medium-term integrated risk management model for a hydrothermal generation company[J]. IEEE Transactions on Power Systems, 2005, 20(3):1379~1388
    [78] Morga, Rocio, Garcia-Gonzalez, Javier Nogales, et al. A contingency analysis for managing the risk of water spillage and shortage in a mid-term hydro scheduling model[J]. Probabilistic Methods Applied to Power Systems, 2006, 1 ~ 6
    [79] Huang, Wen-Cheng; Chia-Ching. Risk-based drought early warning system in reservoir operation[J]. Advances in Water Resources, 2008, 31(4): 649~660
    [80] Mediero, Luis; Garrote L.; et al. A probabilistic model to support reservoir operation decisions during flash floods[J]. Hydrological Sciences Journal, 2007, 52(3): 523~537
    [81] Kuo Jan-Tai. Risk analysis for dam overtopping - Feitsui reservoir as a case study[J]. Journal of Hydraulic Engineering, 2007, 133(8): 955~963
    [82]王本德,徐玉英.水库洪水标准的风险分析[J].水文, 2001: 8~10
    [83]梅亚东,谈广鸣.大坝防洪安全的风险分析.武汉大学学报(工学版), 2002, 35 (6): 11~16.
    [84] Changming Ji, Liping Wang, Shangyou Feng. Multiobjective risk analysis in a key water control project management[J]. Modeling Measurement & Control, 1994, 9(4): 47~56.
    [85]陶涛,刘遂庆.供水水库优化模拟风险调度模式的研究[J].水利水电技术, 2005, 36(11):8~11
    [86]莫崇勋,董增川,麻荣永等.积分一次二阶矩法”在广西澄碧河水库漫坝风险分析中的应用研究[J].水利发电学报, 2008, 27(2): 44~49
    [87]顾文权;邵东国,黄显峰等.水资源优化配置多目标风险分析方法研究[J],水利学报, 2008, 39(3): 339~345
    [88]夏忠;杨文娟;刘涵,等.水库优化调度方案的风险因素辨识方法研究[J].干旱区资源与环境, 2006, 20(4): 113~115
    [89] Sharifi F, Haddad O B, Naderi M. Alimohammadi S. Continuous decision making in optimal reservoir operation using DP-ANN WSEAS[J]. Transactions on Information Science and Applications, 2005, 2(5): 630~636
    [90] D.P.Kothari, Aijaz Ahmad. An expert system approach to the unit commitment problem[J]. Energy Conversion & Management. 1995, 36(4). 257~261
    [91] Chang S, Chen C. Hydroelectric generation scheduling with an effective differential dynamic programming[J]. IEEE Trans PAS, 1990, 5(3): 737~743
    [92] P.G.JAIRAJ, S.VEDULA. Multireservoir system optimization using fuzzy mathematical programming[J]. Journal of Water Resources Management, 2000, Vol.14: 457~472
    [93] Seyed Jamshid Mousavi, Mohammed Karamouz, F.ASCE. Fuzzy-state stochastic dynamic programming for reservoir operation[J]. Journal of Water Resources Planning and Management, 2004, 130(4): 460~470
    [94]刘林普.关于水库风险调度基本问题的探讨[J].山西水利科技, 2004,: 71~73
    [95] Krzysztofwicz. R. Bayesian system for probabilistic river stage forecasting[J]. Journal of Hydrology, 2002, 268(1-4): 16~40
    [96] Krzysztofwicz.R, Maranzano, Coire J. Bayesian system for probabilistic stage transition forecasting[J]. Journal of Hydrology, 2004, 299(1-2):15~44
    [97] Krzysztofwicz R, Maranzano, Coire J. Hydrologic uncertainty processor for probabilistic stage transition forecasting[J]. Journal of Hydrology, 2004, 293(1-4): 57~73
    [98]夏军.现代水科学不确定性研究与进展[M].成都:成都科技大学出版社, 1994
    [99] Deng Julong. Control Problems of Grey Systems[J]. Systems & Control Letters, 1982, 1(5)
    [100]夏军.灰色系统水文学的提出与研究[J].武汉大学学报(哲学社会科版), 1995(增刊): 66~69
    [101] Kelly. K.S. Krzysztofowicz. R. Precipitation uncertainty processor for probabilistic river stage forecasting[J]. Water Resour. Res, 2000, 36(9): 2643~2653
    [102] Krzysztofowicz. R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model[J]. Water Resour Res, 1999, 35(9): 2739~2750
    [103] Krzysztofowicz R, Kelly K.S. Hydrologic uncertainty processor for probabilistic river stage forecasting[J]. Water Resour Res, 2000, 36(11): 3265~3277
    [104]程天文,陈洪经.随机水文学-周文德教授来华讲学主要内容之一[J].水文, 1981, 1(2): 30~33
    [105] Vicens G. J, Rodriguez-Iturbe I., Schanke J.C.R. A Bayesian framework for use of regional information in hydrology[J]. Water Resour. Res, 1975, 11(4): 533~542
    [106] Guo Shenglian; Xu Gaohong; Zhang, Honggang; et al. A real-time flood updating model based on the Bayesian method. Methodology in Hydrology[J], 2007, n311: 210~215
    [107] Mujumdar P P.; Nirmala B A. Bayesian stochastic optimization model for a multi-reservoir hydropower system[J]. Water. Resources Management, 2007, 21(9): 1465~1485
    [108] Frost, Andrew J.; Thyer, Mark A.; et al. A general Bayesian framework for calibrating and evaluating stochastic models of annual multi-site hydrological data[J]. Journal of Hydrology, 2007, 340(3-4): 129~148
    [109] Larsen, Anne Louise; Ulvmoen, Marit; et al. Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model[J]. Geophysics, 2006, 71(5): R69~R78
    [110] Khan, Mohammad Sajjad; Coulibaly, Paulin. Bayesian neural network for rainfall-runoff modeling[J]. Water Resources Research, 2006, 42(7): W07409
    [111] Khalil, Abedalrazq; McKee, Mac; et al. Sparse Bayesian learning machine for real-time management of reservoir releases[J]. Water Resources Research, 2005, 41(11): W11401
    [112] Jimenez. E A; Idrobo. E A; Ernandez J; et al. Optimizing estimates of probabilistic reserves from production trends using a Bayesian approach. SPE Hydrocarbon Economics and Evaluation Symposium[C]. SPE Hydrocarbon Economics and Evaluation Symposium: Hydrocarbon Development - A Global Challenge, Proceedings, 2005: 285~289
    [113] Krzysztofowicz. R., Herr, H.D. Hydrologic uncertainty processor for probabilistic river stage forecasting: precipitation-dependent model[J]. J.Hydrol, 2001, 249(1-4): 46~68
    [114]王善序.贝叶斯概率水文预报简介[J].水文, 2001, 21(5): 33~34
    [115]张洪刚,郭生练.贝叶斯概率洪水预报系统[J].科学技术与工程, 2004, 4(2); 74~75.
    [116] Box G E P, Tiao G C. Bayesian Inference in Satistical Analysi[M]. Addison-Wesley Reading Massachusetts, 1973
    [117]刘克.实用马尔可夫决策过程[M].北京:清华大学出版社, 2004. 10~60
    [118] ASKEW. A J. Chance constrained dynamic programming and the optimization of water resources systems[J]. Water Resources Research, 1974, (20):1099 ~ 1106
    [119] HUANG W C, WU C M. Diagnostic checking in stochastic dynamic programming[J]. Water Resource Plng & Manage, ASCE, 1993, 119(4):490~494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700