用户名: 密码: 验证码:
非调质塑料模具钢的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着塑料工业的迅速发展,针对塑料件尺寸逐渐增大,塑料模具制造能力的要求不断提高,急需开发模块厚度大于300 mm,硬度在36~42 HRC的非调质预硬型塑料模具钢。因此,本文聚焦大截面高硬度非调质预硬型塑料模具用钢的需求现状,从温度场计算、成分设计、组织控制和实验钢中试等方面进行了系统研究,取得了如下成果:
     研究了300 mm×300 mm×300 mm的调质预硬型塑料模具钢3Cr2MnNiMo模块加热后于静止空气和流动空气中冷却时的温度场,数值模拟计算了模块在两种冷却条件下的温度场,获得了大截面模块锻造后冷却时的边界条件范围(空冷时辐射率为0.6,对流换热系数为7 W/(m2·℃);风冷时辐射率为0.6,对流换热系数为29 W/(m2·℃)),进而计算了直径为300~800 mm、重10 t的不同圆坯空冷和风冷的温度场,得到了临界冷却速率,为全贝氏体型非调质塑料模具钢的成分设计奠定基础。
     采用误差反向传播神经网络(BP神经网络)模型,建立了合金钢成分同其连续冷却时硬度之间的关系,预测了合金钢以0.5、0.3、0.05和0.03℃/s连续冷却时的硬度,进而指导Φ300~800 mm圆坯空冷时获得全贝氏体组织的成分设计,筛选出6组钢的成分。连续冷却相变实验研究表明,BP模型用于全贝氏体型非调质钢的成分设计是有效的。
     采用数值模拟计算获得了300 mm×1000 mm×3800 mm和500 mm×1000 mm×2300 mm预硬型塑料模具钢模块的临界冷却速率,并采用以上实验室设计的钢成分中试了上述尺寸的模块SDFT1(0.20C-0.6Si-2Mn-1Cr-0.3Mo-0.1V)钢和SDFT2(0.25C-0.4Si-2Mn-1Cr-0.45Mo -0.1V)钢。力学性能、车削加工性能、抛光性能和耐腐蚀性能研究表明,SDFT1和SDFT2钢均满足预硬型塑料模具钢的使用要求。
     空冷和砂冷的SDFT1和SDFT2钢组织均为贝氏体。两钢分别在0.03~0.5℃/s和0.02~0.3℃/s范围内连续冷却时贝氏体开始转变温度接近。透射电镜(TEM)观察表明,贝氏体组织的精细结构主要为贝氏体铁素体板条和少量马氏体/奥氏体(M/A)岛,贝氏体铁素体板条间有残余奥氏体或碳化物,空冷的贝氏体铁素体板条较窄,并且M/A岛尺寸也较小。贝氏体转变开始温度不同,位错强化效果有差别;冷却速率不同导致的贝氏体板条宽度变化,对两钢分别在空冷和砂冷的硬度影响较小。
     SDFT钢未回火时的屈服强度较低,随着回火温度的升高屈服强度开始迅速提高,约350℃达到峰值,随后缓慢下降;随着回火温度的升高冲击韧性开始提高,约350℃达到峰值,当回火温度在400~500℃之间继续升高时,试验钢的冲击韧性开始快速降低,约450℃冲击韧性降到最低,随后又开始升高。X射线衍射和TEM研究表明,SDFT钢的力学性能随回火温度变化的可能原因是残余奥氏体转变和马氏体岛的分解。
     以上述研究为基础,宝钢股份公司生产了厚度在300~600 mm、宽度在800~1200 mm的非调质塑料模具钢模块(SWFT钢),预硬化范围在36~42 HRC,硬度波动在±1.5 HRC内。对截面460 mm×800 mm的SWFT钢和500 mm×800 mm的3Cr2MnNiMo钢比较研究表明,SWFT钢在整个截面尺寸范围内均为贝氏体,其精细结构主要为贝氏体铁素体板条和少量M/A岛,贝氏体铁素体板条间有残余奥氏体或碳化物,表层的贝氏体铁素体板条窄于心部;3Cr2MnNiMo钢表层组织为回火马氏体,心部组织为回火马氏体和贝氏体。SWFT钢的力学性能、加工性能和使用性能均满足调质预硬型塑料模具钢的要求,而且减少了3Cr2MnNiMo钢锻造后再次奥氏体化淬火的热处理工序,缩短了生产流程,降低了能耗。
     研究成果对于大截面非调质预硬型塑料模具用钢的命名以及工业化生产均有指导意义。
With the rapid development of the plastic industry, dimension of plastic products increases gradually, and manufacturing capability of the plastic mould is improved continuously. It is necessary to develop the non-quenched and tempered prehardened(NQP) plastic mould steel with its thickness over 300 mm, hardness between 36~42 HRC. Therefore, the thesis focuses on the requirement of plastic mould steel with large section and high hardness, and systematically develops study from temperature field, chemical composition design, microstructure control and pilot realization of test steel. The main results are the followings:
     Combined the temperature history of the 300 mm×300 mm×300 mm quenched and tempered prehardened(QP) plastic mould steel 3Cr2MnNiMo block under air cooling and fan cooling, and calculation result by the numerical simulation, the boundary condition range is acquired when the large section plastic mould steel block cools after forging. Subsequently, the temperature field of 10 ton round billets with diameter of 300~800 mm is calculated when they are air cooled and fan cooled, which lays the foundation for the chemical composition of bainitic NQP plastic mould steel.
     The relation between chemical composition of alloyed steel and its hardness under continuous cooling is built by Back Neural Network(BP) method. The hardness of alloyed steel under 0.5, 0.3, 0.05 and 0.03℃/s could be predicted, and chemical composition ofΦ300~800 mm round billet with whole bainite could be guided by BP model. 6 steels are chosen by BP model, the validity of which is proved by the continuous cooling transformation(CCT).
     The critical cooling rate of the 300 mm×1000 mm×3800 mm block and 500 mm×1000 mm×2300 mm block is acquired by numerical simulation. The SDFT1(0.20C-0.6Si-2Mn-1Cr- 0.3Mo-0.1V) steel fit for the 300 mm×1000 mm×3800 mm block and SDFT2(0.25C-0.4Si-2Mn- 1Cr-0.45Mo-0.1V) steel fit for the 500 mm×1000 mm×2300 mm block are developed by the test steels above. Tests of mechanical properties, machinability, polishing and corrosion resistance show that both steels satisfy the requirement of plastic mould steel.
     Both steels air cooled and sand cooled are bainite, and the start transformation temperatures of their bainite”C”curve are close between the cooling rate range of 0.03~0.5℃/s for SDFT1 steel and 0.02~0.3℃/s for SDFT2 steel. Fine microstructures observed by transmission electronic microscopy(TEM) are mainly composed of bainitic ferrite laths and martensite/austenite (M/A) islands, and cementite and/or residual austenite exist in bainitic ferrite laths. Considering CCT of the SDFT steel, their small hardness variation between air cooled and sand cooled is caused by their high bainitic hardenability. Moreover, differences of lath widths and dislocation density in bainitic ferrite lath strongly correlating to bainite transformation temperature make theirs hardness a little higher in air cooled than that in sand cooled.
     Yield strength and impact toughness of the SDFT steels without tempering are lower, but they improve with the tempering increasing, and reach the peak values at about 350℃, and then their yield strength decreases slowly, while their impact toughness decreases rapidly at 400~450℃, and reaches valley value at about 450℃. Combined the X-ray diffraction and TEM analysis, above results mainly caused from transition of residual austenite and decomposition of M/A islands.
     Based on the development of the SDFT steels, Baosteel company has produced the NQP plastic mould steel(the SWFT steel) with thickness at 300~600 mm, width at 800~1200 mm, and hardness at 36~42HRC. The SWFT steel block with sectional dimension of 460 mm×800 mm is researched by comparison with the QP plastic mould steel block(3Cr2MnNiMo) with that of 500 mm×800 mm by tests of mechanical properties, processability and application properties. Results show that microstructures of the SWFT steel both at core and at surface are bainite, fine microstructure of which is composed of bainitic ferrite laths with high dislocation density and interlath cementite and/or residual austenite, and width of bainitic ferrite laths at surface is narrower than that at surface; while microstructure of 3Cr2MnNiMo steel at surface is tempered martensite, and which at core is tempered martensite and bainite. Furthermore, the SWFT steel satisfies the requirement of the QP plastic mould steel in addition to simplified process and reduction of energy.
     Research results could directly instruct naming of the NQP plastic mould steel with large section and commercial production.
引文
[1]陈再枝,马党参.塑料模具钢应用手册[M].北京:化学工业出版社, 2005.
    [2] Serosh Engineer, Bernd Huchtemann, Volker Schuler. A review of the development and application of microalloyed medium carbon steels[J]. Steel Research, 1987, 58(8): 369-376.
    [3]夏国华,朱自成,冯文刚.非调质钢[M].北京:国防工业出版社, 1997.
    [4]董成瑞,任海鹏,金同哲,等.微合金非调质钢[M].北京:冶金工业出版社, 1996.
    [5]吴晓春,崔崑.非调质塑料模具钢的组织与性能[J].华中理工大学学报, 1995, 23(12): 1-6.
    [6]江来珠,王习顺,王建会.非调质贝氏体型大截面塑料模具钢的研究和开发-合金成分与组织和机械性能的关系[J].宝钢技术, 1999(6): 22-40.
    [7] T. Sera, M. Unino, Y. Ikenaga, et al. Development of new free-cutting plastic molding steels[C]. Proceedings of the 5th International Conference on Tooling, Leoben, Austria, 1999: 653-660.
    [8]潘振鹏,冯颖璋.我国塑料模具钢的新近进展[J].特殊钢, 1998, 19(5): 5-9.
    [9] Claudia. Ernst, Sebastian Klung, Wolfgang Pannes. Novel plastic mould steel for tools with large dimensions[C]. Proceedings of the 8th International Tooling Conference, Aachen, Germany, 2009: 399-410.
    [10]陈再枝,蓝德年.模具钢手册[M].北京:冶金工业出版社, 2002.
    [11]徐进,日本模具钢生产技术发展概况[J].特殊钢, 1997, 18(6): 10-19.
    [12] P. Hansson. New multi-purpose prehardened tool steel[C]. Proceedings of the 7th International Tooling Conference, Torino, Italy, 2006: 275-282.
    [13] S. Corre, C.Le Calvez, P. Mabelly, et al. Development of a new prehardened mold steel with improved machining, welding, polishing and conducting capacities[C]. Proceedings of the 5th International Conference on Tooling, Leoben, Austria, 1999: 677-683.
    [14] P. Vetter, F. Hippenstiel. A new pre-hardened plastic mould steel as a tailored solution for large moulds[C]. The 7th International Tooling Conference, Torino, Italy, 2006: 317-324.
    [15]冯英育,模具钢.国外金属热处理[J]. 2000, 21(4): 1-5.
    [16]蔡美良,丁惠麟,孟沪龙.新编工模具钢金相热处理[M].机械工业出版社, 1998.
    [17]娄德春,吴晓春,崔崑,等. P20SRE塑料模具钢的热处理及性能[J].金属热处理, 1996, 6: 27-30.
    [18]赵建生,乔学亮,孙培祯,等.塑料模具钢P20BSCa合金化特点及热处理工艺的研究[J].热加工工艺, 1995, 1: 48-50.
    [19]赵建生,乔学亮,孙培祯,等. P20BSCa大截面塑料模具钢淬透性研究[J].金属热处理, 1994, 7: 3-7.
    [20]江来珠,孙培桢,崔崑.易切削塑料模具钢5CrNiMnMoVSCa中夹杂物的组成及形貌[J].材料科学进展, 1990, 4(1): 43-47.
    [21]江来珠,崔崑. 5CrNiMnMoVSCa钢中的铸态块状复相硫化物[J].钢铁, 1991, 26(2): 48-50.
    [22]姚新,顾剑锋,胡明娟. P20钢大型塑料模具几种淬火工艺的三维温度与组织模拟[J].金属热处理, 2003, 28(7): 33-37.
    [23]宋冬利,顾剑锋,胡明娟,等.基于数值模拟的718塑料模具钢大模块淬火新工艺设计[J].钢铁, 2004, 39(9): 64-68.
    [24]宋冬利,顾剑锋,袁文庆. 718塑料模具钢大模块淬火新工艺的优化[J].机械工程材料, 2004, 28(5): 22-25.
    [25]宋冬利,顾剑锋,胡明娟. 718钢大模块淬火过程的数值模拟[J].材料科学与工艺, 2005, 13(4): 394-397.
    [26] Song Dongli, Gu Jiangfeng, Zhang Weimin, et al. Numerical simulation on temperature and microstructure during quenching process for large-sized AISI P20 steel blocks used as plastic die[J]. Transactions of Materials and Heat Treatment, 2004, 25(5): 740-745
    [27] Dongli Song, Jiangfeng Gu, Jiansheng Pan, et al. Design of quenching process for large-sized AISI P20 steel block used as plastic die[J]. Journal of Materials Science & Technology, 2006, 22(1): 139-144.
    [28]宛农,谭刚健.大断面塑料模具钢块热处理的数值模拟[J].金属热处理, 2003, 28(9): 45-48.
    [29]宛农,熊惟皓,肖建中,等. 2311和2738模具钢热处理质量效应的数值模拟[J].金属热处理, 2004, 29(9): 63-66.
    [30]徐骏,张伟民,陈乃录,等.塑料模具钢大模块的水冷复合间隙淬火技术[J].金属热处理, 2006, 31(10): 76-78.
    [31]何燕霖,李麟,吴晓春,等.预硬型塑料模具钢718切削性能和夹杂物研究[J].金属热处理, 2003, 28(1), 51-54.
    [32]何燕霖,王文革,吴晓春,等.大截面预硬型塑料模具钢的组织与性能[J].金属热处理, 2003, 28(2), 27-30.
    [33]何燕霖,李麟,叶平,等. Thermo-Calc和DICTRA软件系统在高性能钢研制中的应用[J].材料热处理学报, 2003, 24(4), 73-77.
    [34]何燕霖,李麟,叶平,等.热处理对塑料模具钢718加工性能的影响[J].金属热处理, 2004, 29(3), 20-23.
    [35] Yanlin He, Lin Li, Xiaochun Wu, et al. Computer aided composition design of prehardened-mould steel for plastic[J]. Journal of Materials Science & Technology, 2004, 20(1): 71-74.
    [36] He Yanlin, Li Lin, Gao Wen. Computer aided design of free-machinability prehardened mold steel for plastic[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(2):437-442.
    [37]刘宗昌,高占勇,马党参. 718塑料模具钢的组织和预硬化处理[J].特殊钢, 2002, 23(2): 43-45.
    [38]宋义全,于健,刘宗昌. P20钢的预硬化组织及工艺[J].包头钢铁学院学报, 2002, 21(4): 332-335.
    [39]刘宗昌,于健,郝少祥. P20塑料模具钢的组织对抛光性能的影响[J].特殊钢, 2004, 25(5): 19-21.
    [40]吴晓春,张杰,崔崑.非调质塑料模具钢的机械加工性能[J].华中理工大学学报, 1995, 23(12): 7-12.
    [41]吴晓春,崔崑.易切削系非调质钢塑料模具钢的研究[J].钢铁研究学报, 1996, 8(1): 29-33.
    [42]吴晓春,崔崑.非调质塑料模具钢中微合金析出相的研究[J].钢铁, 1998, 33(6): 50-53.
    [43]吴晓春,周宏,吴秀英,等.易切削系非调质塑料模具钢的加工性[J].机械工程材料. 1996, 20(1): 39-42.
    [44]吴晓春,娄德春,崔崑.易切削非调质塑料模具钢的组织与性能[J].特殊钢, 1996, 17(1): 15-18.
    [45]吴晓春,娄德春,崔崑.钒钛对贝氏体非调质钢组织与性能的影响[J].钢铁研究, 1996, 3: 25-29.
    [46] Wu Xiaochun, Cui Kun. The machinability of unquenched and untempered die steels for plastic moulding[C], Proceeding of an International Conference on Tools Steel for Dies and Molds, Shanghai, China, 1998, 12-14.
    [47]陈秀云,方鸿生,吴凤翔.新型易切削贝氏体塑料模具钢性能的研究[J].兵器材料科学与工程, 1990, 12(11): 1-6.
    [48]陈秀云,方鸿生.硅对易切削贝氏体塑料模具钢性能的影响[J].兵器材料科学与工程, 1999, 22(4): 23-27.
    [49]陈秀云,姜忠良,方鸿生.预硬型贝氏体钢中合金元素的作用[J].清华大学学报, 1999, 39(10): 8-11.
    [50]陈秀云,方鸿生.易切削贝氏体塑料模具钢中合金元素的作用[J].金属热处理, 1999, 24(3): 2-4.
    [51]杨志刚,方鸿生,王家军,陈秀云.新型贝氏体易切削塑料模具钢中夹杂物的研究[J].钢铁, 1994,29(12): 42-46.
    [52] Jiang. L.Z, Wang. J.H. Development of a non-quenched non-tempered bainitic steel for plastic mould: continuous cooling transformation behavior[C]. Proceedings of the 5th International conference on Tooling, Leoben, Austria, 1999, 685-690.
    [53]刘东升,王国栋,刘相华,等.塑料模具718钢变形奥氏体连续冷却转变后的显微组织[J].钢铁, 1998, 33(12): 39-43.
    [54]刘东升,王国栋,刘相华,等. P20钢变形奥氏体连续冷却时的相变规律[J].金属学报, 1998, 34(3): 271-277.
    [55] Dongsheng Liu, Guodong Wang, Xianghua Liu, et al. Effect of cooling rate and compressive deformation of austenite on bainitic transformation and microstructure for plastic die AISI P20 steel[J]. ISIJ International, 1998, 38(5): 482-488.
    [56]江来珠,王习顺,王建会.一种微合金化塑料模具钢的制造方法[P].中国: CN 1224769A, 1999.
    [57]江来珠,华蔚,吕卫东.一种贝氏体大截面塑料模具钢及其制造方法[P].中国: CN 1727512A, 2006.
    [58] L.Z. Jiang, W. Hua, Q.Yan. Vanadium microalloyed non-quenched steel family for plastic mould[C], Proceedings of the 6th International Tooling conference, Karlstad, Sweden, 2002, 1015-1036.
    [59]罗毅,吴晓春.预硬型塑料模具钢的研究进展.金属热处理[J], 2007, 32(12): 22-25
    [60]徐祖耀,刘世楷.贝氏体相变与贝氏体[M].北京:科学出版社, 1991.
    [61]俞德刚,李世道.贝氏体相变理论[M].上海:上海交通大学出版社, 1998.
    [62]方鸿生,王家军,杨志刚,等.贝氏体相变与贝氏体[M].北京:科学出版社, 1999.
    [63]刘宗昌.材料组织结构转变原理[M].北京:冶金工业出版社, 2006.
    [64]康沫狂,杨思品,管惠敦.钢中贝氏体[M].上海:科学技术出版社, 1990.
    [65]李承基,贝氏体相变理论[M].机械工业出版社, 1995.
    [66] Bhadeshia H.K.D.H. Bainite in steels[M]. London, 2001.
    [67] Zwaag S.V.D., Wang J. A discussion on the atomic mechanism of the bainitic reaction in trip steels[J]. Scripta Materialia, 2002, 47: 169-173.
    [68] Purdy G.R. Bainite: Defect signatures[J]. Scripta Materialia, 2002, 47: 181-185.
    [69] Moritani T., Miyajima N., Furuhara T., et al. Comparison of interphase boundary structure between bainite and martensite in steel[J]. Scripta Materialia, 2002, 47: 193-199.
    [70] Ohmori Y. Crystallographic aspects of bainite transformation in steels[J]. Scripta Materialia, 2002, 47:201-206.
    [71] Muddle B.C., Nie J.F. Formation of bainite as a diffusional-displacive phase transformation[J]. Scripta Materialia, 2002, 47: 187-192.
    [72] Hillert M. Paradigm shift for bainite[J]. Scripta Materialia, 2002, 47: 175-180.
    [73] Enomoto M. Partition of carbon and alloying elements during the growth of ferrous bainite[J]. Scripta Materialia, 2002, 47: 145-149.
    [74] Fang H.S., Yang J.B., Yang Z.G., et al. The mechanism of bainite transformation in steels[J]. Scripta Materialia, 2002, 47: 157-162.
    [75] Quidort D., Brechet Y. The role of carbon on the kinetics of bainite transformation in steels[J]. Scripta Materialia, 2002, 47: 151-156.
    [76] Shiflet G.J., Hackenberg R.E. Partitioning and the growth of bainite[J]. Scripta Materialia, 2002, 47: 163-167.
    [77] Aaronson H.I., Spanos G., W.T.R. Jr. A progress report on the definitions of bainite[J]. Scripta Materialia, 2002, 47: 139-144.
    [78] P.L. Mangonon. Effect of alloying elements on the microstructure and properties of a hot-rolled low carbon low alloy bainitic steel[J]. Metallurgical Transactions A, 1976, 7(9): 1389-1400.
    [79]方鸿生,邓海金.低碳Fe-Mn-B钢粒状贝氏体的组织及其强韧性[J].机械工程材料, 1981, 5(2): 5-14.
    [80] R.W.K. Honeycombe, F.B. Pickering. Ferrite and bainite in alloy steel[J]. Metallurgical Transactions, 1972, 3: 1099-1112.
    [81] K.J. Irvine, F.B. Pickering. Low-carbon bainitic steels[J]. Journal of the Iron and Steel Institute, 1957, 186: 292-309.
    [82] F.B. Pickering. Physical metallurgy and the design of steels[M]. London: Applied Science Publishers Ltd, 1978.
    [83]俞德刚,钢的强韧性理论与设计[M].上海:上海交通大学出版社, 1990.
    [84]方鸿生,郑燕康,陈秀云,等.发展新型贝氏体钢[J].机械工程材料, 1981, 4(1): 5-14.
    [85]方鸿生,郑燕康.空冷贝氏体型少热处理钢[J].金属热处理, 1985, 4(9): 89-95.
    [86]郑燕康,方鸿生,陈秀云.中碳空冷贝氏体/马氏体复相组织精细结构与强韧性研究[J].清华大学学报(自然科学版), 1986, 26(2): 34-43.
    [87]杨志刚,方鸿生,王家军.新型锰硼系低碳贝氏体非调质钢连杆和货叉的研制[J].机械工程材料,1993, 17(6): 18-20.
    [88]方鸿生,王家军,杨志刚,等.钢中贝氏体相变机制的研究[J].金属学报, 2005, 41(5): 449-457.
    [89]黄维刚,方鸿生,郑燕康.硅和少量钼对Mn-B系贝氏体钢转变动力学的影响[J].金属热处理, 1997, 20(10): 25-28.
    [90]黄维刚,方鸿生,郑燕康.硅对Mn-B系空冷贝氏体钢组织与性能的影响[J].金属热处理学报, 1997, 18(1): 8-13.
    [91]黄维刚,方鸿生,郑燕康.回火温度对高硅Mn-B系贝氏体钢强韧性的影响[J].金属热处理学报, 1999, 20(4): 30-34.
    [92]黄维刚,徐蓉,方鸿生,等.中低碳含硅空冷贝氏体钢的冲击韧性[J].钢铁研究学报, 1997, 9(2): 31-34.
    [93]黄进峰,方鸿生,徐平光,等.硅对中低碳贝氏体铸钢组织和性能的影响[J].金属热处理, 2002, 25(6): 2-5.
    [94]杨福宝,白秉哲,刘东雨,等.无碳化物贝氏体/马氏体复相高强度钢的组织与性能[J].金属学报, 2004, 40(3): 296-300.
    [95]桂洲,谭谆礼,白秉哲. Si对低碳贝氏体钢组织与性能的影响[J].金属热处理, 2006, 31(5): 4-6.
    [96]杨志刚,方鸿生,王家军.新型低碳贝氏体非调质钢研究[J].机械工程材料, 1999, 23(1): 27-29.
    [97]方鸿生,郑燕康,周欣.中碳贝氏体/马氏体复相组织的强韧性研究[J].清华大学学报(自然科学版), 1986, 7(1): 10-18.
    [98] J.L. Gu, K.D. Chang, H.S. Fang, et al. Delayed fracture properties of 1500 MPa bainite/martensite dual-phase high strength steel and its hydrogen traps[J]. ISIJ International, 2002, 42(8): 1560-1564.
    [99] Fang Hongsheng, Yang Fubao, Bai Bingzhe, et al. Recent development of air-cooled bainitic steels containing manganese[J]. Journal of Iron and Steel Research International 2005, 12(2): 1-10.
    [100] Dongyu Liu, Bingzhe Bai, Hongsheng Fang, et al. Effect of tempering temperature and carbide free bainite on the mechanical characteristics of a high strength low alloy steel[J]. Materials Science and Engineering A 2004, 371: 40-44
    [101] Xu Pingguang, Fang Hongsheng, Bai Bingzhe, et al. New duplex microstructure of grain boundary allotriomorphic ferrite/granular bainite[J]. Journal of Iron and Steel Research International, 2002, 9(2): 33-38.
    [102] M.K. Kang, D.M. Chen, S.P. Yang, et,al. The time-temperature-transmission diagram within the medium temperature range in some alloy steels[J]. Metallurgical Transactions A, 1992, 23(3): 785-795.
    [103] M.K. Kang, J.L. Sun, Q.M.Yang. High-temperature transmission electron microscopy in situ study of lower bainite carbide precipitation[J]. Metallurgical Transactions A, 1990, 21(4): 853-858.
    [104]程巨强,康沫狂.准贝氏体钢使用性能研究进展[J].兵器材料科学与工程, 2002. 25(1): 61-67.
    [105]谭若兵,陈大明,康沫狂.准贝氏体组织的强化特征[J].特殊钢, 1991, (7): 26-29.
    [106]陈大明,康沫狂.飞机起落架用钢贝氏体组织的屈强比问题[J].航空学报, 1993, 14(8): 377-382.
    [107]贾虎生,武小雷,杨延清.新型截齿用准贝氏体钢[J].金属热处理, 1998, 20(3): 31-32.
    [108] Shen Rong, Cheng Juqiang, Kang Mokuang. TEM study of transformation units and the growth mechanism of bainite[J]. Science in china(Series E), 1998, 41(6):666-669.
    [109]程巨强,沈嵘,康沫狂.准贝氏体钢的特性及其工程应用[J].兵器材料科学与工程, 1998, 21(2): 60-63.
    [110]程巨强,贺自强,杨延清,等.新型准贝氏体渗碳钢及应用[J].钢铁, 2000, 20(1): 47-50.
    [111]杨延清,陈彦,康沫狂.准贝氏体组织及新型系列准贝氏体钢[J].特殊钢, 1999, 20(4): 35-37.
    [112]刘志林,合金价电子结构与成分设计[M].长春:吉林科学技术出版社, 1990.
    [113] T.Yamashita, K.Okuda, T.Obara. Application of Thermo-Calc to the development of high-performance steels[J]. Journal of Phase Equilibria, 1999, 20(3): 231-237.
    [114] Qian Hancheng, Xia Bocai, Li Shangzheng, et al. Fuzzy neural network modeling of material properties[J]. Journal of Materials Processing Technology. 2002, 122: 196-200.
    [115] P.D. Hodgson, L.X. Kong, C.H.J. Davies. The prediction of the hot strength in steels with an integrated phenomenological and artificial neural network model[J]. Journal of Materials Processing Technology, 1999, 87: 131-138.
    [116] Liu Z Y, Wang W D, Gao W. Predition of the mechanical properties of hot-rolled C-Mn steels using artificial neural networks[J]. Journal of Materials Processing Technology. 1996, 57: 332-336.
    [117] L.A. Dobrzański, W. Sitek. The modeling of hardenability using neural networks[J]. Journal of Materials Processing Technology. 1999, 92-93: 8-14.
    [1] Andreas Ludwig, Menghuai Wu. Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach[J]. Materials Science and Engineering A 2005, 413-414: 109-114.
    [2] Alexandre Polozine, Lírio Schaeffer. Exact and approximate methods for determining the thermal parameters of the forging process[J]. Journal of Materials Processing Technology, 2005, 170: 611-615.
    [3] Siamak Serajzadeh. Prediction of temperature and variations and kinetics of austenite phase change on the run-out table[J]. Materials Science and Engineering A 2006, 421: 260-267
    [4]刘云旭,季长涛,朱启慧,等.中高碳F+P非调质钢的成分设计[C]. 2000年全国微合金非调质钢学术年会,南京, 2000: 37-43.
    [5]田东,潘健生,毛立忠,等.测量淬火冷却曲线几种热电偶的安装方法[J].金属热处理, 1998, 11: 32-34.
    [6]宋冬利,顾剑锋,胡明娟,等.基于数值模拟的718塑料模具钢大模块淬火新工艺设计[J].钢铁, 2004, 39(9): 64-68.
    [7]宋冬利,顾剑锋,胡明娟. 718钢大模块淬火过程的数值模拟[J].材料科学与工艺, 2005, 13(4): 394-397.
    [8]刘庄,吴肇基,吴景之,等.热处理工程的数值模拟[M].北京:科学出版社, 1996.
    [9]东北重型机械学院,大锻件热处理[M].北京:机械工业出版社, 1974.
    [10]陈健.大锻件的冷却曲线及淬透性的计算方法[J].大型铸锻件, 1984, 2: 1-15.
    [11]荀毓闽,余永平,吴跃.结构钢组织和性能的计算机预测[J].金属热处理学报, 1997, 18(1): 45-49.
    [12]赵建生,乔学亮,孙培祯,等. P20BSCa大截面塑料模具钢淬透性的研究[J].金属热处理, 1994, 7: 3-7.
    [13]袁俭,张伟民,刘占仓,等.不同冷却方式下换热系数的测量与计算[J].材料热处理学报, 2005, 26(4): 115-119.
    [14]顾剑锋,潘健生,胡明娟.淬火介质换热系数的计算机测算[J].热加工工艺, 1998, 5: 13-14.
    [15]陈乃录,高长银,单进,等.动态淬火介质冷却特性及换热系数的研究[J].材料热处理学报, 2001, 22(3): 41-44.
    [16]顾剑锋,潘健生,胡明娟.淬火冷却过程中表面综合换热系数的反传热分析[J].上海交通大学学报, 1998, 32(2): 19-22.
    [17]姚新,顾剑锋,胡明娟. P20钢大型塑料模具几种淬火工艺的三维温度与组织模拟[J].金属热处理,2003, 28(7): 33-37.
    [18] Song Dongli, Gu Jiangfeng, Zhang Weimin, et al. Numerical simulation on temperature and microstructure during quenching process for large-sized AISI P20 steel blocks used as plastic die[J]. Transactions of Materials and heat treatment, 2004, 25(5): 740-745.
    [1] Qian Hancheng, Xia Bocai, Li Shangzheng, et al. Fuzzy neural network modeling of material properties[J]. Journal of Materials Processing Technology. 2002, 122: 196-200.
    [2] Liu Z Y, Wang W D, Gao W. Predition of the mechanical properties of hot-rolled C-Mn steels using artificial neural networks[J]. Journal of Materials Processing Technology. 1996, 57: 332-336.
    [3]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社, 1991.
    [4] Jiajun Wang, Pieter J. van der Wolk, Sybrand van der Zwaag. Effects of carbon coneentration and cooling rate on continuous cooling transformations predieted by aritficial neural net work[J]. ISIJ Intemational.1999, 39(10): 1038-1046.
    [5] Wei You, Weihong Xu, Bingzhe Bai, et al. Materialometrical approach of prediction the austenite formation temperatures[J]. Material Science and Engineering A.2006, 419: 276-282.
    [6] L.A. Dobrzański, W. Sitek. Comparison of hardenability calculation methods of the heat-treatable constructional steels[J]. Journal of Materials Processing Technology. 1997, 64: 117-126.
    [7] L.A. Dobrzański, J. Trzaska. Application of neural networks for prediction of critical values of temperatures and time of the supercooled austenite transformations[J]. Journal of Materials Processing Technology. 2004, 155-156: 1950-1955.
    [8] Jan Kusiak, Roman Kuziak. Modelling of microstructure and mechanical properties of steel using the artificial neural network[J]. Journal of Materials Processing Technology. 2002, 127: 115-121.
    [9] P.D. Hodgson, L.X. Kong, C.H.J. Davies. The prediction of the hot strength in steels with an integrated phenomenological and artificial neural network model[J]. Journal of Materials Processing Technology, 1999, 87: 131-138.
    [10]乔宁.材料科学中的计算机应用[M].北京:中国纺织出版社. 2007.
    [11]孟令启,李成.中厚板轧机测量测试与力学行为建模[M].河南:黄河水利出版社, 2006.
    [12]陈再枝,马党参.塑料模具钢应用手册[M].北京:化学工业出版社, 2005.
    [13]东北重型机械学院,大锻件热处理[M].北京:机械工业出版社, 1974.
    [14]本溪钢铁公司第一炼钢厂,清华大学机械系金属材料教研组.钢的过冷奥氏体转变曲线[M].本溪:本溪钢铁公司第一炼钢厂, 1978.
    [15]张世中.钢的过冷奥氏体转变曲线图集[M].北京:冶金工业出版社, 1993.
    [16] American Society for Metals. Atlas of isothermal transformation and cooling transformation diagrams[M]. Metals Park, Ohio: American Society for Metals Press, 1977.
    [17]钢铁研究总院.钢的过冷奥氏体转变曲线图集[M].北京:冶金工业出版社, 1993.
    [18]谭谆礼,白秉哲,方鸿生. Mo在新型空冷低碳Mn-Si-Cr系贝氏体钢中的作用[J].金属热处理, 2007, 32(9): 48-51.
    [19]李智,王国栋,刘相华,等.贝氏体型非调质钢热变形奥氏体的连续冷却转变[J].钢铁研究学报, 1999, 11(6): 35-38.
    [20] S. Corre, C.Le Calvez, P. Mabelly, et al. Development of a new prehardened mold steel with improved machining, welding, polishing and conducting capacities[C]. Proceedings of the 5th International Conference on Tooling, Austria, 1999: 677-683.
    [21]江来珠,王习顺,王建会.一种微合金化塑料模具钢的制造方法[P].中国, CN1224769A, 1999.
    [22]江来珠,华蔚,吕卫东.一种贝氏体大截面塑料模具钢及其制造方法[P].中国, CN1727512A, 2006.
    [23]陈铭谟.贝氏体的转变机制和高强度贝氏体钢设计[M].北京:国防工业出版社, 1989.
    [24]江来珠,王习顺,王建会.非调质贝氏体型大截面塑料模具钢的研究和开发-合金成分与组织和机械性能的关系[J].宝钢技术, 1999, 6: 22-40.
    [25]陈秀云,方鸿生.硅对易切削贝氏体塑料模具钢性能的影响[J].兵器材料科学与工程, 1999, 22(4): 23-27.
    [26]陈秀云,姜忠良,方鸿生.预硬型贝氏体钢中合金元素的作用[J].清华大学学报, 1999, 39(10): 8-11.
    [27]陈秀云,方鸿生.易切削贝氏体塑料模具钢中合金元素的作用[J].金属热处理, 1999, 24(3): 2-4.
    [28]夏国华,朱自成,冯文刚.非调质钢[M].国防工业出版社, 1997.
    [29] F.B. Pickering. Physical metallurgy and the design of steels[M]. London: Applied Science Publishers Ltd, 1978.
    [30] Jiang. L.Z, Wang. J.H. Development of a non-quenched non-tempered bainitic steel for plastic mould:continuous cooling transformation behavior[C]. Proceedings of the 5th International conference on Tooling, Leoben, Austria, 1999, 685-690.
    [31]本溪钢铁公司第一炼钢厂.硼钢[M].北京:冶金工业出版社. 1977.
    [32]吴晓春,崔崑.非调质塑料模具钢的组织与性能[J].华中理工大学学报, 1995, 23(12):1-6.
    [33]韩德伟.金属硬度检测技术手册[M].长沙:中南大学出版社, 2007.
    [34]宋冬利,顾剑锋,胡明娟,等.基于数值模拟的718塑料模具钢大模块淬火新工艺设计[J].钢铁, 2004, 39(9): 64-68.
    [1]冯颖璋,潘振鹏.大型塑料模具钢材的热处理[J].大型铸锻件, 2000, 87(1): 34-41.
    [2] YB/T 107-1997,塑料模具用热轧厚钢板[S].中华人民共和国黑色冶金行业标准.
    [3] Gan Yong, Chen Zaizhi, Zhao Xiaocun, Status of die steel development in China and countermeasure for the coming new century[C]. Proceeding of an International Conference on Tools Steel for Dies and Molds, Shanghai, China, 1998: 42-49.
    [4] B. Mills, A.H. Redford, Machinability of engineering materials[M]. Department of Aeronautical and Mechanical Engineering, Salford, UK, 1983.
    [5] K.N. Strafford, J.Audy. Indirect monitoring of machinability in carbon steels by measurement of cutting forces[J]. Journal of Materials Processing Technology, 1997, 67: 150-156.
    [6] Eu-Gene Ng, David K. Aspinwall. The effect of workpiece hardness and cutting speed on the machinability of AISI H13 hot work die steel when using PCBN tooling[J]. Journal of Manufacturing Science and Engineering, 2002, 124: 589-593.
    [7]吴晓春,娄德春,崔崑.易切削非调质塑料模具钢的组织与性能[J].特殊钢, 1996, 17(1): 15-18.
    [8]吴晓春,崔崑.非调质塑料模具钢的组织与性能[J].华中理工大学学报, 1995, 23(12): 1-6.
    [9]吴晓春,崔崑.易切削系非调质钢塑料模具钢的研究[J].钢铁研究学报. 1996, 8(1): 29-33.
    [10]吴晓春,周宏,吴秀英,等.易切削系非调质塑料模具钢的加工性[J].机械工程材料, 1996. 20(1): 39-42.
    [11] N. Broqvist, S. Gunnarsson, E. Coronel, et al. Machinability of modern hot work tool steels[C]. Proceedings of the 7th International Conference on Tooling, Torino, Italy, 2006, 631-641.
    [12] Tadahisa Akasawa, Ikuo Fukuda, Kenji Nakamura, et al. Effect of microstructure and hardness on the machinability of medium-carbon chrome-molybdenum steel[J]. Journal of Materials Processing Technology, 2004, 153-154: 48-53.
    [13] Yanlin He, Lin Li, Xiaochun Wu, et al. Computer aided compostion design of prehardened-mould steel for plastic[J]. Journal of Materials Science & Technology, 2004, 20(1):71-74.
    [14]何燕霖,李麟,吴晓春,等.预硬型塑料模具钢718切削性能和夹杂物研究[J].金属热处理, 2003, 28(1): 51-54.
    [15]何燕霖,王文革,吴晓春,等.大截面预硬型塑料模具钢的组织与性能[J].金属热处理, 2003, 28(2): 27-30.
    [16]何燕霖,李麟,叶平,等.热处理对塑料模具钢718加工性能的影响[J].金属热处理, 2004, 29(3): 20-23.
    [17]徐进.模具钢[M].北京:冶金工业出版社, 1998.
    [18] C.A. Moldoveanu, F. Zaman, S. Stan, et al. Machinability of modern hot work tool steels[C]. Proceedings of the 7th International Conference on Tooling, Torino, Italy, 2006, 669-676.
    [19]张伯霖.高速切削技术及应用[M],北京:机械工业出版社, 2002.
    [20]吴善元.金属切削原理与刀具[M],北京:机械工业出版社, 1995.
    [1] Aaronson H.I., Spanos G., W.T.R. Jr. A progress report on the definitions of bainite[J]. Scripta Materialia, 2002, 47: 139-144.
    [2] L.J.Habraken, M.Economopoulos. Transformations and. Hardenability in Steels[M]. Climax Molybdenum Co., Ann Arbor, MI, 1967.
    [3]方鸿生,王家军,杨志刚,等.贝氏体相变与贝氏体[M].北京:科学出版社, 1999.
    [4]徐祖耀,刘世楷.贝氏体相变与贝氏体[M].北京:科学出版社, 1991.
    [5]康沫狂,杨思品,管惠敦.钢中贝氏体[M].上海:科学技术出版社, 1990.
    [6] Ohtani H., Okaguchi S., Fujishiro Y., et al. Morphology and properties of low-carbon bainite[J]. Metallurgical Transactions A, 1990, 21(4): 877-888.
    [7] Krauss, Thompson. Ferrtic microstructures in cootinuously cooled low-carbon and ultralow- carbon steels[J].ISIJ Internatioal, 1995, 35(8): 937-945.
    [8] Bramfitt B L, Speer J G. A perspective on the morphology of bainite[J]. Metallurgical Transactions A 1990, 21(4): 817-829.
    [9] Bhadeshia H.K.D.H., Edmonds D.V. The mechanism of bainite formation in steels[J]. Acta Metallurgica, 1980, 28: 1265-1273.
    [10] Purdy G.R., Hillert M. On the nature of the bainite transformation in steels[J].Acta Metallurgica, 1984, 32: 823-828.
    [11] Purdy G.R. Bainite: Defect signatures[J]. Scripta Materialia, 2002, 47: 181-185.
    [12] Fang H.S., Wang J.J., Zheng Y.K., Formation mechanism of bainitic ferrite and carbide[J]. Metallurgical and Materials Transactions A, 2001, 25(9): 2001-2007.
    [13] Hsu T.Y., Chen W.Z., Effect of austenite strengthening on martensitic and bainite transformation[J]. Scripta Metallurgica, 1987, 21: 1289-1294.
    [14] Huang D H, Thomas G. Structure and mechanical properties of tempered martensite and lower bainite in Fe-Ni-Mn-C steels[J]. Metallurgical Transactions A, 1971, 2: 1587–1598.
    [15]何燕霖.高性能预硬型塑料模具钢的计算机合金设计[D].上海:上海大学博士学位论文, 2004.
    [16]俞德刚,谈育煦.钢的组织强度学—组织与强韧性[M].上海:上海科学技术出版社, 1983.
    [17]徐祖耀.马氏体相变与马氏体[M].北京:科学出版社, 1980.
    [18] Young, Bhadeshia. Strength of mixtures of bainite and martensite[J]. Materials Science Technology, 1994, 10(3): 209-214.
    [19] Maropoulos S, Paul J D H, Ridley N. Microstructure-property relationships in tempered low alloy Cr-Mo-3.5Ni-V steel[J]. Material Science Technology, 1993, 9(11): 1014-1019.
    [20]王笑天.金属材料学[M].北京:机械工业出版社, 1988.
    [21] Horn. R. M, Ritchie. O. Mechanisms of tempered martensite embrittlment in low alloy steel[J]. Metallurgical and Materials Transactions A, 1978, 9(8): 1039-1053.
    [22] P. L. Mangonon. Effect of alloying elements on the microstructure and properties of a hot-rolled low carbon low alloy bainitic steel[J]. Metallurgical and Materials Transactions, 1976, 7A(9): 1389-1400.
    [23] Fang Hongsheng, Yang Fubao, Bai Bingzhe, et al. Recent development of air-cooled bainitic steels containing manganese[J]. Journal of Iron and Steel Research International, 2005, 12(2): 1-10.
    [24] Xu Pingguang, Fang Hongsheng, Bai Bingzhe, et al. New duplex microstructure of grain boundary allotriomorphic ferrite/granular bainite [J]. Journal of Iron and Steel Research International, 2002, 9(2): 33-38.
    [25]赵捷.粒状贝氏体中AR稳定性与强韧性关系[J].机械工程材料. 1994, 5: 12-16.
    [26]陈秋龙,周凤鸣. 12CrMoV钢中的粒状贝氏体与高温性能[J].金属热处理学报. 1996, 17: 84-89.
    [27]李明.粒状贝氏体的回火组织与性能的研究[J],金属热处理, 1989, 11: 16-21.
    [28]范雄.金属X射线学[M].北京:机械工业出版社, 1988.
    [29]王六定,朱明,陈景东,等.低碳超高强度贝氏体钢的组织细化[J].材料热处理学报, 2007, 28(5): 42-45.
    [1]陈再枝,蓝得年.模具钢手册[M].北京:冶金工业出版社, 2002.
    [2]王家瑛.模具材料与使用寿命[M].北京:机械工业出版社, 2000.
    [3]陈再枝,马党参.塑料模具钢应用手册[M].北京:化学工业出版社, 2005.
    [4] P. Hansson. New Multi-purpose Prehardened Tool Steel[C]. Proceedings of the 7th International Tooling Conference, Torino, Italy.2006, 275-282.
    [5] F. Obermair, D. Caliskanoglu, G.Klammer, et al. Comparison of machinability of new develop plastic mould steels[C]. Proceedings of the 7th International Conference on Tooling, Torino, Italy. 2006, 309-316.
    [6] P. Vetter, F. Hippenstiel. A new pre-hardened plastic mould steel as a tailored solution for large moulds[C]. Proceedings of the 7th International Tooling Conference, Torino, Italy. 2006, 317-324.
    [7]方鸿生,王家军,杨志刚,等.贝氏体相变与贝氏体[M].北京:科学出版社, 1999.
    [8] L.J.Habraken, M.Economopoulos. Transformations and. Hardenability in Steels[M]. Climax Molybdenum Co., Ann Arbor, MI, 1967.
    [9] Bramfitt B L, Speer J G. A perspective on the morphology of bainite[J]. Metallurgical Transactions 1990, 21A, 817-829.
    [10]张洪奎,续维,陈汉辉.新型预硬塑料模具钢调质工艺研究[J].宝钢技术. 2002, 20(1): 27-33.
    [11]吴季恂,周光裕,荀旈闽.钢的淬透性应用技术[M].北京:机械工业出版社, 1994.
    [12]林慧国,傅代直.钢的奥氏体转变曲线-原理、测试与应用[M].北京:机械工业出版社, 1988.
    [13] B. Mills, A.H. Redford. Machinability of engineering materials[M]. Department of aeronautical and mechanical engineering, Salford, UK, 1983.
    [14] N. Broqvist, S. Gunnarsson, E. Coronel, et al. Machinability of modern hot work tool steels[C]. Proceedings of the 7th International Conference on Tooling, Torino, Italy, 2006, 631-641.
    [15] J. Rech, C. Le Calvez, M. Dessoly. A new approach for the characterization of machinability—application to steels for plastic injection molds[J]. Journal of material processing technology, 2004, 152: 66–70.
    [16]韩克筠.金属材料可切削性与刀具[M].南京:江苏科学技术出版社, 1980: 50-58.
    [17] Laizhu Jiang, Kun Cui, Hannu H?nninen, Effects of the composition, shape factor and area fraction of sulphide inclusions on the machinability of re-sulfurized free-machining steel[J], Journal of materialsprocessing technology, 1996, 58: 160-165.
    [18] H. Chandrasekaran, R.M. Saoubi, O.Karlsson, et al. Milling of prehardened mould steels-role of microstructure on machinability and tool wear[C]. Proceedings of the 7th International Conference on Tooling, Torino, Italy, 2006, 623-630.
    [19] C.A. Moldoveanu, F. Zaman, S .Stan, et al. Machinability of modern hot work tool steels[C]. Proceedings of the 7th International Conference on Tooling, Torino, Italy, 2006, 669-676.
    [20]江来珠,阎启.非调质预硬态塑料模具钢B30的焊补性能[J].宝钢技术, 2001, (6): 19-22.
    [21] C. Larsson, P. Hansson, P. Kihlmark, et al. Defect tolerance in welded pre-hardened 33/44 HRC tool steels[C]. Proceedings of the 7th International Conference on Tooling, Torino, Italy, 2006, 775-782.
    [22]江来珠,阎启,张爱文.具有均匀性硬度分布、良好切削加工性和焊接性的贝氏体塑料模具钢[J].钢铁, 2000, 35(9): 240-245.
    [23]董祥忠,陈健,王鹏驹.塑料模具钢P20化学腐蚀花纹加工性能的研究[J].钢铁, 1999, 34(10): 1121-1124
    [24]董祥忠,王鹏驹.塑料模具钢P20化学腐蚀花纹加工性能[J].特殊钢, 2000, 21(4): 49-51.
    [25]陈钰秋,孙培祯,付红俊,等.预硬型塑料模具钢5NiSCa和改型P20的工艺性能研究[J].热加工工艺, 1991, 5: 41-43.
    [26]刘宗昌,于键,郝少祥. P20塑料模具钢的组织对抛光性能的影响[J].特殊钢, 2004, 25(5): 19-21.
    
    [1]陈再枝,马党参.塑料模具钢应用手册[M].北京:化学工业出版社, 2005.
    [2]宋鸣,倪亚辉.塑料模具钢的性能和选用[J].塑料工业, 2004, 32(10): 37-40.
    [3]孙桂良,赵昌盛.塑料模具钢的选择及应用[J].模具制造, 2008, 5: 80-84.
    
    
    [4]刘斌,冯其波,匡萃方.表面粗糙度测量方法综述[J].光学仪器, 2004, 26(5): 54-58.
    [5]陈继涛.表面粗糙度检测方法发展史及研究现状概述[J].中国科技信息. 2007, 17: 305-306.
    [6]陈英飞,章海军.原子力显微镜在纳米粗糙度测量中的应用[J].光学仪器, 2003, 25(4) :25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700