用户名: 密码: 验证码:
大规模电力系统低频振荡分析与广域自适应控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“西电东送”战略的实施,我国电网通过一系列的联网工程形成了两大长链式同步交流电网。近年来,我国国家电网公司提出了建设“以特高压电网为骨干网架、各级电网协调发展”的战略目标。2009年1月6日,中国自主研发、设计和建设的1000kV晋东南—南阳—荆门特高压交流试验示范工程正式建成投运。根据规划,到“十二五”初期,我国将建成“两纵两横”特高压骨干电网,从而形成超大规模的华北—华中—华东特高压交流同步电网。到2020年前后,国家电网特高压网架将形成以华北、华中、华东为核心,联结各大区域电网、大煤电基地、大水电基地和主要负荷中心的坚强电网结构。
     在我国特高压电网建设过程中,高低压电磁环网和重载的长距离特高压送电通道,都可能导致电网发生低频功率振荡。大规模电力系统规模巨大且运行方式多变,对现有的低频振荡分析和控制方法都提出了挑战。因此,开展大规模电力系统低频振荡分析和广域自适应控制,解决现有分析和控制方法在大规模电力系统应用中存在的不足,对于丰富和拓展电力系统低频振荡的分析和控制理论,防止大停电事故和提高区域电网间的输电能力都具有重要的理论意义和应用价值。在广泛阅读小干扰功角稳定机理、分析和控制方法方面相关文献的基础上,论文在大规模电力系统低频振荡的分析和广域自适应控制方面,进行了深入的研究和有益的探讨。论文的主要研究工作和创新性成果如下:
     1)针对传统特征值分析方法仅适用于中小规模电力系统的局限性,结合Prony和稀疏特征值算法,提出了一种大规模互联电网区间低频振荡分析的实用方法。稀疏特征值分析方法,充分利用大规模电力系统小干扰稳定性分析中所形成的增广状态矩阵稀疏性的特点,能够计算系统全部特征值中我们所关心的特征子集,可分析任意规模的电力系统。利用Prony分析的结果作为稀疏特征值算法的初始位移点,从而可以快速、准确地计算出所关心的部分特征值和特征向量,避免了初始参数选取不当对稀疏特征值算法计算速度和收敛性能的不利影响。利用提出的方法,以逆迭代转Rayleigh商迭代和隐式重启动Arnoldi两种稀疏特征值算法为例,分别对东北—华北互联电力系统和华北—华中—华东特高压同步电网进行了低频振荡分析,得到了关键的区间低频振荡模式,在东北—华北互联电力系统配置了PSS以提高系统的阻尼,对华北—华中—华东特高压同步电网区间低频振荡模式的影响因素进行了深入分析。
     东北—华北互联电力系统的低频振荡分析结果表明:系统存在山东电网机组相对于东北电网机组的弱阻尼区间低频振荡模式。对华北—华中—华东特高压同步电网进行低频振荡分析后,得到以下结论:系统主要存在六个区间低频振荡模式。山东电网机组相对于蒙西电网机组的振荡模式的阻尼随着华北主网向山东电网输送功率的增加而增强,并且在山东电网与华北主网之间的第二个联网工程(黄骅—滨州500kV双回线路)的投运而显著降低。在极端情况下,华北主网需要山东电网提供紧急功率支援时,该振荡模式的阻尼下降尤为严重。蒙西电网向华北主网输送功率的增加,有利于提高蒙西电网机组参与的区间低频振荡模式的阻尼。福建电网机组相对于系统的弱阻尼区间低频振荡模式的阻尼,随着福建电网向华东主网输送功率的增加而增强,且该模式的阻尼在杭北变电站失去所有的特高压线路后得到显著增加。安徽、浙江电网机组相对于江苏电网和阳城厂机组的振荡模式的阻尼,在杭北变电站失去所有的特高压线路后急剧减弱。石家庄特高压变电站的失去与否对系统区间低频振荡模式的阻尼影响很小。
     2)在电力系统阻尼控制研究中,系统模型是进行控制器设计的前提和基础。针对现代互联电力系统规模巨大和运行方式复杂多变的特点,首次提出了阻尼控制中的在线递推闭环子空间辨识算法,着眼于解决“现辩现控”思想中的“辩”。在闭环情况下,利用由系统“过去的”输入和输出Hankel矩阵形成的辅助变量消除系统的输入输出测量噪声和过程噪声,并通过矩阵正交投影得到系统扩展可观性矩阵的列张成的子空间。借助奇异值分解和扩展可观性矩阵的转移不变特性得到系统矩阵A和C的实现,进而由最小二乘计算系统矩阵B和D。在新的采样数据到来时,利用扩展辅助变量投影估计子空间跟踪算法递推更新A和C,并由递推最小二乘算法更新B和D。论文还从系统模型的闭环可辨识性、持续激励信号的选择以及采样数据的尺度变换方面,对在线递推闭环子空间辨识算法应用于电力系统阻尼控制时应注意的问题,进行了探讨。在基于自校正原理的广域自适应阻尼控制系统结构下,利用在线递推闭环子空间辨识算法,设计了线性二次最优部分输出反馈的广域附加阻尼控制器。
     利用电网的动态响应来辨识包含主导低频振荡模式的降阶模型,避开了实际系统模型阶次很高且不易获得的难题。在线递推闭环子空间辨识算法具有较好的数值稳定性和较低的时间复杂度,为实现“现辩现控”思想中的“控”打下基础。
     中国电科院8机36节点系统的仿真结果表明,所提出的在线递推闭环子空间模型辨识算法,能够有效地辨识和跟踪包含系统的主导低频振荡模式的状态空间模型,并实现附加阻尼控制器参数的在线调整。基于广域信息的附加阻尼控制器能有效地抑制系统的区间低频振荡。
     3)针对最优控制不能在优化求解过程中考虑控制约束的不足,提出了基于模型预测理论的广域阻尼控制策略,用以实现“现辩现控”思想中的“控”。在辨识得到的系统模型的基础上,用输出扰动对系统状态进行增广,得到系统的输出扰动模型,以防止系统输出产生静态偏差。通过Kalman滤波器得到输出扰动模型状态的估计值。在利用辨识模型得到闭环形式的预测方程后,分别建立表征在无限时域内系统响应偏离参考轨迹的代价和施加阻尼控制的代价的目标函数。考虑到控制输入的约束,最优控制量通过求解以当前系统状态为初始状态的最优控制问题得到。在线模型辨识和控制量的优化求解在有限时间间隔内反复进行。该控制策略是在线模型辨识和控制器参数在线更新的有机结合,实现了电力系统低频振荡的自适应控制,因此克服了基于离线辨识设计的固定参数控制器的固有缺点,解决了由于运行方式复杂多变和参数的不确定性与时变性引起的控制性能降低问题。采用模型预测、滚动优化和反馈校正策略可以预知系统在控制措施下的演化轨迹,避免了控制的负效应。
     中国电科院8机36节点系统仿真结果表明,系统状态空间模型和模型预测控制律更新的最大耗时小于采样时间间隔,控制器能够满足在线应用的要求。控制器可以有效地抑制系统的区间低频振荡模式,并且具有与PSS和其他模型预测阻尼控制器相互协调和适应系统运行方式变化的能力。
With implementation of the "transmission of electricity from the western to the eastern region" strategy, two big and long-chain AC synchronized power grids have been formed in our country according to a series of interconnection projects. Recently, "ultra- high-voltage (UHV) grid as the backbone grid, coordinated development of power grids at all levels" strategical objective has been proposed by State Grid Corporation of China (SGCC). On January 6, 2009, the lOOOkV Jindongnan-Nanyang-Jingmen UHV AC experimental pilot project, which is researched, developed, designed and constructed independently by China, has been formally completed and put into operation. According to planning, "two vertical two horizontal" UHV backbone grid will be constructed and an ultra-large-scale North China-Central China-East China UHV AC synchronized power grid will be formed by the beginning of the "Twelfth Five-Year". By the year around 2020, a strong structure will be formed for UHV power grid of SGCC, which takes the North China, Central China and East China as the core, and links major regional power grids, large coal bases and large hydropower bases and main load centers.
     During construction of our country's ultra-high voltage (UHV) power grid, both electromagnetic loop circuit and stressed long UHV transmission passage may lead to low frequency power oscillation. Large scale power system has a characteristic of large scale and variable operation condition. Both of them challenge existing low frequency analysis and control methods. Therefore, studies on low frequency analysis and wide-area adaptive control for large power system, which is used to overcome shortcomings of existing analysis and control methods in practical applications, has a great importance in enrichment and extension of power system low frequency oscillation analysis and control theory, prevention blackout and improvement transmission capacity between regional power systems. Based on literature review of studies on mechanism, analysis and control method on small disturbance angle stability, thorough studies and useful discussions on low frequency analysis method and wide-area adaptive control strategies for large power system have been made in this dissertation. The main research work and innovative fruits are as follows.
     1) With regards to limitation of conventional eigenvalue analysis method holds true only for middle or small scale power system, a practical method for large scale interconnected power system low frequency oscillation analysis is proposed by combing Prony algorithm and sparse eigenvalue technique. Sparse eigenvalue analysis technique, which makes full use of sparsity of augmented state matrix during small disturbance stability analysis for large scale power system, can compute out concerned eigenvalue subset from all eigenvalues and can analysis power systems that have arbitrary scales. Those concerned partial eigenvalues and eigenvectors can be computed out quickly and accurately by taking results of Prony analysis as initial shift points for the algorithms. Thus adverse effects on computation speed and convergence performance for sparse eigenvalue technique due to inappropriate choice of initial parameters will be avoided. Based on the proposed method, two sparse eigenvalue algorithms, i.e., inverse iteration to Rayleigh quotient iteration (II/RQI) and implicitly restarted Arnoldi (IRA) are taken as examples to conduct low frequency oscillation analysis forNortheast China-North China interconnected power system and North China-Central China-East China UHV synchronized power grid. Critical interarea low frequency oscillation modes are obtained and power system stabilizers (PSSs) are installed on generators in Northeast China- North China interconnected power system to improve system damping. Influencing factors on interarea low frequency oscillation modes for North China-Central China- East China UHV synchronized power grid are also thoroughly analyzed.
     Low frequency oscillation analysis results for Northeast China- North China interconnected power system show that there is a weak damping interarea low frequency oscillation mode where generators in Shandong power grid swing against those in Northeast China power grid. After low frequency oscillation analysis for North China-Central China-East China UHV synchronized power grid, following conclusion is drawn. There are six main interarea low frequency oscillation modes in the system. Damping ratio of the oscillation mode where generators in Shandong power grid swing against generators in Western Inner Mongolia power grid increases along with increment of power transmited from North China main grid to Shandong power grid. It declines sharply after the second interconnection project between North China main grid and Shandong power grid, Huanghua-Binzhou 500kV double-circuit transmission line, is put into operation. Extremely, when North China main grid needs emergency power from Shandong power grid, damping decline of this mode becomes more serious. Increment of power transmited from Western Inner Mongolia power grid to North China main grid helps enhance damping of modes in which generators in Western Inner Mongolia power grid participate. Damping ratio of mode where generators in Fujian power grid swing against generators in East China main grid increases along with increment of power transmited from Fujian power grid to East China main grid. Damping of this mode is notably enhanced after all UHV transmission lines in Hangbei substation are lost, while damping of oscillation mode where generators in Anhui and Zhejiang power grid swing against generators in Jiangsu power grid and Yangcheng power plant declines sharply after the lost. Whether Shijiazhuang UHV substation is lost or not, has little impact on all interarea low frequency oscillation modes.
     2) In power system damping control research, system model is premise and basis for controller design. With respect to modern interconnected power system, which has a characteristic of large scale and variable and complex operation conditions, online recursive closed-loop subspace identification algorithm, i.e., past output errors in variables-multivariable output error state space model identification algorithm (POEIV-MOESP), is proposed. It is the first time that this algorithm is proposed for damping control. The algorithm mainly focus on solving "identification" in "control while identification" thought. Under closed-loop condition, system input and output measurement noises as well as process noise are eliminated by instrumental variable which is formed by system "past" input and output Hankel matrices. Then, space spanned by the columns of system extended observability matrix is obtained by matrix orthogonal projection. With the help of singular value decomposition (SVD) and shift invariant characteristic of extended observability matrix, system matrices A and C can be derived. Thereafter, matrices B and D can be computed out by using least square algorithm. When new sampled input and output data become available, extended instrumental variable- projection approximate subspace tracking algorithm (EIV-PAST) is used to recursively update A and C, while recursive least square (RLS) algorithm is utilized to recursively update B and D. Aspects on applying the algorithm to power system damping control, such as closed-loop identifiability of system model, choice of persistent excitation signal and scaling factor for sampled data, are also discussed in this dissertation. Under the self-tuning principle based wide-area adaptive damping control framework, linear quadratic optimal partial output feedback supplementary damping controller is designed by using online recursive closed-loop subspace identification algorithm.
     The algorithm use system dynamic response to identify reduced-order model which contains system dominant low frequency oscillation modes. Thus, difficulty in obtaining practical system model which has very high order is avoided. Additionally, the algorithm has good numerical stability and low time complexity, which provides basis for "control" in "control while identification" thought.
     Simulation results of the China EPRI 8-machine 36-bus system demonstrate that the proposed on-line recursive closed-loop identification algorithm can effectively identify and track reduced- order state space model which contains system dominant low frequency oscillation modes, and can be used to adjust parameters of supplementary damping controller on-line. Additionally, supplementary damping controller can effectively damp system intearea low frequency oscillations.
     3) With regards to shortcoming of optimal control which cannot take control constraints into the optimization, wide-area adaptive damping control strategy based on model predictive control (MPC) is proposed, which attempts to solving "control" in "control while identification" thought. Based on identified model, system output disturbance model is obtained by augmenting system states with output disturbances to prevent outputs from steady-state offsets. Kalman filter is used to estimate states the augmented model. According to the identified model, predictive equations for closed-loop system are formulated. Then an objective function representing the cost of deviation of system responses from the reference trajectory and the cost of imposing damping controls in infinite horizon is established. Considering constraints on control input, optimal control can be obtained by solving this optimal control problem which uses current state of power system as the initial state. Online model identification and control optimization are repeated in each time interval. The proposed method is an organic integration of online model identification and online updating control parameters. It accomplishes adaptive control of power system low frequency oscillation. Thus, the inherent shortcomings of controllers with fixed parameters based on offline identification are overcome and the problem of the control performance degradation due to variation of the complex operation conditions and time-varying and uncertain characteristic of system parameters are solved. Negative effects of control are avoided by adopting model prediction, receding optimization and feedback compensation strategy in this method.
     Simulation results of the China EPRI 8-machine 36-bus system demonstrate that time consumption for updating of system state space model and model predictive control law is less than sampling interval. Thus, model predictive damping controllers satisfy requirements for online application. It can effectively damp inter-area low frequency oscillation modes. It also have the ability to coordinate with PSSs and other model predictive damping controllers in multi-machine power systems and the ability to adapt to changes in operation conditions.
引文
[1]IEEE/CIGRE Joint Task Force on Stability Terms and Definitions.Definition and classification of power system stability.IEEE Transactions on Power Systems,2004,19(2):1387-1401.
    [2]Western Systems Coordinating Council(WSCC).Disturbance report for the power system outage that occurred on the Western Interconnection on August 10th,1996 at 1548 Past,October 1996.
    [3]汤涌.电力系统强迫功率振荡的基础理论.电网技术,2006,30(10):29-33.
    [4]国家电力调度通信中心.电网典型事故分析(1999-2007).北京:中国电力出版社,2008.
    [5]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响.中国电机工程学报,2005,25(11):6-11.
    [6]张宁.提高特高压电网输电能力研究[博士学位论文].济南:山东大学,2008.
    [7]Demello F P,Concordia C.Concepts of synchronous machine stability as affected by excitation control.IEEE Transactions on Power Apparatus and Systems,1969,88(4):316-329.
    [8]王铁强.电力系统低频振荡共振机理的研究[博士学位论文].北京:华北电力大学,2001.
    [9]韩志勇,贺仁睦,徐衍会.由汽轮机脉动引发电力系统共振机理的低频振荡研究.中国电机工程学报,2005,25(21):14-18.
    [10]徐衍会,贺仁睦,韩志勇.电力系统共振激励低频振荡扰动源分析.中国电机工程学报,2007,27(17):83-87.
    [11]韩志勇,贺仁睦,马进,等.电力系统强迫功率振荡扰动源的对比分析.电力系统自动化,2009,33(3):16-19.
    [12]Dobson I,Zhang J,Greene S,et al.Is strong modal resonance a precursor to power system oscillations? IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,2001,48(3):340-349.
    [13]邓集祥,马景兰.电力系统中非线性奇异现象的研究.电力系统自动化,1999,23(22):1-4.
    [14]王宝华,杨成梧,张强.电力系统分岔与混沌研究综述.电工技术学报,2005,20(7):1-10.
    [15]贾宏杰,余贻鑫,王成山.电力系统混沌现象及相关研究.中国电机工程学报,2001,21(7):26-30.
    [16]邓集祥,纪晶,邓斌.基于复合模式的电力系统超低频振荡产生机理.电工技术学报,2007,22(8):84-89.
    [17]夏道止.电力系统分析(下册).北京:中国电力出版社,1995.
    [18]王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2003.
    [19]杜正春,刘伟,方万良,等.小干扰稳定性分析中一种关键特征值计算的稀疏实现.中国电机工程学报,2005,25(2):17-21.
    [20]杜正春,刘伟,方万良,等.大规模电力系统关键特征值计算的Arnoldi-Chebyshev方法.西安交通大学学报,2004,38(10):995-999.
    [21]杜正春,刘伟,方万良,等.基于JACOBI-DAVIDSON方法的小干扰稳定性分析中关键特征值计算.中国电机工程学报,2005,25(14):19-24.
    [22]杜正春,刘伟,方万良,等.小干扰稳定性分析中按阻尼比递增的关键特征值子集计算.电网技术,2006,30(3):7-12.
    [23]郝思鹏,薛禹胜,张晓明,等.基于EEAC理论分析低频振荡.电力系统自动化,2009,33(4):11-15,30.
    [24]薛禹胜,郝思鹏,刘俊勇,等.关于低频振荡分析方法的述评.电力系统自动化,2009,33(3):1-8.
    [25]潘学萍,薛禹胜,张晓明.轨迹特征根的解析估算及其误差分析.电力系统自动化,2008,32(19):10-14.
    [26]艾克霍夫P,著,潘科炎,张永光等译.系统辨识:状态与系统参数估计.北京:科学出版社,1980.
    [27]O'Shea P.The use of sliding spectral windows for parameter estimation in power system disturbance monitoring.IEEE Transactions on Power Systems,2000,15(4):1261-1267.
    [28]Lee K C,Poon K P.Analysis of power system dynamic oscillations with heat phenomenon by Fourier transformation.IEEE Transactions on Power Systems 1990,5(1):148-153.
    [29]O'Shea P.A high-resolution spectral analysis algorithm for power-system disturbance monitoring.IEEE Transactions on Power Systems,2002,17(3):676-680.
    [30]Glickman M,O'Shea P,Ledwich G.Estimation of modal damping in power networks.IEEE Transactions on Power Systems,2007,22(3):1340-1350.
    [31]张鹏飞,薛禹胜,张启平.电力系统时变振荡特性的小波脊分析.电力系统自动化,2004,28(16):32-35,66.
    [32]李天云,高磊,赵妍.基于HHT的电力系统低频振荡分析.中国电机工程学报,2006,26(14):24-30.
    [33]Browne T J,Vittal V,Heydt G T,et al.A comparative assessment of two techniques for modal identification from power system measurements.IEEE Transactions on Power Systems,2008,23(3):1408-1415.
    [34]Pierre J W,Trudnowski D J,Donnelly M K.Initial results in electromechanical mode identificaiton from ambilent data.IEEE Transactions on Power Systems,1997,12(3):12451251.
    [35]Wies R W,Pierre J W,Trudnowski D J.Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems.IEEE Transactions on Power Systems,2003,18(1):167-173.
    [36]Smith J R,Hauer J F,Trudnowski D J.Transfer function identification in power system applications.IEEE Transactions on Power Systems,1993,8(3):1282-1290.
    [37]Zhou N,Pierre J W,Trudnowski D J,et al.Robust RLS methods for online estimation of power system electromechanical modes.IEEE Transactions on Power Systems 2007,22(3):1240-1249.
    [38]Zhou N,Trudnowski D J,Pierre J W,et al.Electromechanical mode online estimation using regularized robust RLS methods.IEEE Transactions on Power Systems,2008,23(4):1670-1680.
    [39]Soos A,Malik O P.An H_2 optimal adaptive power system stabilizer.IEEE Transactions on Energy Conversion,2002,17(1):143-149.
    [40]Wies R W,Pierre J W,Trudnowski D J.Use of least mean squares(LMS) adaptive filtering technique for estimating low-frequency electromechanical modes in power systems.IEEE Power Engineering Society General Meeting,Denver,U.S.A,2004,2:1863-1870.
    [41]Korba P.Real-time monitoring of electromechanical oscillations in power systems:first findings.IET Generation,Transmission and Distribution,2007,1(1):80-88.
    [42]肖晋宇,谢小荣,胡志祥,等.电力系统低频振荡在线辨识的改进Prony算法.清华大学学报(自然科学版),2004,44(7):883-887.
    [43]李大虎,曹一家.基于模糊滤波和Prony算法的低频振荡模式在线辨识方法.电力系统自动化,2007,31(1):14-19.
    [44]Trudnowski D J,Johnson J M,Hauer J F.Making Prony analysis more accurate using multiple signals.IEEE Transactions on Power Systems,1999,14(1):226-231.
    [45]徐东杰,贺仁睦,高海龙.基于迭代Prony算法的传递函数辨识.中国电机工程学报,2004,24(6):40-43.
    [46]Trudnowski D J,Smith J R,Short T A,et al.An application of Prony methods in PSS design for multimachine systems.IEEE Transactions on Power Systems,1991,6(1):118-126.
    [47]Pierre D A,Trudnowski D J,Hauer J F.Identifying linear reduced-order models for systems with arbitrary initial conditions using Prony signal analysis.IEEE Transactions on Automatic Control,1992,37(6):831-835.
    [48]Fatehi F,Smith J R,Pierre D A.Robust power system controller design based on measured models.IEEE Transactions on Power Systems,1996,11(2):774-780.
    [49]Kamwa I,Gerin-Lajoie L.State-space system identification-toward MIMO models for modal analysis and optimization of bulk power systems.IEEE Transactions on Power Systems,2000,15(1):326-335.
    [50]Okamoto H,Kurita A,Sanchez-Gasca J J,et al.Identification of low-order linear power system models from EMTP simulations using the Steiglitz-McBride algorithm.IEEE Transactions on Power Systems,1998,13(2):422-427.
    [51]Sanchez-Gasca J J,Chow J H.Performance comparison of three identification methods for the analysis of electromechanical oscillations.IEEE Transactions on Power Systems,1999, 14(3):995-1002.
    [52]Overschee P V,Moor B D.Subspace identification for linear system:theory -implementation - applications.Dordrecht:Kluwer Academic Publishers,1996.
    [53]Overschee P V,Moor B D.An unifying theorem for three subspace system identification algorithms.Automatica,1995,31(12):1853-1864.
    [54]Chou C T,Verhaegen M.Subspace algorithms for the identification of multivariable dynamic errors-in-variables models.Automatica,1997,33(10):1857-1869.
    [55]Lovera M,Gustafsson T,Verhaegen M.Recursive subspace identification of linear and non-linear Wiener state-space models.Automatica,2000,36(11):1639-1650.
    [56]张静,徐政,王峰,等.TLS-ESPRIT算法在低频振荡分析中的应用.电力系统自动化,2007,31(20):84-88.
    [57]孟杰,谢小荣,童陆园.电力系统阻尼控制中的降阶状态空间模型辨识.中国电力,2006,39(8):1-5.
    [58]徐东杰,贺仁睦,胡国强,等.正规形方法在互联电网低频振荡分析中的应用.中国电机工程学报,2004,24(3):18-23.
    [59]邓集祥,华瑶,张芳.振荡模式非线性相关作用的研究.电力系统自动化,2003,27(16):35-39.
    [60]邓集祥,华瑶,韩雪飞.大干扰稳定中低频振荡模式的作用研究.中国电机工程学报,2003,23(11):60-64.
    [61]邓集祥,陈武晖,涂进,等.电力系统3阶解析解的推导及验证.中国电机工程学报,2007,27(28):12-18.
    [62]邓集祥,陈武晖,贺建明.应用模态级数3阶解析解分析大干扰低频振荡机理.电力系统自动化,2007,31(22):27-30.
    [63]Gomes S,Jr.,Martins N,Portela C.Computing small-signal stability boundaries for large-scale power systems.IEEE Transactions on Power Systems,2003,18(2):747-752.
    [64]余贻鑫,贾宏杰,王成山.电力系统中的混沌现象与小扰动稳定域.中国科学(E辑)2001,31(5):431-441.
    [65]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002.
    [66]周双喜,苏小林.电力系统小干扰稳定性研究的新进展.电力系统及其自动化学报,2007,19(2):1-8,34.
    [67]程时杰,余文辉,文劲宇,等.储能技术及其在电力系统稳定控制中的应用.电网技术,2007,31(20):97-108.
    [68]刘取.电力系统稳定及发电机励磁控制.北京:中国电力出版社,2007.
    [69]Clark H K,de Meilo F P,Reppen N D,et al.The grid in transition - FACTS or fiction when dealing with reliability? IEEE Power and Energy Magazine,2003,1(5):88,86.
    [70]陈翰馥,郭雷.现代控制理论的若干进展及展望.科学通报,1998,43(1):1-7.
    [71]吴捷,刘永强,陈巍.现代控制技术在电力系统控制中的应用(一).中国电机工程学报,1998,18(6):377-382.
    [72]吴捷,陈巍,刘永强.现代控制技术在电力系统控制中的应用(二).中国电机工程学报,1998,18(6):383-387.
    [73]吴青华,蒋林.非线性控制理论在电力系统中应用综述.电力系统自动化,2001,25(3):1-10.
    [74]王康,兰洲,甘德强,等.非线性系统自适应控制及其在电力系统中的应用.电网技术,2007,31(11):11-16.
    [75]王克文,谢志棠,史述红,等.基于概率特征根分析的电力系统稳定器参数设计.电力系统自动化,2001,25(11):20-23.
    [76]Khaldi M R,Sarkar A K,Lee K Y,et al.The modal performance measure for parameter optimization of power system stabilizers.IEEE Transactions on Energy Conversion,1993,8(4):660-666.
    [77]朱振青,王新.复杂电力系统中电力系统稳定器的参数优化.西安交通大学学报,1989,23(S1):71-77.
    [78]Abido M A.Simulated annealing based approach to PSS and FACTS based stabilizer tuning.International Journal of Electrical Power & Energy Systems,2000,22(4):247-258.
    [79]Abido M A.A novel approach to conventional power system stabilizer design using tabu search.International Journal of Electrical Power & Energy Systems,1999,21(6):443-454.
    [80]Abido M A.Parameter optimization of multimachine power system stabilizers using genetic local search.International Journal of Electrical Power & Energy Systems,2001,23(8):785-794.
    [81]Al-Awami A T,Abdei-Magid Y L,Abido M A.A particle-swarm-based approach of power system stability enhancement with unified power flow controller.International Journal of Electrical Power & Energy Systems,2007,29(3):251-259.
    [82]牛振勇,杜正春,方万良,等.基于进化策略的多机系统PSS参数优化.中国电机工程学报,2004,24(2):22-27.
    [83]杜正春,王秀菊,方万良.基于信赖域法的多运行方式下阻尼控制器参数协调.西安交通大学学报,2005,39(12):1375-1379.
    [84]Kunder P.Power system stability and control.MC Graw-Hill Inc,1993.
    [85]卢强,王仲鸿,韩英铎.输电系统最优控制.北京:科学出版社,1982.
    [86]韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制.北京:清华大学出版社,1997.
    [87]卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993.
    [88]Lu Q,Sun Y,Xu Z,et al.Decentralized nonlinear optimal excitation control.IEEE Transactions on Power Systems,1996,11(4):1957-1962.
    [89]Chapman J W,Ilic M D,King C A,et al.Stabilizing a multimachine power system via decentralized feedback linearizing excitation control.IEEE Transactions on Power Systems,1993,8(3):830-839.
    [90]Green M,Limebeer D J N.Linear robust control.N J:Prentice-Hall,Inc.,1994.
    [91]俞立.鲁棒控制-线性矩阵不等式处理方法.北京:清华大学出版社,2002.
    [92]Arjan van der Schaft著,孙元章,刘前进,杨新林译.非线性控制中的L_2增益和无源化方法.北京:清华大学出版社,2002.
    [93]Pal B,Chaudhuri B.Robust control in power systems.New York:Springer,2005.
    [94]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制.北京:清华大学出版社,2007.
    [95]王辉,徐锋,贺超英.TCSC非线性自校正控制策略的研究.湖南大学学报(自然科学版),2006,33(5):73-77.
    [96]Atassi A N,Khalil H K.A separation principle for the control of a class of nonlinear systems.IEEE Transactions on Automatic Control,2001,46(5):742-746.
    [97]Khalil H."High gain observers in nonlinear feedback control," Output feedback control design.New directions in nonlinear observer design:Part Ⅱ,H.Nijmeijer and T.I.Fossen,Ed..London:Springer,1999,pp.249-264.
    [98]Jiang L,Wu Q H,Zhang C,et al.Robust observer-based nonlinear control of multimachine power systems,IEE Proceedings-Generation,Transmission and Distribution,2001,148(6):623-641.
    [99]Jiang L,Wu Q H,Wen J Y.Decentralized nonlinear adaptive control for multimachine power systems via high-gain perturbation observer.IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2004,51(10):2052-2059.
    [100]Kanellakopouios I,Kokotovic P V,Morse A S.Systematic design of adaptive controllers for feedback linearizable systems.IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
    [101]Karimi A,Feliachi A.Decentralized adaptive backstepping control of electric power systems.Electric Power Systems Research,2008,78(3):484-493.
    [102]兰洲,甘德强,倪以信,等.电力系统非线性鲁棒自适应分散协调励磁控制设计.中国电机工程学报,2006,26(17):1-5.
    [103]兰洲,甘德强,倪以信,等.跟踪COI思想应用与多机系统励磁控制.电力系统自动化,2006,30(17):14-18.
    [104]Cai Z,Zhu L,Lan Z,et al.A study on robust adaptive modulation controller for TCSC based on COI signal in interconnected power systems.Electric Power Systems Research,2008,78(1):147-157.
    [105]兰洲,朱浩骏,甘德强,等.基于惯量中心动态信号的交直流互联系统稳定控制.电网技术,2007,31(6):14-18.
    [106]王康,兰洲,甘德强,等.基于超导储能装置的联络线功率控制.电力系统自动化,2008,32(8):5-9,68.
    [107]Liu W,Venayagamoorthy G K,Wunsch II D C.Adaptive neural network based power system stabilizer design.International Joint Conference on Neural Networks,2003,4:2970-2975.
    [108]黄振宇,刁勤华,孙岩,等.UPFC的模糊调制控制研究.电力系统自动化,2000,2000(2):36-41.
    [109]杨晓东,房大中,刘长胜,等.阻尼联络线低频振荡的SVC自适应模糊控制器研究.中国电机工程学报,2003,23(1):55-59.
    [110]房大中,杨晓东,宋文南.提高交直流电力系统稳定性的HVDC模糊逻辑控制器.电力系统自动化,2002,26(6):23-27.
    [111]徐光虎,孙衢,陈陈.HVDC模糊协调阻尼控制器设计.电力系统自动化,2004,28(12):18-22.
    [112]朱浩骏,蔡泽祥,刘皓明,等.多馈入交直流输电系统的模糊控制器协调优化算法.中国电机工程学报,2006,26(13):7-13.
    [113]高峰,秦翼鸿.基于模糊神经网络的模糊控制器综合优化设计Ⅰ.设计方法.电力系统自动化,1996,20(7):9-12.
    [114]高峰,秦翼鸿.基于模糊神经网络的模糊控制器综合优化设计Ⅱ.模糊电力系统稳定器.电力系统自动化,1996,20(12):1-3,9.
    [115]Taylor C W,Erickson D C,Martin K E,et al.WACS-wide-area stability and voltage control system:R&D and online demonstration.Proceedings of the IEEE,2005,93(5):892-906.
    [116]Wilson D H.Wide-area measurement and control for dynamic stability.IEEE Power Engineering Society General Meeting,2007,1-5.
    [117]Larsson M,Korba P,Zima M.Implementation and Applications of Wide-area monitoring systems.IEEE Power Engineering Society General Meeting,2007,1-6.
    [118]谢小荣,肖晋宇,童陆园,等.采用广域测量信号的互联电网区间阻尼控制.电力系统自动化,2004,28(2):37-40.
    [119]褚晓东,刘玉田.转子角测量装置的优化配置.中国电机工程学报,2003,23(9):132-136.
    [120]袁野,程林,孙元章.采用广域测量信号的2级PSS控制策略.电力系统自动化,2006,30(24):11-16,48.
    [121]贺静波,李立涅,陈辉祥,等.基于广域信息的电力系统阻尼控制器反馈信号选择.电力系统自动化,2007,31(9):6-10.
    [122]Zhang Y,Bose A.Design of wide-area damping controllers for interarea oscillations.IEEE Transactions on Power Systems,2008,23(3):1136-1143.
    [123]Kamwa I,Grondin R,Hebert Y.Wide-area measurement based stabilizing control of large power systems - a decentralized / hierarchical approach.IEEE Transactions on Power Systems,2001,16(1):136-153.
    [124]张鹏翔,曾一家,王海风,等.相对增益矩阵方法在柔性交流输电系统多变量控制器交互影响分析中的应用.中国电机工程学报,2004,24(7):13-17.
    [125]江全元,邹振宇,曹一家.基于RGA原理的SVC和STATCOM控制器交互影响分析.浙江大学学报(工学版),2005,39(7):1014-1018.
    [126]江全元,邹振宇,吴吴,等.基于相对增益矩阵原理的柔性交流输电系统控制器交互 影响分析.中国电机工程学报,2005,25(11):23-28.
    [127]李亮,江全元,邹振宇.多机电力系统中多台TCSC控制器问的交互影响研究.电网技术,2005,29(9):10-14.
    [128]邹振宇,江全元,曹一家,等.基于Normal Form方法的UPFC多个功能控制器问交互影响分析.现代电力,2005,22(5):1-6.
    [129]邹振宇,江全元,曹一家,等.基于规范形方法的多台SVC交互影响分析.电工技术学报,2005,20(8):12-17,54.
    [130]Farsangi M M,Song Y H,Lee K Y.Choice of FACTS device control inputs for damping interarea oscillations.IEEE Transactions on Power Systems,2004,19(2):1135-1143.
    [131]Okou F,Dessaint L-A,Akhrif O.Power system stability enhancement using a wide-area signal based hierarchical controller.IEEE Transactions on Power Systems,2005,20(3):1465-1477.
    [132]江全元,邹振宇,曹一家,等.考虑时滞影响的电力系统稳定分析和广域控制研究进展.电力系统自动化,2005,29(3):1-7.
    [133]贾宏杰,王伟,余晓丹,等.小扰动稳定域微分拓扑学性质初探:(一)小扰动稳定域非凸边界和空洞现象示例.电力系统自动化,2005,29(20):20-23.
    [134]贾宏杰,余晓丹.小扰动稳定域微分拓扑学性质初探:(二)小扰动稳定域内部空洞出现机理分析.电力系统自动化,2005,29(21):15-18,38.
    [135]贾宏杰,陈建华,余晓丹.时滞环节对电力系统小扰动稳定性的影响.电力系统自动化,2006,30(5):5-8,17.
    [136]贾宏杰,谢星星,余晓丹.考虑时滞影响的电力系统小扰动稳定域.电力系统自动化,2006,30(21):1-5.
    [137]贾宏杰,尚蕊,张宝贵.电力系统时滞稳定裕度求解方法.电力系统自动化,2007,31(2):5-11.
    [138]Liu Z,Zhu C,Jiang Q.Stability analysis of time delayed power system based on cluster treatment of characteristic roots method.IEEE Power and Energy Society General Meeting,Pittsburgh,USA,2008,1-6.
    [139]Liu Z,Zhu C,Miao Y,et al.Stability analysis of multiple time delayed power systems using "Building Block" concept.IEEE Power and Energy Society General Meeting Pittsburgh,USA,2008,1-8.
    [140]袁野,程林,孙元章,等.广域阻尼控制的时滞影响分析及时滞补偿设计.电力系统自动化,2006,30(14):6-9.
    [141]韩英铎,吴小辰,吴京涛.电力系统广域稳定控制技术及工程实验.南方电网技术,2007,1(1):1-8.
    [142]吴小辰,陆超,贺静波,等.直流广域自适应控制器设计与RTDS实验.电力系统自动化,2007,31(15):11-16.
    [143]江全元,张鹏翔,曹一家.计及反馈信号时滞影响的广域FACTS阻尼控制.中国电机 工程学报,2006,26(7):82-88.
    [144]Snyder A F,Ivanescu D,Hadjsaid N,et al.Stabilizing controller input delay effect on wide-area stability control.International Conference on Electric Power Engineering,Budapest 1999,106.
    [145]Wu H X,Ni H,Heydt G T.The impact of time delay on robust control design in power sytems.IEEE Power Engineering Society Winter Meeting,2002,2:27-31.
    [146]Chaudhuri B,Majumder R,Pal B C.Wide-area measurement-based stabilizing control of power system considering signal transmission delay.IEEE Transactions on Power Systems,2004,19(4):1971-1979.
    [147]Majumder R,Chaudhuri B,Pal B C.Implementaition and test results of a wide-area measurement-based controller for damping interarea oscillations considering signal-transmission delay,lET Generation,Transmission and Distribution,2007,1(1):1-7.
    [148]Wu H X,Tsakalis K S,Heydt G T.Evaluation of time delay effects to wide-area power system stabilizer design.1EEE Transactions on Power Systems,2004,19(4):1935-1941.
    [149]胡志祥,谢小荣,童陆园.广域阻尼控制延迟特性分析及其多项式拟合补偿.电力系统自动化,2005,29(20):29-34.
    [150]Ray S,Venayagamoorthy G K.Real-time implementation of a measurement-based adaptive wide-area control system considering communication delays.IET Generation,Transmission and Distribution,2008,2(1):62-70.
    [151]胡志祥,谢小荣,肖晋宇.广域测量系统的延迟分析及其测试.电力系统自动化,2004,28(15):39-43.
    [152]王邵部,江全元,刘兆燕,等.计及反馈信号多时滞特性的广域阻尼控制.电力系统自动化,2008,32(10):18-22.
    [153]李芳.电力系统小干扰稳定分布式并行算法研究[博士学位论文].北京:中国电力科学研究院,2006.
    [154]谷寒雨.大型电力系统小信号稳定特征值分析方法研究[博士学位论文].上海:上海交通大学.1999.
    [155]叶华,刘玉田,牛新生.500kV-220kV电磁环网开环方案模糊综合评估.电力自动化设备,2006,26(7):1-5.
    [156]罗建裕,王小英,鲁庭瑞,等.基于广域测量技术的电网实时动态监测系统应用.电力系统自动化,2003,27(24):78-80.
    [157]肖晋宇,谢小荣,胡志祥,等.基于在线辨识的电力系统广域阻尼控制.电力系统自动化,2004,28(23):22-27.
    [158]吴小辰,陆超,贺静波,等.直流广域自适应阻尼控制器设计与RTDS实验.电力系统自动化,2007,31(15):11-16.
    [159]Zhou N,Pierre J W,Hauer J F.Initial results in power system identification from injected probing signals using a subspace method.IEEE Transactions on Power Systems,2006,21(3):1296-1302.
    [160]Ghasemi H,Canizares C,MoshrefA.Oscillatory stability limit prediction using stochastic subspace identification.IEEE Transactions on Power Systems,2006,21(2):736-745.
    [161]林姿峰.基于信号激励法的小扰动安全在线评估[博士学位论文].北京:清华大学,2004.
    [162]刘大鹏,雷宪章,陈珩.利用白噪声激励实现多机系统电力系统稳定器的优化与协调.电力系统自动化,2001,25(19):15-18,44.
    [163]刘海峰,徐政,金丽成.基于测试信号的直流小信号调制器参数整定.电力系统自动化,2002,26(21):12-16.
    [164]谢小荣,崔文进,唐义良,等.求解扩展Levine-Athans方程组的直接迭代算法.清华大学学报(自然科学版),2001,41(3):1-4.
    [165]Rossiter J A.Model-based predictive control:a practical approach.Boca Taton,Florida:CRC Press,2003.
    [166]Larsson M,Hill D J,Olsson G.Emergency voltage control using search and predictive control.International Journal of Electrical Power and Energy Systems,2002,24(2):121-130.
    [167]Wen J Y,Wu Q H,Turner D R,et al.Optimal coordinated voltage control for power system voltage stability.IEEE Transactions on Power Systems,2004,19(2):1115-1122.
    [168]Otomega B,Marinakis A,Glavic M,et al.Model predictive control to alleviate thermal overloads.IEEE Transactions on Power Systems,2007,22(3):1384-1385.
    [169]褚晓东.基于广域测量信息的电力系统暂态稳定预测与控制决策[博士学位论文].济南:山东大学,2006.
    [170]Hiskens I A,Gong B.Voltage stability enhancement via model predictive control of load.Intelligent Automation Soft Computation,2006,12(1):117-124.
    [171]Talukdar S,Dong J,Hines P,et alo Distributed model predictive control for the mitigation of cascading failures.44th IEEE Conference on Decision and Control and 2005 European Control Conference,2005,4440-4445.
    [172]Beccuti A G,Demiray T,Zima M,et al.Comparative assessment of prediction models in voltage control.IEEE Lausanne Power Tech Conference 2007,1021-1026.
    [173]Soos A,Malik O P.H~ model predictive controller as power system stabilizer.X SEPOPE-Symposium of Specialists in Electric Operational and Expansion Planning,Florianopolis,Brazil,2006,1-8.
    [174]Wu B,Malik O P.Multivariable adaptive control of synchronous machines in a multimachine power system.IEEE Transactions on Power Systems,2006,21(4):1772-1781.
    [175]朱海貌,刘天琪,李兴源.基于改进广义预测控制的电力系统稳定器.电力系统自动化,2008,32(2):6-7,20.
    [176]乔洪信,樊思齐,杨立,等.航空发动机状态空间模型约束预测控制.推进技术,2005,26(6):548-551,576.
    [177]Grewal M S,Andrews A P.Kalman filtering:theory and pactice using MATLAB(2nd Edition).New York:John Wiley & Sons,Inc.,2001.
    [178]Barteis R H,Stewart G W.Solution of the matrix equation AX+XB=C.Communications of the ACM,1972,15(9):820-826.
    [179][美]方述诚,普森普拉S.线性优化及扩展-理论与算法.北京:科学出版社,1994.
    [180]刘维.精通Matlab与C/C++混合程序设计(第2版).北京:北京航空航天大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700