用户名: 密码: 验证码:
CD4~+NKG2D~+T细胞与单核细胞相互活化参与系统性红斑狼疮疾病作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NKG2D为NK细胞活化性受体,近来研究发现可表达于多种免疫细胞,如CD8+αβT细胞、γδT细胞以及NKT细胞上,不表达在正常CD4+ T细胞上,但是可以在TNF-α和IL-15作用下诱导表达。NKG2D的配体包括MHC I类链相关分子家族(MICA/B)和人巨细胞病毒蛋白UL16的结合蛋白(ULBP)家族。其中,MICA/B表达在正常肠道上皮表面,在压力诱导下,如病毒或细菌感染、恶性转化时,可以在感染细胞或肿瘤细胞上表达。上调的配体的表达可以与NK细胞、CD8+ T细胞细胞表面NKG2D活化受体相互识别,活化NK细胞并为CD8+ T细胞提供共刺激信号,从而发挥免疫防御和免疫监视的功能。但是,MIC/NKG2D的相互作用也能够降低TCR信号活化的阈值,因此,这种受体配体的相互识别也参与了自身免疫性疾病的发生发展,甚至促进了自身免疫性疾病的恶性转归。已有文献报道MIC/NKG2D配体受体作用参与了类风湿关节炎、HTLV-1相关性神经系统疾病和Crohn’s氏肠炎。其机制可能是自身免疫性疾病患者体内血清高水平的IL-15或TNF-α,导致了NKG2D受体的上调表达,同时,患者在滑膜细胞或肠道上皮细胞的NKG2D配体亦高表达,因此NKG2D与其配体相互识别并活化了自身反应性淋巴细胞从而导致了疾病的发生发展。在类风湿关节炎中首次发现了患者外周血中存在CD4+NKG2D+ T淋巴细胞,该群淋巴细胞缺失CD28的表达,并且可以分泌穿孔素和颗粒酶B,在疾病中扮演了自身反应性T细胞的角色。之后在Crohn’s氏肠炎及Wegener's肉芽肿中也发现了这群特殊的淋巴细胞亚群。以上内容提示我们NKG2D/MIC参与了自身免疫病中病程。
     系统性红斑狼疮(Systemic lupus erythematosus ,SLE)是一种以多种自身抗体产生及严重免疫紊乱的全身多系统、多器官受累为特征的自身免疫性疾病。患者肾脏、皮肤、血管甚至中枢神经受累,其病情呈反复发作与缓解交替过程。多种免疫紊乱因素参与其中,包括多种自身抗体的产生,血清细胞因子紊乱,IFN-γ的参与以及免疫调节功能缺陷等。IFN-γ由淋巴细胞分泌产生,在免疫防御方面如杀伤病原微生物感染的靶细胞起到重要的作用,同时在免疫调节方面也发挥了重要作用。我们以前的研究成果已经报道了IFN-γ参与了单核细胞与NK的相互活化作用,诱导了单核细胞表面MIC和膜型IL-15的表达,从而使得单核与NK可以相互识别相互对话。由于IL-15可以诱导CD4+ T细胞上NKG2D受体的表达,记忆SLE患者体内存在大量异常增生的自身反应性T淋巴细胞,我们推测,SLE患者血清高水平的IFN-γ在上调单核细胞表面MIC和膜型IL-15的表达后,膜型IL-15又可以诱导CD4+ T细胞上NKG2D的表达,继而单核细胞与CD4+ T细胞通过MIC/NKG2D作用相互识别,产生单核细胞与CD4+ T淋巴细胞的相互对话。那么,SLE患者外周血是否存在CD4+NKG2D+ T细胞呢,这群细胞是否具有自身反应性,其异常活化的机制又是什么呢?
     基于以上研究背景和存在问题,我们从以下方面进行了相关研究:1、多色流式技术检测并比较了20例SLE患者与20例健康志愿者外周血CD4+NKG2D+ T频率以及单核细胞表面MICs及mIL-15的表达差异了,并分析了单核细胞MICs表达率与SLEDAI评分的相关性;2、ELISA检测并比较了20例SLE患者与20例健康志愿者血清IFN-γ、IFN-α的水平,并检测了IFN-γ、IFN-α对分选的原代单核细胞以及单核细胞系U937、THP-1表面MICs表达的影响,分析了血清IFN-γ水平与单核细胞MICs表达率的相关性;3、共培养实验检测并比较了SLE患者与健康对照者的单核细胞诱导健康对照者CD4+ T细胞NKG2D的表达的差异,观察了阻断单核细胞表面膜型IL-15后NKG2D表达的差异以及观察了IFN-γ刺激的正常人单核细胞在不同细胞比例、不同培养时间下,对CD4+ T细胞NKG2D诱导表达的差异;4、体外共培养SLE患者单核细胞与健康对照者CD4+ T细胞,并采用流式细胞术检测CD4+ T细胞活化标志分子CD25、CD69及胞内IFN-γ的表达,观察单核细胞表面MICs分子及膜结合型IL-15(mIL-15)在CD4+ T细胞活化中的作用;5、采用流式细胞术检测了IFN-γ刺激与未刺激的正常人单核细胞与CD4+ T细胞共培养后,CD4+ T细胞的活化分子CD25、CD69及胞内IFN-γ的表达,以及穿孔素、颗粒酶的表达,并采用ELISA检测了培养上清中Th1及Th2代表性细胞因子IFN-γ和IL-4的分泌情况,以transwell及单抗阻断实验明确了细胞直接接触、单核细胞表面MICs分子和膜型IL-15(mIL-15)在CD4+ T细胞活化中的作用;6、采用CCK-8掺入法检测了IFN-γ刺激与未刺激的正常人单核细胞与CD4+ T细胞共培养后,CD4+ T细胞增殖的不同,并观察了细胞直接接触、单核细胞表面MICs分子和膜型IL-15(mIL-15)在促进CD4+ T细胞增殖中的作用。
     我们的结果发现:1、SLE患者外周血存在异常增生的CD4+NKG2D+ T细胞和MIC+单核细胞:病人CD4+ T细胞NKG2D阳性率为20.1±7.3%,健康志愿者CD4+ T细胞NKG2D阳性率为3.4±1.5%,单核细胞MICs及mIL-15的阳性率分别为37±18.1%和36±7.3%,而健康志愿者单核细胞MICs及mIL-15的阳性率为7.2±2.4%和7.6±2. 5%。SLE患者与健康志愿者NKG2D、MICs及mIL-15阳性率比较前者都要高于后者,二者比较有差异显著(p<0.01),且SLE患者单核细胞MIC分子表达与SLEDAI评分正相关;2、SLE患者血清IFN-γ的异常升高导致单核细胞MICs、mIL-15的显著上调:SLE患者血清IFN-γ和IFN-α水平与健康对照组相比有显著性差异,其中IFN-γ在SLE患者为150.3-669.5 pg/mL, mean 429.7±145 pg/mL) (健康对照为18.8-88.2 pg/mL, mean 73.8±18.9pg/mL),与单核细胞MICs表达率成正相关,IFN-α在SLE患者为198.3-489.2pg/mL, mean319±86.1pg/mL) (健康对照为58.8-322.2 pg/mL, mean151.9±78.5pg/mL)。流式细胞检测发现正常单核细胞表面无或微弱地表达MICs分子,发现IFN-γ而非IFN-α可以选择性上调原代单核细胞及单核细胞系表面MICs表达;3、SLE患者来源的单核细胞可以通过膜型IL-15诱导CD4+ T细胞NKG2D受体的表达,并能够通过MIC/NKG2D相互作用活化CD4+ T细胞,上调活化标志CD25、CD69及胞内IFN-γ的表达,细胞直接接触、mIL-15及NKG2D/MIC参与了CD4+ T细胞的活化;4、SLE患者的单核细胞促进CD4+ NKG2D+ T细胞的活化需要异常升高的IFN-γ的微环境:体外IFN-γ刺激的单核细胞可以通过mIL-15依赖的、NKG2D/MICs介导的方式活化CD4+ T细胞,并使得CD4+ T细胞Th1极化,分泌大量穿孔素和颗粒酶,同时还能够促进CD4+ T细胞的增殖;5、活化CD4+ T细胞分泌的IFN-γ能促进单核细胞表面MICs及mIL-15表达,单核细胞表面上调表达的mIL-15有助于维持CD4+ T细胞表面NKG2D的正常水平,继而通过NKG2D/MIC的相互作用又可相互活化,这种crosstalk即可能参与了SLE疾病的进程及恶化。
NKG2D is a key homodimeric activation receptor expressed on the cell surface of almost all NK cells,γδcells, some cytolytic CD8+ T cells and NKT cells, and normally absent on CD4+ T cells but can be induced by TNF-αand IL-15. Several ligands that bind to NKG2D are members of the MHC class I chain-related family, MICA and MICB. Normally, MICA/B have a restricted tissue distribution in intestinal epithelium, and can be stress-induced molecules by viral and bacterial infections, malignant transformation, and proliferation acting as danger signals to alert NK cells and CD8+ T lymphocytes through engagement of the NKG2D activating receptor. In addition, the MIC/NKG2D interaction may lower the threshold of TCR activation by specific antigen and thus trigger or exacerbate an autoimmune response. Data from the literature strongly support the idea that the NKG2D-MIC activation pathway participates in the development of immune mediated disorders. Recently there had been some reports about a novel subset of NKG2D+ CD4+ T cells in some autoimmune disease such as rheumatoid arthritis, HTLV-1-associated neurologic disease, and Crohn’s diseases. Upregulation of MICA/B ligands and high level of IL-15/ TNF-αactivate the effector CD4+ T cells and induce the expression of NKG2D. This subset T cells show the deficiency of the surface marker of CD28 and can secret perforin and granzyme B acting as cytolytic and autoreactive T cells. Later, some groups have been reported that anomalous NKG2D expression on circulating CD4+ T cells in patients with Wegener's granulomatosis .
     Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the deposition of immune complexes with an inflammatory/necrotic phenomenon in different tissues, mainly kidney, skin, blood vessels and central nervous system. Multiple immune abnormalities are characteristic of this condition, including the synthesis of different autoantibodies, enhanced synthesis of IFN-γand defective immunoregulatory function. IFN-γis secreted by lymphoctyes in vivo and plays an essential role in immunologic defence even in immunoregulation. We and others previous study demonstrated that IFN-γparticipate in the crosstalk between NK cells and monocytes by inducing or enhancing the expression of MIC and mIL-15 on monocytes. Considering that IL-15 can induce NKG2D expression on CD4+ T cells, we wonder whether monocytes in patients with SLE aberrantly displayed enhanced expression of MIC and mIL-15 on the surface due to the increased concentration of serum IFN-γ. If this is true, we want to know whether there is a subpopulation of CD4+ T cells expressing NKG2D existing in SLE patients, which maybe induced by mIL-15 on CD14+ monocytes. It is of great interest to further dissect the mechanisms of NKG2D/MIC interaction during the crosstalk of CD4+ T cells and CD14+ monocytes.
     Thus, in this study, we investigate the NKG2D receptor expression on CD4+ T cells as well as MIC and mIL-15 expression on CD14+ monocytes in SLE patients. The methods is as follows:1. We detected and analyze the frequency of CD4+NKG2D+ T cells and MIC+ monocytes and the expression of mIL-15 between SLE patients and normal control. Also, we analyzed whether there are correlation between the frequency of MIC+ monocytes and SLEDAI.2. We detected the concentration of IFN-γand IFN-αin sera of SLE patients and normal controls.Then we investigated the effects of IFN-γ, IFN-αon MIC expression of primary monocytes and monocytic cell lines, for example, THP-1 and U937. We also nalyzed whether there are correlation between the concentration of IFN-γin patients sera and MIC+ monocytes.3. With cocultue system, we investigated the effect of monocytes derived from SLE patients and normal controls on the induction of NKG2D receptor expression on CD4+ T cells. Furthermore, we decteted this effect of IFN-γ-treated monocytes on NKG2D expression in different time point and different cell ratio. In some expriments, anti-IL-15 antibodies were adding to the coculture system.4. We detected the activatory marker of CD25 and CD69 and IFN-γproduction of the cocultured CD4+ T cells. In some expriments, anti-IL-15 antibodies,anti-MICs antibodies and transwell were adding to the coculture system.5.We investigated the effect of IL-15 and NKG2D/MIC on the cocultured CD4+ T cells. We detected activatory marker of CD25 and CD69 , IFN-γlevel either using ELISA and intracellular cytokines staining , and the production of perforin and granzyme B in the absence or presence of transwell, anti-IL-15 Abs and anti-MIC Abs. In addition, we observed the proliferatin of cocultred CD4+ T cells by using Cell Counting Kit-8 ( CCK-8)
     The results are as follows:1. In normal controls, the NKG2D expression was nearly not observed on CD4+ T PBLs (1.2-8.3%, mean 3.4±1.5%) compared with 8-33% (mean 20.1±7.3%) in SLE. The expression of MIC on monocytes is (5–12%, mean7.2±2.4%). In normal controls compared with (11–76%, mean 37±18.1%) in patients. When analyzing the expression of membrane bound IL-15 (mIL-15) on monocytes, we found that mIL-15 expression of CD14+ monocytes in SLE patients (25-48%, mean 36±7.3%) was significantly higher than those in normal controls (5-13%, mean 7.6±2. 5%) .The expression of MIC on monocytes is significantly correlated with SLEDAI. 2. Elevated serum IFN-γhas been found in SLE patients. Our results showed that the concentration of IFN-γin SLE patients (150.3-669.5 pg/mL, mean 429.7±145 pg/mL) was remarkablely higher than those in normal controls (18.8-88.2 pg/mL, mean 73.8±18.9pg/mL),while IFN-α(198.3-489.2pg/mL, mean319±86.1pg/mL) in patients compared with (58.8-322.2 pg/mL, mean151.9±78.5pg/mL) in normal controls. .The concentration of IFN-γin patients is significantly correlated with expression of MIC on monocytes. IFN-γcan upregulated the expression of MIC on primary monocytes and monocytic cell lines. 3. IFN-γpretreated monocytes or freshly isolated monocytes induced NKG2D expression on CD4+ T cells, and can activate CD4+ T Cells via NKG2D/MIC requiring IL-15. 4. Monocytes expressing MIC and mIL-15 promote NKG2D+CD4+ T cells activation via NKG2D/MIC interaction in a IFN-γ-dependent manner.5. The activated CD4+ T cells produced IFN-γand upregulated the MIC and mIL-15 on monocytes. Hence in a feedback , CD4+ T cells and monocytes can crosstalk in IFN-γand mIL-15 dependent manner via NKG2D/MIC interation and activate reciprocally. This crosstalk maybe contribute the exacerbation of the pathogenesis of SLE.
引文
1. Houchins,-J-P; Yabe,-T; McSherry,-C; et al. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J-Exp-Med. 1991 Apr 1; 173(4): 1017-20.
    2. Jamieson,-A-M; Diefenbach,-A; McMahon,-C-W; et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity. 2002 Jul; 17(1): 19-29.
    3. Groh,-V; Bruhl,-A; El-Gabalawy,-H; et al. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc-Natl-Acad-Sci-U-S-A. 2003 Aug 5; 100(16): 9452-7.
    4. Allez,-M; Tieng,-V; Nakazawa,-A; et al. CD4+NKG2D+ T cells in Crohn's disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology. 2007 Jun; 132(7): 2346-58.
    5. Azimi,-N; Jacobson,-S; Tanaka,-Y; et al. Immunostimulation by induced expression of NKG2D and its MIC ligands in HTLV-1-associated neurologic disease. Immunogenetics. 2006 May; 58(4): 252-8.
    6. Capraru,-D; Muller,-A; Csernok,-E; et al. Expansion of circulating NKG2D+ effector memory T-cells and expression of NKG2D-ligand MIC in granulomaous lesions in Wegener's granulomatosis. Clin-Immunol. 2008 May; 127(2): 144-50.
    7. Das,-H; Groh,-V; Kuijl,-C; et al. MIC engagement by human Vγ2Vδ2 T cells enhances their antigendependent effector function. Immunity. 2001 Jul; 15(1): 83-93.
    8. Groh,-V; Rhinehart,-R; Secrist,-H; et al. Broad tumor-associated expression and recognition by tumor-derivedγδT cells of MIC and MICB. Proc-Natl-Acad-Sci-U-S-A. 1999 Jun 8; 96(12): 6879-84.
    9. Jinushi,-M; Takehara,-T; Tatsumi,-T; et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int-J-Cancer. 2003 Apr 10; 104(3): 354-61.
    10. Groh,-V; Bahram,-S; Bauer,-S; et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium.Proc-Natl-Acad-Sci-U-S-A. 1996 Oct 29; 93(22): 12445-50.
    11. Groh,-V; Steinle,-A; Bauer,-S; et al. Recognition of stress-induced MHC molecules by intestinal epithelialγδT cells. Science. 1998 Mar 13; 279(5357): 1737-40.
    12. Molinero,-L-L; Fuertes,-M-B; Girart,-M-V; et al. NF-kappa B regulates expression of the MHC class I-related chain A gene in activated T lymphocytes. J-Immunol. 2004 Nov 1; 173(9): 5583-90.
    13. Zwirner,-N-W; Fernandez-Vina,-M-A; et al. MICA, a new polymorphic HLA-related antigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes. Immunogenetics. 1998; 47(2): 139-48.
    14. Zwirner,-N-W; Dole,-K; Stastny,-P. Differential surface expression of MIC by endothelial cells, fibroblasts, keratinocytes, and monocytes. Hum-Immunol. 1999 Apr; 60(4): 323-30.
    15. Stephens,-H-A. MIC and MICB genes: can the enigma of their polymorphism be resolved? Trends-Immunol. 2001 Jul; 22(7): 378-85.
    16. Zuniga,-R; Ng,-S; Peterson,-M-G; et al. Low-binding alleles of Fcgamma receptor types IIA and IIIA are inherited independently and are associated with systemic lupus erythematosus in Hispanic patients. Arthritis-Rheum. 2001 Feb; 44(2): 361-7.
    17. Tsao,-B-P. An update on genetic studies of systemic lupus erythematosus. Curr-Rheumatol-Rep. 2002 Aug; 4(4): 359-67.
    18. Childs,-S-G. The pathogenesis of systemic lupus erythematosus. Orthop-Nurs. 2006 Mar-Apr; 25(2): 140-5; quiz 146-7.
    19. Pisetsky,-D-S. The immune response to cell death in SLE. Autoimmun-Rev. 2004 Nov; 3(7-8): 500-4.
    20. Petri,-M. Exogenous estrogen in systemic lupus erythematosus: oral contraceptives and hormone replacement therapy. Lupus. 2001; 10(3): 222-6.
    21. Holtmeier,-W; Kabelitz,-D. gammadelta T cells link innate and adaptive immune responses. Chem-Immunol-Allergy. 2005; 86: 151-83.
    22. Harigai,-M; Kawamoto,-M; Hara,-M; et al. Excessive production of IFN-gamma in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B .J-Immunol. 2008 Aug 1; 181(3): 2211-9.
    23. Huang,-X; Shen,-N; Bao,-C; et al. Interferon-induced protein IFIT4 is associated with systemic lupus erythematosus and promotes differentiation of monocytes into dendritic cell-like cells. Arthritis-Res-Ther. 2008; 10(4): R91.
    24. Wang,-H; Ruan,-Z; Wang,-Y; et al. MHC class I chain-related molecules induced on monocytes by IFN-gamma promote NK cell activation. Mol-Immunol. 2008 Mar; 45(6): 1548-56.
    25. Dalbeth,-N; Gundle,-R; Davies,-R-J; et al. CD56bright NK Cells Are Enriched at Inflammatory Sites and Can Engage with Monocytes in a Reciprocal Program of Activation. J-Immunol. 2004 Nov 15; 173(10): 6418-26.
    26. Musso,-T; Calosso,-L; Zucca,-M; et al. Human Monocytes Constitutively Express Membrane-Bound, Biologically Active, and Interferon--Upregulated Interleukin-15. Blood. 1999 May 15; 93(10): 3531-9.
    27. Ding,-Y; Sumitran,-S; Holgersson,-J. Direct binding of purified HLA class I antigens by soluble NKG2/CD94 C-type lectins from natural killer cells. Scand-J-Immunol. 1999 May; 49(5): 459-65.
    28. Cerboni,-C; Zingoni,-A; Cippitelli,-M; et al. Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK- cell lysis.188 Blood. 2007 Jul 15; 110(2): 606-15.
    29. Tucci,-M; Lombardi,-L; Richards,-H-B; et al. Overexpression of interleukin-12 and T helper 1 predominance in lupus nephritis. Clin-Exp-Immunol. 2008 Nov; 154(2): 247-54.
    30. Enghard,-P; Langnickel,-D; Riemekasten,-G. T cell cytokine imbalance towards production of IFN-gamma and IL-10 in NZB/W F1 lupus-prone mice is associated with autoantibody levels and nephritis. Scand-J-Rheumatol. 2006 May-Jun; 35(3): 209-16.
    31. Robak,-E; Smolewski,-P; Wozniacka,-A; et al. Relationship between peripheral blood dendritic cells and cytokines involved in the pathogenesis of systemic lupus erythematosus. Eur-Cytokine-Netw. 2004 Jul-Sep; 15(3): 222-30.
    32. Bombardier,-C; Gladman,-D-D; Urowitz,-M-B; et al. The committee on prognosis studies in SLE derivation of the SLE-DAI: a disease activity index for lupus patients. Arthritis-Rheum. 1992 Jun; 35(6): 630-40.
    33. Gordon,-S; Taylor,-P-R, et al. Monocyte and macrophage heterogeneity. Nat-Rev-Immunol. 2005 Dec; 5(12): 953-64.
    34. Aringer,-M; Smolen,-J-S. Tumour necrosis factor and other proinflammatory cytokines in systemic lupus erythematosus: a rationale for therapeutic intervention. Lupus. 2004; 13(5): 344-7.
    35. Baechler,-E-C; Gregersen,-P-K; Behrens,-T-W. The emerging role of interferon in human systemic lupus erythematosus. Curr-Opin-Immunol. 2004 Dec; 16(6): 801-7.
    36. Tackey,-E; Lipsky,-P-E; Illei,-G-G. Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus. 2004; 13(5): 339-43.
    37. Anolik,-J-H; Aringer,-M. New treatments for SLE: cell-depleting and anti-cytokine therapies. Best-Pract-Res-Clin-Rheumatol. 2005 Oct; 19(5): 859-78.
    38. Baechler,-E-C; Batliwalla,-F-M; Karypis,-G; et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc-Natl-Acad-Sci-U-S-A. 2003 Mar 4; 100(5): 2610-5.
    39. Ronnblom,-L; Alm,-G-V. Systemic lupus erythematosus and the type I interferon system.. Arthritis-Res-Ther. 2003; 5(2): 68-75.
    40. Hsieh,-C-S; Macatonia,-S-E; Tripp,-C-S; et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993 Apr 23; 260(5107): 547-9.
    41. Burger,-D; Dayer,-J-M. The role of human T-lymphocyte-monocyte contact in inflammation and tissue destruction. Arthritis-Res. 2002; 4 Suppl 3: S169-76.
    42. Van-Amersfoort,-E-S; Van-Berkel,-T-J; Kuiper,-J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin-Microbiol-Rev. 2003 Jul; 16(3): 379-414.
    43.开始Uhm,-W-S; Na,-K; Song,-G-W; et al. Cytokine balance in kidney tissue from lupus nephritis patients. Rheumatology-(Oxford). 2003 Aug; 42(8): 935-8.
    44. Lit,-L-C; Wong,-C-K; Li,-E-K, et al. Elevated gene expression of Th1/Th2 associated transcription factors is correlated with disease activity in patients with systemic lupus erythematosus. J-Rheumatol. 2007 Jan; 34(1): 89-96.
    45. Kwissa,-M; Kroger,-A; Hauser,-H; et al. Cytokine-facilitated priming of CD8+ T cell responses by DNA vaccination. J-Mol-Med. 2003 Feb; 81(2): 91-101.
    46. Bruserud,-O; Ulvestad,-E. Human acute lymphoblastic leukemia (ALL) blasts as accessory cells during T-cell activation: differences between patients in costimulatory capacity affect proliferative responsiveness and cytokine release by activated T cells. Cancer-Immunol-Immunother. 2003 Apr; 52(4): 215-25.
    47. Toomey,-J-A; Gays,-F; Foster,-D; et al. Cytokine requirements for the growth and development of mouse NK cells in vitro. J-Leukoc-Biol. 2003 Aug; 74(2): 233-42.
    48. Lanier,-L-L. On guard-activating NK cell receptors. Nat-Immunol. 2001 Jan; 2(1): 23-7.
    49. Jinushi,-M; Takehara,-T; Tatsumi,-T; et al. Autocrine paracrine IL-15 that is required for type I IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J-Immunol. 2003 Nov 15; 171(10): 5423-9.
    50. Chen,-Y; Wei,-H; Sun,-R; et al. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology. 2007 Sep; 46(3): 706-15.
    51. Arina,-A; Murillo,-O; Hervas-Stubbs,-S; et al. The combined actions of NK and T lymphocytes are necessary to reject an EGFP+ mesenchymal tumor through mechanisms dependent on NKG2D and IFN gamma. Int-J-Cancer. 2007 Sep 15; 121(6): 1282-95.
    52. Maccalli,-C; Nonaka,-D; Piris,-A; et al. NKG2D-mediated antitumor activity by tumor-infiltrating lymphocytes and antigen-specific T-cell clones isolated from melanoma patients. Clin-Cancer-Res. 2007 Dec 15; 13(24): 7459-68.
    53. Seiler,-M; Brabcova,-I; Viklicky,-O; et al. Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation. Am-J-Transplant. 2007 Feb; 7(2): 423-33.
    54. Lopez-Larrea,-C; Suarez-Alvarez,-B; Lopez-Soto,-A; et al. The NKG2D receptor: sensing stressed cells. Trends-Mol-Med. 2008 Apr; 14(4): 179-89.
    55. Song,-H; Kim,-J; Cosman,-D; Choi,-I. Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell-Immunol. 2006 Jan; 239(1): 22-30.
    56. Osaki,-T; Saito,-H; Yoshikawa,-T; et al. Decreased NKG2D expression on CD8+ T cell is involved in immune evasion in patients with gastric cancer. Clin-Cancer-Res. 2007 Jan 15; 13(2 Pt 1): 382-7.
    57. Groh,-V; Smythe,-K; Dai,-Z; et al. Fas-ligand-mediated paracrine T cell regulation bythe receptor NKG2D in tumor immunity. Nat-Immunol. 2006 Jul; 7(7): 755-62.
    58. Peraldi,-M-N; Berrou,-J; Dulphy,-N; et al. Oxidative Stress Mediates a Reduced Expression of the Activating Receptor NKG2D in NK Cells from End-Stage Renal Disease Patients. J-Immunol. 2009 Feb 1; 182(3): 1696-705.
    59. Boehm,-U; Klamp,-T; Groot,-M; et al. Cellular responses to interferon-gamma. Annual Review of Immunology. Annu-Rev-Immunol. 1997; 15: 749-95.
    60. Wirths,-S; Reichert,-J; Grunebach,-F; et al. Activated CD8+ T lymphocytes induce differentiation of monocytes to dendritic cells and restore the stimulatory capacity of interleukin 10-treated antigen-presenting cells. Cancer-Res. 2002 Sep 1; 62(17): 5065-8.
    61. Delneste,-Y; Charbonnier,-P; Herbault,-N; et al. Interferon-γswitches monocyte differentiation from dendritic cells to macrophages. Blood. 2003 Jan 1; 101(1): 143-50.
    62. Gonzalez-Alvaro,-I; Dominguez-Jimenez,-C; Ortiz,-A-M; et al. Interleukin-15 and interferon-gamma participate in the cross-talk between natural killer and monocytic cells required for tumour necrosis factor production. Arthritis-Res-Ther. 2006; 8(4): R88.
    63. McLoughlin,-R-M; Witowski,-J; Robson,-R-L; et al. Interplay between IFN-gamma and IL-6 signaling governs neutrophil trafficking and apoptosis during acute inflammation. J-Clin-Invest. 2003 Aug; 112(4): 598-607.
    64. Ma,-X; Chow,-J-M; Gri,-G; et al. The interleukin 12 p40 gene promoter is primed by interferonγin monocytic cells. J-Exp-Med. 1996 Jan 1; 183(1): 147-57.
    65. Bekeredjian-Ding,-I; Roth,-S-I; Gilles,-S; et al. T Cell-Independent, TLR-Induced IL-12p70 Production in Primary Human Monocytes. J Immunol. J-Immunol. 2006 Jun 15; 176(12): 7438-46.
    66. Blanco,-P; Palucka,-A-K; Gill,-M; et al. Induction of Dendritic Cell Differentiation by IFN-αin Systemic Lupus Erythematosus. Science. 2001 Nov 16; 294(5546): 1540-3.
    67. Ponti,-C; Falconi,-M; Billi,-A-M; et al. IL-12 and IL-15 induce activation of nuclear PLCbeta in human natural killercells. Int-J-Oncol. 2002 Jan; 20(1): 149-53.
    68. Haller,-D; Serrant,-P; Granato,-D; et al. Activation of human NK cells by staphylococci and lactobacilli requires cell contact-dependent costimulation by autologous monocytes. Clin-Diagn-Lab-Immunol. 2002 May; 9(3): 649-57.
    69. Diefenbach,-A; Raulet,-D-H. 2002. The innate immune response to tumors and its rolein the induction of T-cell immunity. Immunol-Rev. 2002 Oct; 188: 9-21.
    70. Jinushi,-M; Takehara,-T; Kanto,-T; et al. 2003. Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J-Immunol. 2003 Feb 1; 170(3): 1249-56.
    71. Zhou,-H; Luo,-Y; Kaplan,-C-D; et al. A DNA-based cancer vaccine enhances lymphocyte cross talk by engaging the NKG2D receptor. Blood. 2006 Apr 15; 107(8): 3251-7.
    72. Pallandre,-J-R; Krzewski,-K; Bedel,-R; et al. Dendritic cell and natural killer cell cross-talk: a pivotal role of CX3CL1 in NK cytoskeleton organization and activation. Blood. 2008 Dec 1; 112(12): 4420-4.
    73. Guan,-H; Moretto,-M; Bzik,-D-J; et al. NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway. J-Immunol. 2007 Jul 1; 179(1): 590-6.
    74. Zitvogel,-L; Terme,-M; Borg,-C; et al. Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr-Top-Microbiol-Immunol. 2006; 298: 157-74.
    75. Jenkins,-S-J; Perona-Wright,-G; Worsley,-A-G; et al. Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo. J-Immunol. 2007 Sep 15; 179(6): 3515-23.
    76. Conti,-L; Casetti,-R; Cardone,-M , et al. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J-Immunol. 2005 Jan 1; 174(1): 252-60.
    77. Balkhi,-M-Y; Latchumanan,-V-K; Singh,-B; et al. Cross-regulation of CD86 by CD80 differentially regulates T helper responses from Mycobacterium tuberculosis secretory antigen-activated dendritic cell subsets. J-Leukoc-Biol. 2004 May; 75(5): 874-83.
    78. Zhou,-H; Luo,-Y; Kaplan,-C-D; et al. A DNA-based cancer vaccine enhances lymphocyte cross talk by engaging the NKG2D receptor. Blood. 2006 Apr 15; 107(8): 3251-7.
    79. Terme,-M; Chaput,-N; Combadiere,-B; et al. Regulatory T cells control dendritic cell/NK cell cross-talk in lymph nodes at the steady state by inhibiting CD4+ self-reactive T cells. J-Immunol. 2008 Apr 1; 180(7): 4679-86.
    80. Li,-Z; Pradera,-F; Kammertoens,-T, et al. Cross-talk between T cells and innate immunecells is crucial for IFN-gamma-dependent tumor rejection. J-Immunol. 2007 Aug 1; 179(3): 1568-76.
    81. Prins,-R-M; Vo, -D-D; Khan-Farooqi,-H; et al.NK and CD4 cells collaborate to protect against melanoma tumor formation in the brain. J-Immunol. 2006 Dec 15; 177(12): 8448-55.
    82. Roberts,-A-I; Lee,-L; Schwarz,-E; et al. NKG2D Receptors Induced by IL-15 Costimulate CD28-Negative Effector CTL in the Tissue Microenvironment. J-Immunol. 2001 Nov 15; 167(10): 5527-30.
    83. Markiewicz,-M-A; Carayannopoulos,-L-N; Naidenko,-O-V; et al. Costimulation through NKG2D enhances murine CD8+ CTL function similarities and differences between NKG2D and CD28 costimulation. J-Immunol. 2005 Sep 1; 175(5): 2825-33.
    84. Ehrlich,-L-I; Ogasawara,-K; Hamerman,-J-A; et al. Engagement of NKG2D by Cognate Ligand or Antibody Alone Is Insufficient to Mediate Costimulation of Human and Mouse CD8+ T Cells. J-Immunol. 2005 Feb 15; 174(4): 1922-31.
    85. Maasho,-K; Opoku-Anane,-J; Marusina,-A-I; et al. NKG2D is a costimulatory receptor for human naive CD8+ T cells. J-Immunol. 2005 Apr 15; 174(8): 4480-4.
    86. Groh,-V; Rhinehart,-R; Randolph-Habecker,-J; et al. Costimulation of CD8αβT cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat-Immunol. 2001 Mar; 2(3): 255-60.
    87. Gilfillan,-S; Ho,-E-L; Cella,-M; et al. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat-Immunol. 2002 Dec; 3(12): 1150-5.
    88. Maccalli,-C; Pende,-D; Castelli,-C; et al. NKG2D engagement of colorectal cancer-specific T cells strengthens TCR-mediated antigen stimulation and elicits TCR independent anti-tumor activity. Eur-J-Immunol. 2003 Jul; 33(7): 2033-43.
    89. Meresse,-B; Chen,-Z; Ciszewski,-C; et al. Coordinated induction by IL-15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004 Sep; 21(3): 357-66.
    90. Ho,-E-L; Carayannopoulos,-L-N; Poursine-Laurent,-J; et al. Costimulation of multiple NK cell activation receptors by NKG2D. J-Immunol. 2002 Oct 1; 169(7): 3667-75.
    91. Verneris MR, Karami M, Baker J, et al. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells [J]. Blood, 2004, 103(8): 3065-3072.
    92. Kagi,-D; Vignaux,-F; Ledermann,-B; et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. 1994 Jul 22; 265(5171): 528-30.
    93. Spaner,-D; Raju,-K; Radvanyi,-L; et al. A role for perforin in activation induced cell death. J-Immunol. 1998 Mar 15; 160(6): 2655-64.
    94. Blanco,-P; Pitard,-V; Viallard,-J-F; et a. Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis-Rheum. 2005 Jan; 52(1): 201-11.
    95. Qiao,-Y; Liu,-B; Li,-Z .Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2D ligands on dendritic cells. Cancer-Immun. 2008; 8: 12.
    96. Vilarinho,-S; Ogasawara,-K; Nishimura,-S; et al. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc-Natl-Acad-Sci-U-S-A. 2007 Nov 13; 104(46): 18187-92.
    97. Ogasawara,-K; Hamerman,-J-A; Ehrlich,-L-R; et al. NKG2D Blockade Prevents Autoimmune Diabetes in NOD Mice. Immunity. 2004 Jun; 20(6): 757-67.
    98. Ito,-Y; Kanai,-T; Totsuka,-T; et al. Blockade of NKG2D signaling prevents the development of murine CD4+ T cell-mediated colitis. Am-J-Physiol-Gastrointest- Liver-Physiol. 2008 Jan; 294(1): G199-207.
    1. Houchins JP, Yabe T, McSherry C, et al. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells[J]. J Exp Med, 1991, 173(4):1017-1021.
    2. Ryan JC, Naper C, Hayashi S, et al. Physiologic functions of activating natural killer (NK) complex encoded receptors on NK cells [J]. Immunol Rev, 2001, 181:126-137.
    3. DingY, Sumitran S, Holgersson J. Direct binding of purified HLA classⅠantigens by soluble NKG2/CD94 C-type lectins from natural killer cells [J].Scand J Immunol, 1999, 49: 459-465.
    4. Jamieson AM, Diefenbach A, McMahon CW, et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing [J]. Immunity, 2002, 17(1):19-29.
    5. Groh V, Bruhl A, EI Gabalawy H, et al. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis [J]. Proc Natl Acad Sci USA, 2003, 100 (16): 9452-9457.
    6. Allez M, Tieng V, Nakazawa A, et al. CD4+NKG2D+ T cells in Crohn's disease mediate inflammatory and cytotoxic responses through MICA interactions [J]. Gastroenterlogy, 2007,132 (7): 2346-2358.
    7. Azimi N, Jacobson S, Tanaka, Y, et al. Immunostimulation by induced expression of NKG2D and its MIC ligands in HTLV-1-associated neurologic disease [J]. Immunogenetics, 2006, 58(4): 252-258.
    8. Roberts AI, Lee L, Schwarz E, et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment [J]. J Immunol, 2001,167 (10):5527-5530.
    9. Brggemann M. Human antibody expression in transgenic mice [J]. Arch Immunol Ther Exp, 2001, 49(3):203-208.
    10. Diefenbach A, Jamieson AM, Liu SD, et al. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages [J].Nat Immunol, 2000, 1(2): 119-126.
    11. Natarajan K, Dimasi N, Wang J,et al. Structure and function of natural killer cell receptors:multiple molecular solutions to self, nonself discrimination [J]. Annu Rev Immunol, 2002, 20:853-885.
    12. Holmes MA, Li PW, Petersdorf EW, et al. Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D [J].J Immunol, 2002,169:1395-1400.
    13. Jinushi M, Takehara T, Kanto T, et al. Critical role of MHC class I-related chain A and B expression on IFN-α-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection [J].J Immnol, 2003, 170(3):1249-1256.
    14. Wang H, Ruan Z, Wang Y, et al. MHC class I chain-related molecules induced on monocytes by IFN-gamma promote NK cell activation [J].Mol Immunol, 2008, 45(6):1548-1556.
    15. Ahmad T, Marshell SE, Mulcahy-Hawes K, et al. High resolution MIC genotyping: design and application to the investigation of inflammatoy bowel disease susceptibility [J]. Tissue Antigens, 2002, 60(2):164-179.
    16. Sutherland CL, Chalupny NJ,Schooley K, et al. UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multip signaling pathways in primary NK cells [J]. J Immunol, 2002, 168:671-679.
    17. Nicholson IC, Zou X,Popov AV, et al. Antibody repertoires of four- and five-feature translous mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes [J]. J Immunol, 1999, 163(12):6898-6906.
    18. Strong PK, McFarland BJ. NKG2D and related immunoreceptors. Adv Protein Chem, 2004, 68:281-312.
    19. Lopez-soto A, Quinones Lombrana A, Lopez-Arbesu R, et al. Transcriptional regulation of ULBP1, a human ligand of the NKG2D receptor [J]. J Biol Chem, 2006, 281(41):30419-30430.
    20. McFarland, B.J. and Strong, R.K. Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor not induced fit but rigid adaptation [J]. Immunity, 2003, 19, 803–812.
    21. Diefenbach A, Tomasello E, Lucas M, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D [J]. NatImmunol, 2002, 3(12):1142-1149.
    22. Wu J, Song Y, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10 [J]. Science,1999,285(5428):730-732
    23. Graham DB, Cella M, Giurisato E, et al. Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics [J]. J Immnol, 2006, 177(4):2349-2355.
    24. Hue S, Mention JJ, Monteiro RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease [J]. Immunity, 2004, 21(3):367-377.
    25. Horng T, Bezbradica JS, Medzhitov R. NKG2D signaling is coupled to the interleukin
    15 receptor signaling pathway [J]. Nat Immunol, 2007, 8(12):1345-1352.
    26. Gilfillan S, Ho EL, Cella M, et al. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation [J]. Nat Immunol, 2002, 3(12):1150-1155.
    27. Pende D, Cantoni C, Rivera P, et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin [J]. Eur J Immunol, 2001, 31:1076–1086.
    28. Colucci F, Schweighoffer E, Tomasello E, et al. Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases [J]. Nat Immunol, 2002, 3:288-94.
    29. Pende D, Cantoni C, Rivera P, et al. Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin [J]. Eur. J. Immunol, 2001, 31: 1076–1086.
    30. Andre P, Castriconi R, Espeli M, et al. Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors[J]. Eur. J. Immunol, 2004, 34: 961–971.
    31. Kubin M, Cassiano L, Chalupny J, et al. ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells [J]. Eur. J. Immunol, 2001, 31:1428–1437.
    32. Ehrlich L.I., Ogasawara K, Hamerman JA, et al. Engagement of NKG2D by cognate ligand or antibody alone is insufficient to mediate costimulation of human and mouse CD8+ T cells [J].J. Immunol, 2005, 174: 1922–1931.
    33. Hue S, Mention JJ, Monteiro, RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease [J]. Immunity, 2004, 21: 367–377.
    34. Meresse B, Chen Z, Ciszewski, C, et al. Coordinated induction by IL-15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease [J]. Immunity, 2004, 21: 357–366.
    35. Verneris MR, Karami M, Baker J, et al. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells [J]. Blood, 2004, 103(8): 3065-3072.
    36. Groh V, Rhinehart R, Randolph Habecker J, et al. Costimulation of CD8αβT cells by NKG2D via engagement by MIC induced on virus-infected cells [J]. Nat Immunol, 2001, 2(3):255-260.
    37. Diefenbach A, Jensen ER, Jamieson AM, et al. Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity [J]. Nature, 2001, 413(6852):165-171.
    38. Watanabe R, Harada Y, Takeda K, et al. Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-mediated costimulation [J]. J Immunol, 2006, 177(2):1085-1091.
    39. Markiewicz MA, Carayannopoulos, LN, Naidenko OV, et al. Costimulation through NKG2D enhances murine CD8+ CTL function: similarities and differences between NKG2D and CD28 costimulation [J]. J Immunol, 2005, 175(5):2825-2833.
    40. Ogasawara K, Hamerman JA, Hsin H, et al. Impairment of NK cell function by NKG2D modulation in NOD mice [J]. Immunity, 2003, 18(1):41-51.
    41. Ogasawara K, Hamerman JA, Ehrlich LR, et al. NKG2D blockade prevents autoimmune diabetes in NOD mice [J]. Immunity, 2004, 20(6):757-767.
    42. Rodacki M, Svoren B, Butty V, et al. Altered natural killer cells in type 1 diabetic patients [J]. Diabetes, 2007, 56(1):177-185.
    43. Gianfrani C, Auricchio S, Troncone R. Adaptive and innate immune responses in celiac disease [J]. Immunol Lett, 2005, 99(2):141-145.
    1. Raulet, D.H., 2003. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3(10), 781-790.
    2. Groh, V., Rhinehart, R., Randolph-Habecker, J., Topp, M.S., Riddell, S.R., Spies, T., 2001.Co-stimulation of CD8+αβT cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol. 2, 255–260.
    3. Groh, V., Bruhl, A., El-Gabalawy, H., Nelson, J.L., Spies, T., 2003. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl. Acad. Sci. U.S.A. 100, 9452-9457.
    4. Groh, V., Bahram, S., Bauer, S., Herman, A., Beauchamp, M., Spies, T., 1996. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. U.S.A. 93, 12445–12450.
    5. Bahram, S., Bresnahan, M., Geraghty, D.E., Spies, T., 1994. A second lineage of mammalian major histocompatibility complex class I genes. Proc. Natl. Acad. Sci. U.S.A. 91, 6259-6263.
    6. Das, H., Groh, V., Kuijl, C., Sugita, M., Morita, C.T., Spies, T., Bukowski, J.F., 2001. MICA engagement by human Vγ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity 15, 83–93.
    7. Bauer, S., Groh,V., Wu, J., Steinle, A., Phillips, J.H., Lanier, L.L., Spies, T., 1999. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MIC. Science 285, 727–729.
    8. Madjd, Z., Spendlove, I., Moss, R., Bevin, S., Pinder, S.E., Watson, N.F., Ellis, I., Durrant, L.G., 2007. Upregulation of MICA on high-grade invasive operable breast carcinoma. Cancer Immun. 7, 17-26.
    9. Meresse, B., Chen, Z., Ciszewski, C., Tretiakova, M., Bhagat, G., Krausz, T.N., Raulet, D.H., Lanier, L.L., Groh, V., Spies, T., Ebert, E.C., Green, P.H., Jabri, B., 2004. Coordinated induction by IL-15 of a TCR independent pathway converts CTL intolymphokine-activated killer cells in celiac disease. Immunity 21, 357–366.
    10. Ogasawara, K., Hamerman, J.A., Ehrlich, L.R., Bour-Jordan, H., Santamaria, P., Bluestone, J.A., Lanier, L.L., 2004. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20, 757–767.
    11. Vilarinho, S., Ogasawara, K., Nishimura, S., Lanier, L.L., Baron, J.L., 2007. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc. Natl. Acad. Sci. U.S.A. 104, 18187–12450.
    12. Azimi N., Jacobson, S., Tanaka, Y., Corey, L., Groh, V., Spies, T., 2006. Immunostimulation by induced expression of NKG2D and its MIC ligands in HTLV-1-associated neurologic disease. Immunogenetics, 58(4), 252-258.
    13. Allez, M., Tieng, V., Nakazawa, A., Treton, X., Pacault, V., Dulphy, N., Caillat-Zucman, S., Paul, P., Gornet, J.M., Douay, C., Ravet, S., Tamouza, R., Charron, D., Lemann, M., Mayer, L., Toubert, A., 2007. CD4+NKG2D+ T cells in Crohn's disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132, 2346-2358.
    14. Mills, J.A., 1994. Systemic lupus erythematosus. N. Engl. J. Med. 330, 1871-1879.
    15. Mok, C.C., Lau, C.S., 2003. Pathogenesis of systemic lupus erythematosus. J. Clin. Pathol. 56, 481–490.
    16. Sheriff, A., Gaipl, U.S., Voll, R.E., Kalden, J.R., Herrmann, M., 2004. Apoptosis and systemic lupus erythematosus. Rheum. Dis. Clin. North. Am. 30, 505–527.
    17. Lit, L.C., Wong, C.K., Li, E.K., Tam, L.S., Lam, C.W., Lo, Y.M., 2007. Elevated gene expression of Th1/Th2 associated transcription factors is correlated with disease activity in patients with systemic lupus erythematosus. J. Rheumatol. 34, 89-96.
    18. Musso, T., Calosso, L., Zucca, M., Millesimo, M., Ravarino, D., Giovarelli, M., Malavasi, F., Ponzi, A.N., Paus, R., Bulfone-Paus, S., 1999. Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 93, 3531–3539.
    19. Wang, H., Ruan, Z., Wang, Y., Han, J., Fu, X., Zhao T., Yang, D., Xu, W., Yang, Z., Wang, L., Chen Y., Wu Y., 2008. MHC class I chain-related molecules induced on monocytes by IFN-gamma promote NK cell activation. Mol. Immunol. 45(6), 1548-1556.
    20. Guzma′n, J., Cardiel, M.H., Arce-Salinas, A., Sa′nchez-Guerrero, J., Alarco′n-Segovia, D., 1992. Measurement of disease activity in systemic lupus erythematosus. Prospective validation of 3 clinical indices. J. Rheumatol.19, 1551–1558.
    21. Diefenbach, A., Raulet, D.H., 2002. The innate immune response to tumors andits role in the induction of T-cell immunity. Immunol. Rev. 188, 9–21.
    22. Zhou, H., Luo, Y., Kaplan, C.D., Kruger, J.A., Lee, S.H., Xiang, R., Reisfeld, R.A., 2006. A DNA-based cancer vaccine enhances lymphocyte cross talk by engaging the NKG2D receptor. Blood 107, 3251–3257.
    23. Jinushi, M., Takehara, T., Kanto, T., Tatsumi, T., Groh, V., Spies, T., Miyagi, T., Suzuki, T., Sasaki, Y., Hayashi, N., 2003a. Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J. Immunol. 170, 1249–1256.
    24. Burgess, S.J., Maasho, K., Masilamani, M., Narayanan, S., Borrego, F., Coligan, J.E., 2008. The NKG2D receptor: immunobiology and clinical Implications. Immunol. Res. 40, 18–34.
    25. Baranda, L., de-la-Fuente, H., Layseca-Espinosa, E., Portales-Perez, D., Nino-Moreno, P., Valencia-Pacheco, G., Abud-Mendoza, C., Alcocer-Varela, J., Gonzalez-Amaro, R., 2005. IL-15 and IL-15R in leucocytes from patients with systemic lupus erythematosus. Rheumatology-(Oxford). 44(12), 1507-1513.
    26. Gómez, D., Correa, P.A., Gómez, L.M., Cadena, J., Molina, J.F., Anaya, J.M., 2004. Th1/Th2 cytokines in patients with systemic lupus erythematosus: is tumor necrosis factor alpha protective? Semin. Arthritis. Rheum. 33(6), 404-413.
    27. Masutani, K., Akahoshi, M., Tsuruya, K., Tokumoto, M., Ninomiya, T., Kohsaka, T., Fukuda, K., Kanai, H., Nakashima, H., Otsuka, T., Hirakata, H., 2001. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis.Rheum. 44(9), 2097-2106.
    28. Fong, K.Y., Boey, M.L., Koh, W.H., Feng, P.H., 1994. Cytokine concentrations in the synovial fluid and plasma of rheumatoid arthritis patients: correlation with bony erosions. Clin. Exp. Rheumatol. 12(1), 55-58.
    29. Roberts, A.I., Lee, L., Schwarz, E., Groh, V., Spies, T., Ebert, E.C., Jabri, B., 2001. NKG2D Receptors Induced by IL-15 Costimulate CD28-Negative Effector CTL in theTissue Microenvironment. J. Immunol. 167(10), 5527-5530.
    30. Groh, V., Wu, J., Yee, C., Spies, T., 2002. Tumour-derived soluble MIC ligands impair expression of NKG2D and T cell activation. Nature 419, 734–738.
    31. Jinushi, M., Takehara, T., Tatsumi, T., Hiramatsu, N., Sakamori, R., Yamaguchi, S., Hayashi, N., 2005. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J. Hepatol. 43, 1013–1020.
    32. Doubrovina, E.S., Doubrovin, M.M., Vider, E., Sisson, R.B., O’Reilly, R.J., Dupont, B., Vyas, Y.M., 2003. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon carcinoma. J. Immunol. 171, 6891–6899.
    33. Tagaya, Y., Bamford, R., DeFilippis, A.P., Waldmann, T., 1996. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 4, 329–336.
    34. Waldmann, T., 2002. The contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for the immunotherapy of rheumatological diseases. Arthritis. Res. 4(Suppl. 3), S161–167.
    35. Li, X.C., Demirci, G., Ferrari-Lacraz, S., Groves, C., Coyle, A., Malek, T.R., Strom, T.B., 2001. IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat. Med. 7, 114–118.
    36. Alves, N.L., Hooibrink, B., Arosa, F.A., van Lier, R.A., 2003. IL-15 induces antigen-independent expansion and differentiation of human na?ve CD8+ T cells in vitro. Blood 102, 2541–2546.
    37. Ohteki, T., Suzue, K., Maki, C., Ota, T., Koyasu, S., 2001. Critical role of IL-15- IL-15R for antigen presenting cell functions in the innate immune response. Nat. Immunol. 2, 1138–1143.
    38. Liu, K., Catalfamo, M., Li, Y., Henkart, P.A., 2002. IL-15 mimics T cell receptor crosslinking in the induction of cellular proliferation, gene expression, and cytotoxicity in CD8+ memory T cells. Proc. Natl. Acad. Sci. U.S.A. 99, 6192–6197.
    39. Horng, T., Bezbradica, J.S., Medzhitov, R., 2007. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat. Immunol. 8(12), 1345-1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700