用户名: 密码: 验证码:
自由基反应挤出过程的数值模拟与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反应挤出技术是化学反应与挤出成型相集成的高新技术。以螺杆挤出机作为反应器,反应物和完成反应所必需的引发剂、催化剂等在连续挤出过程中完成预定的化学反应,合成为期望的聚合物,然后通过在挤出机机头安装的口模成型得到相应制品。因周期短、生产连续、能耗低、环境污染小等诸多优点受到国内外的广泛关注,具有良好的发展前景。
     反应挤出过程是物理流动、化学反应、传热与传质并存且相互影响的复杂过程,体系通常处于非等温、非等压和高剪切速率的复杂外场条件下,此外,反应挤出本身还存在一些特殊的工艺要求,如较高的反应速率、满足热传导条件、较高的转化率等,很难用经典反应器理论方法对现场工艺进行定量、实时研究与控制。解决上述问题的有效方法之一是开展反应挤出过程的数值模拟与优化设计,定量揭示化学反应对于高分子材料结构和物理化学性能的影响规律,进而优化设计反应器结构、材料组分和反应加工条件,扩大反应挤出技术的应用范围。可见,本课题具有重要的科学意义,并且具有广阔的工程应用前景。
     通常的数值模拟采用一维的沿螺槽轴向展开的反应器模型,在模拟过程中一般简化处理各种因素之间的耦合作用,基本不涉及高分子材料物理化学性能的动态演变规律的分析、材料组分和反应加工条件的优化设计等内容。本文以自由基聚合及接枝改性体系作为研究对象,综合应用机械科学、高分子化学与物理、高分子反应统计理论、计算流体力学、工程优化与软件工程等学科知识,从宏观尺度模拟反应挤出过程的化学流变行为,建立材料配方、反应加工条件、材料微观结构与宏观性质之间的函数关系;采用半隐式、解耦合的数值逼近方法,解决在复杂的化学与物理条件下:众多场变量之间的相互耦合问题;自主开发数值模拟与优化设计系统的核心程序,定量预测反应挤出场量的演变,并辅助选择反应器结构和工艺操作参数,使反应挤出过程实现可控化、最优化。
     主要工作与结论如下:
     双螺杆挤出机结构复杂,流体在流道内发生复杂的物理和化学变化,导致难以按照真实的挤出机结构与工况模拟其内部的复杂流变。本文根据紧密啮合同向旋转双螺杆挤出机的几何结构和运动特点,将每一个顺螺槽料流的流道沿螺槽轴向展开,分析得到展开长度、横截面宽度、深度与横截面面积等特征参数的计算式,在此基础上,忽略物料在两螺杆间传递的非主流运动,同时对模型截面形状进行简化处理,建立了等效的轴对称反应器模型。将实际生产过程中的边界工况,即螺杆转动对流体的拖曳,以及机筒静止对流体的阻碍,等效处理为流道模型全部周壁通过作轴向移动对流道内的流体进行拖曳,同时假定流道模型处于全充满状态,为整个反应挤出过程的数值模拟提供了空间模型。
     结合上述空间模型,给出了反应挤出过程的化学反应场、材料结构场与化学流变场的基本控制方程:根据自由基反应动力学理论,构建了自由基均聚及接枝反应的动力学模型,得到了反应速率、单体浓度、单体转化率、引发剂浓度的计算式;根据高分子反应统计理论,考虑相对分子质量三层意义上的统计平均——瞬时生成的聚合物平均相对分子质量、考虑了历史累积效应的聚合物平均相对分子质量与同时考虑反应物和产物的整个材料体系的平均相对分子质量——构建了每个层次数均、重均相对分子质量的计算式;给出了黏性不可压缩流体流动过程的连续性方程、运动方程和边界条件;根据高分子物理学,建立了反应体系的零剪切黏度、表观黏度与工艺条件、材料结构的关系式。
     应用控制容积积分法(Control Volume Integration)导出了对流—扩散方程的离散表达式,引入交错网格技术与SIMPLE算法,实现了耦合的压力场与速度场的分离式求解,推导得到了流体的流动速度、压力等物理量的数值计算式;采用向后差分方法和增量方法,实现了化学反应场、材料结构场、化学流变场控制方程的离散,获得了反应转化率、聚合物平均相对分子质量、流体黏度等物理量的数值计算式。
     采用半隐式、解耦合的数值逼近方法,解决了在复杂的化学与物理条件下众多场变量之间的相互耦合问题,开发了自由基聚合反应挤出过程数值模拟的核心程序和自由基接枝反应挤出过程数值模拟的核心程序。在给定的初始条件和边界条件下,实现了连续性方程、动量方程、化学反应动力学方程、平均相对分子质量计算式与化学流变本构方程的数值求解。
     运行自由基聚合反应挤出过程的数值模拟程序,模拟了甲基丙烯酸正丁酯的反应挤出过程,获得了单体转化率、聚合物平均相对分子质量、流体表观黏度等场变量的演变情况,单体转化率的模拟结果与实验结果吻合一致。讨论了凝胶效应及流率对反应挤出场量的影响,分析了在聚合反应挤出过程中调控高分子材料结构与流变性质的规律,为设备参数与工艺操作参数的选择提供了理论依据。
     运行自由基接枝反应挤出过程的数值模拟程序,模拟了乙烯基硅烷、丙烯酸及甲基丙烯酸甲酯接枝聚乙烯的反应挤出过程。获得了接枝度、均聚物质量分数、平均相对分子质量与材料黏度等场变量的动态演变情况,模拟结果与实验结果基本吻合。讨论了材料组成与工艺参数对接枝行为的影响规律,分析了提高接枝度与接枝效率的有效方法。
     在数值模拟基础上,开展了反应挤出过程的优化设计研究。以反应挤出过程的有限容积模拟作为目标函数求解方法,以遗传算法作为搜索寻优方法,开发了反应挤出过程的优化设计系统。针对自由基聚合反应挤出过程,建立了面向单体转化率限制和/或反应效率的单目标和多目标优化模型,实现了螺杆几何参数和工艺操作参数的按需设计。
The reactive extrusion (REX) process is a new kind of polymer processing technology that integrates the chemical reaction and extrusion processing. Using twin-screw extruders as reactors, the reactants and other essential additives such as initiators and catalysts react to synthesize the expected polymers during the continuous extrusion process, and then products can be directly formed via the extrusion die. It has great prospects and has drawn wide attentions at home and abroad in its advantages such as the short periods, continuous production, low energy consumption and little environmental pollution.
     In REX processes, the fluid flow, chemical reaction, heat transfer and mass transfer coexist and interact with each other. The physical and chemical changes are usually performed under nonisothermal, non-constant pressure and high shear rate conditions. In addition, there exist some special technological requirements such as the high reaction rate, good heat transfer ability and high conversion ratio. So it is difficult to carry out quantitative and in-situ investigations by means of the classical reactor theory. Researches involving the numerical simulation and optimization design can be used as one of the effective methods to solve the aforementioned problems, on the basis of which the effects of the chemical reaction on the material structures and physicochemical properties can be quantitatively studied, the reactor structure, material compositions and reactive processing conditions can be optimized, and then the application range of REX can be enlarged. To sum up, this project has an important scientific meaning and a good prospect of engineering application.
     The existing theoretical investigations have been mainly confined to one-dimensional (1D) models and have generally simplified the intercoupling relations among variables involved in fluid flow, chemical reaction, material structures, physicochemical properties. And the optimization design of material composition and processing conditions are seldom studied. In this paper, using such disciplines as mechanical science, polymer chemistry, polymer physics, statistical theory of polymeric reactions, computational fluid dynamics, engineering optimization and software engineering, the chemorheological behaviors of REX processes for the free radical polymerization and free radical grafting modification were simulated in a macroscale. The functional relationships among the material compositions, reactive processing conditions, material microstructure and macroscopic properties were constructed. The intercoupling relations among the considerable field variables were solved by an uncoupled semi-implicit iterative algorithm. At the aim of making REX process controllable and optimal, the core programs for systems of numerical simulation and optimization design were developed to predict the evolution of field variables and select the optimum reactor structure and processing conditions.
     The main contents and conclusions were as follows:
     The configuration of the twin screw extruder is complex and the fluid undergoes complicated physical and chemical changes, which make it very difficult to perform the rheological simulation based on real reactor configurations and working conditions. According to the geometrical structure and movement characteristics of closely intermeshing co-rotating twin screw extruders, the flow space of each fluid were unfolded along the axial direction of the screw channel, and then the expressions involving characteristic parameters such as the unfold length, the width, depth and area of the cross section were derived. Neglecting the non-mainstream flow from one screw to the other and simplifying the shape of the cross section, an equivalent axisymmetric reactor model was established. The reactor model is assumed to be fully filled and its wall moves along the axial direction at a velocity equivalent to the comprehensive effect of the rotary screws and the static barrel on the fluid flow. Thus, the space model for the numerical simulation was constructed.
     Combining with the aforementioned space model, the basic governing equations describing fields of chemical reaction, material structure and chemorheology were constructed. Based on the free radical reaction kinetics, kinetic models of the free radical polymerization and grafting were constructed, and expressions of reaction rate, monomer concentration, monomer conversion and initiator concentration were deduced. According to the statistical theory of polymeric reactions, the average molecular weight can be divided in three hierarchies: the first is that of polymer chains instantaneously produced, the second is that of polymer chains considering the cumulative effect and the third is that of the fluid with both the reactant and the production taken into account. Expressions of the number-average molecular weight and weight-average molecular weight for each hierarchy were constructed. The continuity equation, the momentum equation as well as the initial and bondary conditions were derived to describe the viscous incompressible fluid flow process. On the basis of polymer physics, expressions of zero shear viscosity and apparent viscosity related to processing conditions and material structures were built.
     The control volume integration was applied to deduce the discrete expressions of the convection-diffusion equations. The staggered grid and SIMPLE algorithm were introduced to deal with coupling between pressure and velocity, and then the numerical computation expressions of such variables as fluid flow velocity and pressure were deduced. Using the backward difference method and incremental theory to discretize the governing equations for fields of chemical reaction, material structure and chemorheology, the numerical computation expressions of variables such as the monomer conversion, average molecular weight and fluid viscosity were constructed.
     An uncoupled semi-implicit iterative algorithm was proposed to deal with the complicated relationships among the considerable field variables. Core programs for the numerical simulations of REX processes for the free radical polymerization and free radical grafting were developed. The continuity equation, the momentum equation, the chemical reaction kinetic equation, the average molecular weight and the constitutive equation can be solved numerically under the given initial and boundary conditions.
     Runing the program for the numerical simulation of REX processes for the free radical polymerization, the evolutions of field variables such as monomer conversion, average molecular weight and apparent viscosity were predicted for the example of butyl methacrylate. The simulated result of the monomer conversion is in agreement with the experimental result. The influences of the gel effect and throughput on field variables were discussed. The analyses give laws controlling the materical structure and rheological properties and offer reliance to choose screw configuration and processing conditions.
     Runing the program for the numerical simulation of REX processes for the free radical grafting, the evolutions of field variables such as grafting degree, mass fraction of homopolymer, average molecular weight and apparent viscosity were predicted for examples of polyethylene grafting with vinylsilicane, acrylic acid and methyl methacrylate. The simulated results are in agreement with the experimental results. The influences of the material compostion and processing conditions on grafting behaviors were discussed to search effective methods to increase the grafting degree and grafting efficiency.
     The optimization design was carried out on the basis of the numerical simulation. The finite volume simulation of REX processes was used to solve objective functions, and the genetic algorithm was introduced to search optimum parameters, on the basis of which a new optimization system of REX processes was established. The single object and multi-object optimization models faced to the restriction of monomer conversion and the reaction efficiency for REX processes of the free radical polymerization were constructed respectivelly. The optimum screw geometric parameters and operating parameters can be obtained according to the pre-specified objectives.
引文
[1]马里诺.赞索斯.反应挤出一原理与实践[M].瞿金平,李光吉,周南桥等译.北京:化学工业出版社,1999.
    [2]P.Cassagnau,V.Bounor-Legare,F.Fenouillot.Reactive processing of thermoplastic polymers:A review of the fundamental aspects[J].International Polymer Processing,2007,22(3):218-258.
    [3]殷敬华,郑安呐,盛京等.高分子材料的反应加工[M].北京:科学出版社,2008.
    [4]瞿金平,胡汉杰.聚合物成型原理及成型技术[M].北京:化学工业出版社,2001.
    [5]董建华,马劲,殷敬华,安立佳,郑安呐,盛京,周持兴.高分子材料反应加工的科学问题[J].中国科学基金,2003,(1):12-15.
    [6]吴京,殷敬华.热塑性聚合物的反应挤出与双螺杆挤出机[J].塑料,2003,1(32):31-38.
    [7]A.J.van der Goot.The extruder as a polymerisation reactor for styrene based polymers[D].Groningen:University of Groningen,1996.
    [8]周甫萍,唐文忠.双螺杆反直挤出[J].塑料加工,1999,27(1):48-51.
    [9]C.Tzoganakis.Reactive extrusion of polymers:A review[J].Advances in Polymer Technology,1989,9(4):321-330.
    [10]T.Sakai.Report on the state of the art:reactive processing using twin-screw extruders[J].Advances in Polymer Technology,1992,11(2):99-108.
    [11]殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社,2000.
    [12]周持兴,徐祥铭.聚合物反应加工的现状与发展动向[J].功能高分子学报,1992,5(2):139-150.
    [13]K.J.Ganzeveld,L.P.B.M.Janssen.Twin screw extruders as polymerization reactors for a free radical homo polymerization[J].Canadian Journal of Chemical Engineering,1993,71(3):411-418.
    [14]H.A.Jongbloed,J.A.Kiewiet,J.H.Van Dijk,L.P.B.M.Janssen.The self-wiping co-rotating twin-screw extruder as a polymerization reactor for methacrylates[J].Polymer Engineering and Science,1995,35(19):1569-1579.
    [15]H.A.Jongbloed,R.K.S.Mulder,L.P.B.M Janssen.The copolymerization of methacrylates in a counter-rotation twin-screw extruder[J].Polymer Engineering and Science,1995,35(7):587-597.
    [16] R. Berthet, Y. Chalamet, M. Taha, A. Zerroukhi. Optical fibers by reactive extrusion of butyl methacrylate[J]. Macromolecular Materials and Engineering, 2006,291(6): 720-731.
    [17] H. Kye, J. L. White. Continuous polymerization of caprolactam in a modular intermeshing corotating twin screw extruder integrated with continuous melt spinning of polyamide 6 fiber: Influence of screw design and process conditions[J]. Journal of Applied Polymer Science, 1994, 52(9): 1249-1262.
    [18] B. H. Lee, J. L. White. Comparison studies of anionic polymerization of caprolactam in different twin screw extruders[J]. International Polymer Processing, 2001,16: 172-182.
    [19] A. Wollny, H. Nitz, H. Faulhammer, N. Hoogen, R. Mulhaupt. In situ formation and compounding of polyamide 12 by reactive extrusion[J]. Journal of Applied Polymer Science, 2003, 90(2): 344-351.
    [20] W. Michaeli, H. Hocker, U. Berghaus, W. Frings. Reactive extrusion of styrene polymers[J]. Journal of Applied Polymer Science, 1993,48(5):871-886.
    [21] W. Michaeli, A. Grefenstein, W. Frings. Synthesis of polystyrene and styrene copolymers by reactive extrusion[J]. Advances in Polymer Technology, 1993, 12(1):25-33.
    [22] L. X. Si, A. N. Zheng, H. B. Yang, R. Y. Guo, Z. N. Zhu, Y. M. Zhang. A study on new polymerization technology of styrene[J]. Journal of Applied Polymer Science, 2002, 85(10): 2130-2135.
    [23] S. S. Gao, Y. Zhang, A. N. Zheng, H. N. Xiao. Polystyrene prepared by reactive extrusion: Kinetics and effect of processing parameters[J]. Polymers for Advanced Technologies, 2004,15(4): 185-191.
    
    [24] 烟伟,刘洪来,郑安呐. 苯乙烯聚合反应挤出过程的实验研究[J]. 高校化学工程学报,2004,18(4): 447-452.
    [25] J. Gimenez, M. Boudris, P. Cassagnau, A. Michel. Bulk polymerization of ε-caprolactone in twin screw extruder-A step toward the process control [J]. International Polymer Processing, 2000, 15(1): 20-27.
    [26] A. V. Machado, V. Bounor-Legare, N. D. Goncalves, F. Melis, P. Cassagnau, A. Michel. Continuous Polymerization of epsilon-caprolactone initiated by titanium phenoxide in a twin-screw extruder[J]. Journal of Applied Polymer Science, 2008, 110(6): 3480-3487.
    [27] B. J. Kim, J. L. White. Bulk polymerization of e-caprolactone in an internal mixer and in a twin screw extruder[J]. International Polymer Processing, 2002, 17(1): 33-43.
    [28] S. Balakrishnan, M. Krishnan, R. Narayan. Three-arm poly (epsilon-caprolactone) by extrusion polymerization[J]. Polymer Engineering and Science, 2006,46(3): 235-240.
    [29] T. Hamaide, E Lavit. Bulk functional oligomerization of E-caprolactone in a mini extruder[J]. Polymer Bulletin, 2002,48(2): 173-181.
    [30] S. Jacobsen, H. G. Fritz, Ph. Degee, Ph. Dubois, R. Jerome. Single-step reactive extrusion of PLLA in a corotating twin-screw extruder promoted by 2-ethylhexanoic acid tin(II) salt and triphenylphosphine[J]. Polymer, 2000,41(9): 3395-3403.
    [31] S. Jacobsen, Ph. Degee, H. G. Fritz, Ph. Dubois, R. Jerome. Polyactide (PLA)-a new way of production[J]. Polymer Engineering and Science, 1999, 39(7): 1311-1319.
    [32] P. Cassagnau, T. Nietsch, A. Michel. Bulk and dispersed phase polymerization of urethane in twin screw extruders[J]. International Polymer Processing, 1999, 14(2): 144-151.
    [33] G. Y. Lu, D. M. Kalyon, I. Yilgor, E. Yilgor. Rheology and extrusion of medical-grade thermoplastic polyurethane[J]. Polymer Engineering and Science, 2003,43(12): 1863-1877.
    [34] V. W. A. Verhoeven, A. D. Padsalgikar, K. J. Ganzeveld, L. P. B. M. Janssen. The reactive extrusion of thermoplastic polyurethane and the effect of the depolymerization reaction[J]. International Polymer Processing, 2006, 21(3): 295-308.
    [35] M. A. Semsarzadeh, A. H. Navarchian, J. Morshedian. Reactive extrusion of poly(urethane-isocyanurate)[J]. Advances in Polymer Technology, 2004, 23(3): 239-255.
    [36] R. G. J. C. Heijkants, L. W. Schwab, R. V. van Calck, J. H. de Groot, A. J. Pennings, A. J. Schouten. Extruder synthesis of a new class of polyurethanes: Polyacylurethanes based on poly(epsilon-caprolactone) oligomers[J]. Polymer, 2005,46(21): 8981-8989.
    [37] C. Joubert, L. Choplin, A. Michel, P. Cassagnau. An innovative method of dynamic vulcanization of EVA in the presence of PP: Chemical, processing and mechanical properties[J]. Journal of Polymer Engineering, 2005,25(1): 59-80.
    [38] S. Dassin, M. Dumon, F. Mechin, J. P. Pascault. Thermoplastic polyurethanes (TPUs) with grafted organosilane moieties: A new way of improving thermomechanical behavior[J]. Polymer Engineering and Science, 2002, 42(8): 1724-1739.
    [39] S. Isac, K. E. George. Silane Grafting of Polyethylenes[J]. International Journal of Polymeric Materials, 2005, 54(5): 397-413.
    [40] Y. Li, X. M. Xie, B. H. Guo. Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene polymer[J]. 2001,42(8): 3419-3425.
    [41] L. C. Zhu, G. B. Tang, Q. Shi, C. L. Cai, J. H. Yin. Neodymium oxide co-catalyzed melt free radical grafting of maleic anhydride onto co-polypropylene by reactive extrusion[J]. Reactive and Functional Polymers, 2006, 66(9): 984-992.
    [42] B. J. Kim, J. L. White. Thermal/peroxide induced degradation and maleation of polypropylene by reactive extrusion: influence of direction of screw rotation and screw configuration in a modular twin screw extruder[J]. International Polymer Processing, 1995,10(3): 213-220.
    [43] J. Cha, J. L. White. Maleic anhydride modification of polyolefin in an internal mixer and a twin-screw extruder: Experiment and kinetic model[J]. Polymer Engineering and Science, 2001,41(7): 1227-1237.
    [44] D. Chang, J. L. White. Experimental study of maleation of polypropylene in various twin-screw extruder systems[J]. Journal of Applied Polymer Science, 2003, 90(7): 1755-1764.
    [45] J. Cha, J. L. White. Modification of polyolerin with maleic anhydride/styrene and methyl methacrylate/styrene[J]. International Polymer Processing, 2002, 17(2): 115-123.
    [46] K. J. Ganzeveld, L. P. B. M. Janssen. The grafting of maleic anhydride on high density polyethylene in an extruder[J]. Polymer Engineering and Science, 1992, 32(7): 467-474.
    [47] S. M. Ghahari, H. Nazokdast, H. Assempour. Study on functionalization of isotactic PP with maleic anhydride in an internal mixer and a twin-screw extruder[J]. International polymer processing, 2003,18(3): 285-290.
    [48] A. V. Machado, M. van Duin, J. A. Covas. Monitoring polyolefin modification along the axis of a twin-screw extruder. II. Maleic anhydride grafting[J], Journal of Polymer Science Part A: Polymer Chemistry, 2000,38(21): 3919-3932.
    [49] K. Premphet, S. Chalearmthitipa. Melt grafting of maleic anhydride onto elastomeric ethylene-octene copolymer by reactive extrusion[J]. Polymer Engineering and Science,2001,41(11):1978-1986.
    [50]Z.Song,W.E.Baker.Basic functionalization of molten linear low-density polyethylene with 2-(dimethylamino) ethyl methacrylate in an intermeshing corotating twin screw extruder[J].Journal of Applied Polymer Science,1990,41(5-6):1299-1313.
    [51]K.E.Oliphant,K.E.Russell,W.E.Baker.Melt grafting of a basic monomer onto polyethylene in a twin-screw extruder:reaction kinetics[J].Polymer,1995,36(8):1597-1603.
    [52]S.Hojabr,W.E.Baker,K.E.Russell,P.J.McLellan,M.A.Huneault.Melt grafting of glycidyl methacrylate onto polyethylene:an experimental and mathematical modeling study.International Polymer Processing,1998,13(2):118-128.
    [53]S.Hojabr.Mathematical modeling and process investigation of melt grafting reaction in an intermeshing co-rotating twin screw extruder[D].Kingston:Queen's University,1998.
    [54]J.H.Yang,Z.H.Yao,D.Shi,H.L.Huang,Y.Wang,J.H.Yin.Efforts to decrease crosslinking extent of polyethylene in a reactive extrusion grafting process[J].Journal of Applied Polymer Science,2001,79(3):535-543.
    [55]J.Cha,J.L.White.Styrene grafting onto a polyolefin in an internal mixer and a twin-screw extruder:Experiment and kinetic model[J].Polymer Engineering and Science,2001,41(7):1238-1250.
    [56]张增民.反应挤出-聚合物改性的重要技术手段[J].塑料,1995,24(6):29-34.
    [57]H.Azizi,I.Ghasemi.Reactive extrusion of polypropylene:production of controlled-rheology polypropylene(CRPP) by peroxide-promoted degradation[J].Polymer Testing,2004,23(2):137-143.
    [58]H.Azizi,I.Ghasemi,Q.Karrabi.Controlled-peroxide degradation of polypropylene:Rheological properties and prediction of MWD from rheological data[J].Polymer Testing,2008,27(5):548-554.
    [59]F.Berzin,B.Vergnes,L.Delamare.Rheological behavior of controlled-rheology polypropylenes obtained by peroxide-promoted degradation during extrusion:Comparison between homopolymer and copolymer[J].Journal of Applied Polymer Science,2001,80(8):1243-1252.
    [60]A.V.Machado,J.M.Maia,S.V.Canevarolo,J.A.Covas.Evolution of peroxide-induced thermomechanical degradation of polypropylene along the extruder[J].Journal of Applied Polymer Science,2004,91(4):2711-2720.
    [61]C.G.R.Marisa,M.B.C.Fernanda,T.B.Stephen.A study of polypropylene peroxide promoted degradation[J].Polymer Testing,1995,14(4):369-380.
    [62]J.A.Oliveira,E.C.Biscaia,J.C.Pinto.Analysis of kinetic models proposed for the controlled degradation of poly(propylene)-Presentation of a general and analytical solution[J].Macromolecular Theory and Simulations,2003,12(9):696-704.
    [63]J.A.Oliveira,E.C.Biscaia,J.C.Fadigas,J.C.Pinto.Controlled degradation of poly(propylene) in industrial extruders[J].Macromolecular Materials and Engineering,2006,291(5):552-570.
    [64]S.H.Pong,C.P.Lu,M.C.Wang,S.H.Chiu.Polypropylene degradation control during reactive extrusion[J].Journal of Applied Polymer Science,2005,95(2):280-289.
    [65]张先明,许忠斌,冯连芳.螺杆挤出机中停留时间分布模拟研究进展[J].高分子材料科学与工程,2005,21(6):1-5.
    [66]Vergnes B,Berzin F.Modeling of reactive systems in twin-screw extrusion:challenges and applications.Comptes Rendus Chinie,2006,9(11-12):1409-1418.
    [67]黄恩才.化学反应工程(第二版)[M].北京:化学工业出版社,1996.
    [68]L.P.B.M.Jasssen.Twin screw extrusion[M].Amsterdam:Elsevier Scientific Publishing Company,1978.
    [69]B.Siadat,M.Malone,S.Middleman.Some performance aspects of the extruder as a reactor[J].Polymer Engineering and Science,1979,19(11):787-794.
    [70]K.J.Ganzeveld,J.E.Capel,D.J.Van Der Wal,L.P.B.M.Janssen.The modeling of counter-rotating twin screw extruders as reactors for single-component reactions[J].Chemical Engineering Science,1994,49(10):1639-1649.
    [71]R.A.de Graaf,M.Rohde,L.P.B.M.Janssen.Novel model predicting the residence-time distribution during reactive extrusion[J].Chemical Engineering Science,1997,52(23):4345-4356.
    [72]L.P.B.M.Janssen,P.Rozendal,H.Hoogstraten,M.Cioffi.A dynamic model for multiple steady states in reactive extrusion[J].International Polymer Processing,2001,16(3):263-271.
    [73]L.P.B.M.Janssen.On the stability of reactive extrusion[J].Polymer Engineering and Science, 1998,38(12): 2010-2019.
    [74] K. J. Ganzeveld, L. P. B. M. Janssen. A mixing model for multicomponent reactions in twin screw extruders applied to the polymerization of urethanes[J]. Polymer Engineering and Science, 1992, 32(7): 457-466.
    [75] A. Bouilloux, C. W. Macosko, T. Kotnour. Urethane polymerization in a counterrotating twin-screw extruder[J]. Industrial & Engineering Chemistry Research, 1991, 30(11): 2431-2436.
    [76] R. O. Vargas, E. Vivaldo-Lima, O. Manero. Simulation of nonlinear polyurethane production in a twin-screw extruder[J]. Polymer-Plastics Technology and Engineering, 2006,45(1): 9-21.
    [77] N. P. Stuber, M. Tirrell. Continuous polymerization studies in a twin-screw extruder[J]. Polymer Process Engineering, 1985, 3(1-2): 71-83.
    [78] J. P. Puaux, P. Cassagnau, G. Bozga, I. Nagy. Modeling of polyurethane synthesis by reactive extrusion[J]. Chemical Engineering and Processing, 2006, 4(6):481-487.
    [79] J. Tayeb, B. Vergnes, G. Delia Valle. A basic model for a twin-screw extruder[J]. Journal of Food Science, 1989, 54(4): 1047-1056.
    [80] B. Vergnes, G. Delia Valle, L. Delamare. A global computer software for polymer flows in corotating twin screw extruders[J]. Polymer Engineering and Science, 1998,38(11): 1781-1792.
    [81] B. Vergnes, F. Berzin. Modelling of flow and chemistry in twin screw extruders[J]. Plastics, Rubber and Composites, 2004,33(9-10): 409-415.
    [82] A. Poulesquen, B. Vergnes, P. Cassagnau, J. Gimenez, A. Michel. Polymerization of £-caprolactone in a twin screw extruder: experimental study and modeling[J]. International Polymer Processing, 2001, 16(1): 31-38.
    [83] F. Berzin, B. Vergnes, P. Dufosse, L. Delamare. Modeling of peroxide initiated controlled degradation of polypropylene in a twin screw extruder[J]. Polymer Engineering and Science, 2000,40(2): 344-356.
    [84] F. Berzin, B. Vergnes, S. V. Canevarolo, A. V. Machado, J. A. Covas. Evolution of the peroxide-induced degradation of polypropylene along a twin-screw extruder: Experimental data and theoretical predictions [J]. Journal of Applied Polymer Science, 2006, 99(5): 2082-2090.
    [85] A. Zagal, E. Vivaldo-Lima, O. Manero. A mathematical model for the reactive extrusion of methyl methacrylate in a co-rotating twin-screw extruder [J]. Industrial & Engineering Chemistry Research, 2005,44(26): 9805-9817.
    [86] A. Poulesquen, B. Vergnes. A study of residence time distribution in co-rotating twin-screw extruders. Part I: Theoretical modeling[J]. Polymer Engineering and Science, 2003,43(12): 1841-1848.
    [87] A. Poulesquen, B. Vergnes, P. Cassagnau, A. Michel, O. S. Carneiro, J. A. Covas. A study of residence time distribution in co-rotating twin-screw extruders. Part II: Experimental validation[J]. Polymer Engineering and Science, 2003, 43(12): 1849-1862.
    [88] S. Choulak, F. Couenne, Y. Le Gorrec, C. Jallut, P. Cassagnau, A. Michel. Generic dynamic model for simulation and control of reactive extrusion[J]. Industrial & Engineering Chemistry Research, 2004,43(23): 7373-7382.
    [89] W. Michaeli, A. Grefenstein. Engineering analysis and design of twin-screw extruders for reactive extrusion[J]. Advances in Polymer Technology, 1995, 14(4): 263-276.
    [90] W. Michaeli, A. Grefenstein, U. Berghaus. Twin-screw extruders for reactive extrusion[J]. Polymer Engineering and Science, 1995,35(19): 1485-1504.
    [91] M. E. Hyun, S. C. Kim. Study on the reactive extrusion process of polyurethane[J]. Polymer Engineering and Science, 1988,28(11): 743-757.
    [92] J. L. White, Z. Chen. Simulation of non-isothermal flow in modular co-rotating twin screw extrusion[J]. Polymer Engineering and Science, 1994, 34(3): 229-237.
    [93] J. L. White, B. J. Kim, S. Bawiskar, J. M. Keum. Development of a global computer software for modular self-wiping corotating twin screw extruders [J]. Polymer-Plastics Technology and Engineering, 2001,40(4): 385-405.
    [94] B. J. Kim, J. L. White. Engineering analysis of the reactive extrusion of ε-caprolactone: The influence of processing on molecular degradation during reactive extrusion[J]. Journal of Applied Polymer Science, 2004, 94(3): 1007-1017.
    [95] H. Kye, J. L. White. Simulation of continuous polymerization in a modular intermeshing co-rotating twin screw extruder with application to caprolactam conversion to polyamide 6[J]. International Polymer Processing, 1996, 11(2): 129-138.
    [96] H. Kye, J. L. White. Continuous polymerization of caprolactam in a modular intermeshing corotating twin screw extruder integrated with continuous melt spinning of polyamide 6 fiber: Influence of screw design and process conditions[J]. Journal of Applied Polymer Science, 1994, 52(9): 1249-1262.
    [97]B.J.Kim,J.L.White.Simulation of thermal degradation,peroxide induced degradation,and maleation of polypropylene in a modular co-rotating twin screw extruder[J].Polymer Engineering and Science,1997,37(3):576-589.
    [98]J.M.Keum,J.L.White.Simulations of grafting monomers and associated degradation of polypropylene in a modular co-rotating twin screw extruder[J].Journal of Vinyl and Additive Technology,2005,11(4):143-149.
    [99]T.Fukuoka,K.Min.Numerical nonisothermal flow analysis of non-Newtonian fluid in a nonintermeshing counter-rotating twin screw extruder[J].Polymer Engineering and Science,1994,34(13):1033-1046.
    [100]T.Fukuoka.Numerical analysis of a reactive extrusion process.Part Ⅰ:Kinetics study on grafting of vinylsilane to polyethylene[J].Polymer Engineering and Science,2000,40(12):2511-2523.
    [101]T.Fukuoka.Numerical analysis of a reactive extrusion process.Part Ⅱ:Simulations and verifications for the twin screw extrusion[J].Polymer Engineering and Science,2000,40(12):2524-2538.
    [102]司林旭,郑安呐,朱中南.双螺杆反应挤出模型的研究[J].高分子材料科学与工程,2002,18(1):26-28.
    [103]烟伟,张昭,徐云,郑安呐,刘洪来.苯乙烯反应挤出过程模拟及数值计算[J].华东理工大学学报(自然科学版),2004,30(4):414-418.
    [104]Y.X.Jia,G.F.Zhang,L.L.Wu,S.Sun,G.Q.Zhao,L.J.An.Computer simulation of reactive extrusion processes for free radical polymerization[J].Polymer Engineering and Science,2007,47(5):667-674.
    [105]Y.X.Jia,G.F.Zhang,L.L.Wu,S.Sun,G.Q.Zhao,L.J.An.Analysis of chemical calorific effect during reactive extrusion processes for free radical polymerization[J].Polymer International,2007,56(12):1553-1557.
    [106]贾玉玺,张国芳,孙胜,赵国群,安立佳.自由基聚合反应挤出过程的化学流变分析[J].高分子学报,2007,12:1135-1140.
    [107]L.L.Wu,Y.X.Jia,S.Sun,G.F.Zhang,G.Q.Zhao,L.J.An.Numerical simulation of reactive extrusion processes of PA6[J].Journal of Applied Polymer Science,2007,103(4):2331-2336.
    [108]L.L.Wu,Y.X.Jia,S.Sun,G.F.Zhang,G.Q.Zhao,L.J.An.Numerical simulation of reactive extrusion processes for activated anionic polymerization[J].Journal of Materials Processing Technology,2008,199(1-3):56-63.
    [109]L. L. Wu, Y. X. Jia, S. Sun, G. F. Zhang, G. Q. Zhao, L. J. An. Study on reactive extrusion processes of block copolymer[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2007, 454: 221-226.
    [110]G. F. Zhang, Y. X. Jia, S. Sun, L. L. Wu, G. Q. Zhao, L. J. An. Investigation of the gel effect in reactive extrusion processes for free radical polymerization[J]. Macromolecular Reaction Engineering, 2007,1(3): 321-330.
    [111]G. F. Zhang, Y. X. Jia, S. Sun, L. L. Wu, G. Q. Zhao, L. J. An. Free radical grafting of polyethylene with vinyl monomers by reactive extrusion[J] Macromolecular Theory and Simulations, 2007,16(9): 785-796.
    [112]D. Strutt, C. Tzoganakis, T. A. Duever. Mixing analysis of reactive polymer flow in conveying elements of a co-rotating twin screw extruder [J]. Advances in Polymer Technology, 2000, 19(1): 22-33.
    [113]L. J. Zhu, K. A. Narh, K. S. Hyun. Evaluation of numerical simulation methods in reactive extrusion[J]. Advances in Polymer Technology, 2005, 24(3): 183-193.
    [114]L. J. Zhu, K. A. Narh, K. S. Hyun. Investigation of mixing mechanisms and energy balance in reactive extrusion using three-dimensional numerical simulation method[J]. International Journal of Heat and Mass Transfer, 2005, 48(16): 3411-3422.
    
    [115] 陶文铨. 数值传热学 (第二版) [M]. 西安: 西安交通大学出版社,2001.
    [116]D. M. Kalyon, A. Lawal, R. Yazici, P. Yaras, S. Railkar. Mathematical modeling and experimental studies of twin-screw extrusion of filled polymers[J]. Polymer Engineering and Science, 1999, 39(6): 1139-1151.
    [117]H. Potente, M. Bastian, J. Flecke. Design of a compounding extruder by means of the SIGMA simulation software[J]. Advances in Polymer Technology, 1999, 18(2): 147-170.
    [118]S. Bawiskar, J. L. White. A composite model for solid conveying, melting, pressure and fill factor profiles in modular co-rotating twin screw extruders[J]. International Polymer Processing, 1997, 12(4): 331-340.
    [119]T. Sastrohartono, Y. Jaluria, M. V. Karwe. Numerical simulation of fluid flow and heat transfer in twin-screw extruders for non-newtonian materials[J]. Polymer Engineering and Science, 1995, 35(15): 1213-1221.
    [120]R. V. Chiruvella, Y. Jaluria, M. V. Karwe, V. Sernas. Transport in a twin-screw extruder for the processing of polymers[J]. Polymer Engineering and Science, 1996,36(11):1531-1540.
    [121]T.Kajiwara,Y.Nagashima,Y.Nakano,K.Funatsu.Numerical study of twin-screw extruders by three-dimensional flow analysis-development of analysis technique and evaluation of mixing performance for full flight screws[J].Polymer Engineering and Science,1996,36(16):2142-2152.
    [122]陈晋南,胡冬冬,彭炯.计算流体动力学(CFD)及其软件包在双螺杆挤出中的应用[J].中国塑料,2001,15(12):12-16.
    [123]朱复华.挤出理论及应用[M].北京:中国轻工业出版社,2001.
    [124]耿孝正.双螺杆挤出机及其应用[M].北京:中国轻工业出版社,2003.
    [125]司林旭,郑安呐,朱中南.螺杆反应器几何结构参数确定[J].石油化工设备,2001,30(1):4-6.
    [126]卢红斌,周江,何天白.聚合物反应加工中的化学流变学模拟[J].高分子材料科学与工程,2001,17(4):12-15.
    [127]刘萌戈,周持兴.化学反应中聚合物流变动力学的研究进展.高分子材料科学与工程[J],2005,21(4):42-45.
    [128]周光垌,严宗毅,许世雄,章克本.流体力学(第二版)[M].北京:高等教育出版社.2000.
    [129]Anderson J D.Computational fluid dynamics:the basics with applications[M].Beijing:Tsinghua University Press and McGraw-Hill Beijing Office;2002.
    [130]傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2002.
    [131]潘祖仁,于在璋.自由基聚合[M].北京:化学工业出版社,1983.
    [132]潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社,2003.
    [133]Allcock H R,Lampe F W,Mark J E.Contemporary polymer chemistry[M].Beijing:Science Press and Pearson Education North Asia Limited;2003.
    [134]K.Motha,J.Seppala.Grafting of unsaturated acids and silanes to ethylene polymers:a kinetic model[J].Polymer Engineering and Science,1989,29(22):1579-1587.
    [135]J.B.Wong Shing,W.E.Baker,K.E.Russell,R.A.Whitney.Effect of reaction conditions on the grafting of 2-(dimethylamino) ethyl methacrylate onto hydrocarbon substrates[J].Journal of Polymer Science,Part A:Polymer Chemistry,1994,32(9):1691- 1702.
    [136]J.B.Wong Shing,W.E.Baker,K.E.Russell.Kinetics and mechanism of the grafting of 2-(dimethylamino) ethyl methacrylate onto hydrocarbon substrates[J]. Journal of Polymer Science,Part A:Polymer Chemistry,1995,33(4):633-642.
    [137]J.Cha,J.L.White.Methyl methacrylate modification of polyolefin in a batch mixer and a twin-screw extruder:experiment and kinetic model[J].Polymer Engineering and Science,2003,43(12):1830-1840.
    [138]J.Cha,J.L.White.Styrene grafting onto a polyolefin in an internal mixer and a twin-screw extruder:Experiment and kinetic model[J].Polymer Engineering and Science,2001,41(7):1238-1250.
    [139]Q.Shi,L.C.Zhu,C.L.Cai,J.H.Yin,G.Costa.Graft chain propagation rate coefficients of acrylic acid in melt graft copolymerization with linear low density polyethylene[J].Polymer,2006,47(6):1979-1986.
    [140]Q.Shi,C.L.Cai,L.C.Zhu,J.H.Yin.Chain propagation kinetics on melt grafting reaction[J].Macromolecular Chemistry and Physics,2007,208(16):1803-1812.
    [141]Q.Shi,L.C.Zhu,C.L.Cai,J.H.Yin.Kinetics study on melt grafting acrylic acid onto LLDPE using reactive extrusion[J].Chinese Journal of Polymer Science(English Edition),2005,23(6):603-610.
    [142]Q.Shi,L.C.Zhu,C.L.Cai,J.H.Yin,G.Costa.Kinetics study on melt grafting copolymerization of LLDPE with acid monomers using reactive extrusion method[J].Journal of Applied Polymer Science,2006,101(6):4301-4312.
    [143]林尚安,陆耘,粱兆熙.高分子化学[M].北京:科学出版社,1998.
    [144]唐敖庆.高分子反应统计理论[M].北京:科学出版社,1985.
    [145]刘凤岐,汤心颐.高分子物理[M].北京:高等教育出版社,1995.
    [146]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002.
    [147]许元泽.高分子结构流变学[M].成都:四川教育出版社,1988.
    [148]M.Rubinstein,R.H.Colby.Polymer Physics[M].Oxford University Press,2003.
    [149]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社,2004.
    [150]W.D.Richards,R.K.Prud'homme.The viscosity of concentrated polymer solutions containing low molecular weight solvents[J].Journal of Applied Polymer Science,1986,31(3):763-776.
    [151]李人宪.有限体积法基础[M].北京:国防工业出版社,2005.
    [152]Y.X.Jia,S.Sun,L.L.Liu,S.X.Xue,G.Q.Zhao.Investigation of computer-aided engineering of silicone rubber vulcanizing(Ⅰ) - Vulcanization degree calculation based on temperature field analysis[J].Polymer,2003,44(1): 319-326.
    [153]贾玉玺.聚合反应挤出过程的数值模拟[R].长春:中国科学院长春应用化学研究所,2007.
    [154]吴莉莉.阴离子聚合反应挤出工艺过程的数值模拟[D].山东大学,2007.
    [155]D.S.Achilias.A review of modeling of diffusion polymerization reactions[J].Macromolecular Theory and Simulations,2007,16(4):319-347.
    [156]黄岐善,翁志学,黄志明,潘祖仁.自由基聚合/扩散动力学模型与仿真[J].化工学报,1999,50(4):456-462.
    [157]黄岐善,刘青,翁志学,潘祖仁.自由基聚合中扩散效应分析[J].高分子通报,2001,(6):66-71.
    [158]J.N.Cardenas,K.F.O'Driscoll.High-conversion polymerization.I.Theory and application to methyl methacrylate[J].Journal of Polymer Science,Polymer Chemistry Edition,1976,14(4):883-897.
    [159]J.N.Cardenas,K.F.O'Driscoll.High-conversion polymerization.Ⅱ.Influence of chain transfer on the gel effect[J].Journal of Polymer Science,Polymer Chemistry Edition,1977,15(8):1883-1888.
    [160]S.K.Soh,D.C.Sundberg.Diffusion-controlled vinyl polymerization.Ⅲ.Free volume parameters and diffusion-controlled propagation[J].Journal of Polymer Science:Polymer Chemistry Edition,1982,20(5):1331-1344.
    [161]F.L.Marten,A.E.Hamielec.High Conversion diffusion-controlled polymerization.ACS Symposium Series,1979,104:43-70.
    [162]T.J.Tulig,M.Tirrell.Toward a molecular theory of the Trommsdorff effect[J].Macromolecules,1981,14(5):1501-1511.
    [163]T.J.Tulig,M.Tirrell.On the onset of the Trommsdorff effect[J].Macromolecules,1982,15(2):459-463.
    [164]C.A.O.Nascimento,R.Giudici.Neural network based approach for optimisation applied to an industrial nylon-6,6 polymerisation process[J].Computers & Chemical Engineering,1998,22:S595-S600.
    [165]C.A.O.Nascimento,R.Giudici,N.Scherbakoff.Modeling of industrial nylon-6,6 polymerization process in a twin-screw extruder reactor.Ⅱ.Neural networks and hybrid models[J].Journal of Applied Polymer Science,1999,72:905-912.
    [166]C.A.O.Nascimento,R.Giudici,R.Guardani.Neural network based approach for optimization of industrial chemical processes[J].Computers & Chemical Engineering,2000,24:2303-2314.
    [167]A.Gaspar-Cunha,A.Poulesquen,B.Vergnes,J.A.Covas.Optimization of processing conditions for polymer twin-screw extrusion[J].International Polymer Processing,2002,17:201-213.
    [168]A.Gaspar-Cunha,J.A.Covas,B.Vergnes.Defining the configuration of co-rotating twin-screw extruders with multiobjective evolutionary algorithms[J].Polymer Engineering and Science,2005,45:1159-1173.
    [169]K.Mitra.Genetic algorithms in polymeric material production,design,processing and other applications:a review[J].International Materials Reviews,2008,53(5):275-297.
    [170]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [171]M.Liang,H.E.Huff,F.H.Hsieh.Evaluating energy consumption and efficiency of a twin-screw extruder[J].Journal of Food Science,2002,67:1803-1807.
    [172]Y.X.Jia,S.Sun,L.L.Liu,Y.Mu,L.J.An.Design of silicone rubber according to requirements based on the multi-objective optimization of chemical reactions[J].Acta Materialia,2004,52:4153-4159.
    [173]V.Bhaskar,S.K.Gupta,A.K.Ray.Multiobjective optimization of an industrial wiped film poly(ethylene terephthalate) reactor:some further insights[J].Computers & Chemical Engineering,2001,25:391-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700