用户名: 密码: 验证码:
基于特征模型的预测函数控制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,模型预测控制的研究越来越受到众多专家学者的重视,在大家的共同努力下,许多重要的研究成果不断出现。模型预测控制以其鲁棒性好,具有灵活的约束处理能力,综合控制质量较高,特别适合于处理具有输入输出约束、时滞时变特性、反向特性和变目标函数的工业过程等优点,受到工业界的广泛欢迎,应用成果层出不穷。预测函数控制作为第三代模型预测控制,在保持模型预测控制优点的同时,通过引入基函数的概念增强了输入控制量的规律性,提高了响应的快速性和准确性,可有效地减少算法的计算量。然而,与其它基于预测模型的模型预测控制一样,预测函数控制仍然存在一旦预测模型与实际被控过程出现不一致时,会出现控制性能下降的问题。尽管围绕模型失配问题展开了一系列的研究,如将神经网络模型、模糊模型引入预测函数控制作为预测模型,但这样做的结果使预测模型变得复杂,增加了在线计算工作量,预测函数控制原先所具有的算法简单、运算速度快的优点失去。
     针对预测函数控制的模型失配问题,本文以保证预测函数控制所具有的算法简单、运算速度快的优点为研究出发点,同时减小模型失配以保证预测函数控制的控制性能不下降为前提,提出基于特征模型的预测函数控制控制方案。特征模型通常的形式是一个二阶慢时变的线性模型,它是根据被控对象动力学特征和控制性能的要求相结合建立起来的模型,特征模型的关键特点在于模型的形式简单、易于工程实现,而且在同样输入控制作用下,对象特征模型和实际对象在输出上是等价的。特征模型这一概念是由吴宏鑫院士结合自己多年的理论研究与工程实践而提炼出来。在本文中,作者对特征模型理论开展了进一步研究,一是总结出几种特征模型获取的方法,尤其是提出了基于测试法的特征模型获取方法,以及借助于Matlab的仿真分析法。这些方法可以方便地获取被控对象的特征模型,以及在已有高阶模型的基础上,实现模型降阶。二是为了避免特征模型时变参数计算问题,引入了参数区间的概念,将二阶慢时变的线性模型等效成一族二阶线性模型,从而保证特征模型引入预测函数控制后,传统预测函数控制所具有的算法简单、运算速度快等优点不丢失。仿真结果表明,新的算法明显地优于传统的预测函数控制算法。
     由于参数区间的引入使基于新算法的特征多项式系数具有不确定性参数问题,为了便于进行稳定性分析,这里利用了多项式稳定性分析理论,找到了适合于的稳定性分析的方法----多项式稳定性分析理论。借助于DCS平台构建了与生产控制相吻合的实验环境进行了实验研究,实验研究进一步表明新算法比传统预测函数控制算法具有更好的控制性能。实验中采用的DCS为浙江中控JX-300X系统,控制程序采用JX-300X系统所提供的SCX语言编写,借助于JX-300X平台可以十分方便地把控制程序移植到工业生产实际中。
     本文的主要工作概括如下:
     1.对特征模型获取进行了研究,提出了一些特征模型获取的新方法,包括非线性系统的特征模型获取,尤其是利用测试法获取特征模型的方法,以及借助于Matlab的仿真分析法。引入了参数区间,从而使特征模型得以进一步简化。
     2.提出了基于特征模型的预测函数控制算法。新算法可以克服传统预测函数控制算法在模型失配时的有效控制问题。借助于Matlab,对新算法与传统预测函数控制算法针对多种被控对象进行仿真研究,仿真结果表明,新算法明显优于传统预测函数控制算法。
     3.给出了几种针对模型匹配与模型失配的预测函数控制系统的稳定性分析方法,尤其是引入了多项式稳定性分析方法来分析基于特征模型的预测函数控制算法系统的稳定性。
     4.借助于DCS平台构建了与生产控制相吻合的实验环境进行了实验研究,实验研究进一步表明新算法比传统预测函数控制算法具有更好的控制性能。实验中采用的DCS为浙江中控JX-300X系统,控制程序采用JX-300X系统所提供的SCX语言编写,借助于JX-300X平台可以十分方便地把控制程序移植到工业生产实际中。
In the past few decade, the research of model predictive control has gained more and more attention among many experts. With everyone’s effort, many critical results are constantly spoken out. Model predictive control algorithm is obsessed of some advantages like good robustness, flexible ability of constraint solution, relatively higher comprehensive controlling quality, exclusively being adapted to industry process which has input-output constraint, time-delay and time-varying characteristic, reverse characteristic and variable target function, so it is widely accepted by industrial fields and practical results are emerging in an endless stream.
     As the 3rd generation of model predict control, predictive functional control maintains the advantage of model predict control, meanwhile, it strengths regularity of input controlled quantity, improved the speediness and accurateness of response by introducing the concept of base functions, which can effectively decrease calculation quantity of algorithm. However, same as other model predict control, once predict model happens not in line with actual controlled process, it would meet with degrade of controlling performance. Although a series of model mismatch research have been carried out, for example, introducing neural networks model and fuzzy model into predictive function control, this kind of operation can only make predictive model becoming more complicated, increasing online calculation quantity and depriving of all the original merits of predictive functional control like easy algorithm and fast calculation.
     Considering model mismatch problem of predictive functional control, this paper sets the assurance of predictive function control obsessing the strong points of easy algorithm and fast calculation as the starting line of research. Moreover, on the premise of decreasing model mismatch in order to assure maintaining the control characteristic of predictive functional control, this paper raises control scheme of predictive functional control on the basis of the characteristic model.
     The usual form of the characteristic model is a second-order slow time- varying linear model, which is built up under the combined requirements of controlled object dynamic features and control feature. The main features of characteristic model is that it has simple model form and easily practiced, besides, under same input control, object characteristic model and practical object are equivalent.
     The concept of characteristic model is abstracted by Hongxin Wu academician through his long years of theoretic research and project practice. This paper developed a further study on characteristic model theory, firstly, it concluded out several methods of acquiring characteristic models, especially the method on the basis of testing and emulation analysis with the help of Matlab. With these methods we can conveniently obtain characteristic model and realize model reduction. Secondly, in order to escape the calculation problem of time-varying parameters of characteristic model, this paper introduced in a concept of parameter zone and equivalent second-order slow time- varying to a cluster of second- order linear models thus it can assure when introducing characteristic model into predictive functional control, traditional predictive function control would not lose their advantages of easy and fast calculation. The result of simulation reflects that new algorithm is obviously better than traditional one. As the introduction of parameter zone leads characteristic polynomial parameter based on new algorithm having uncertainty parameter problem, in order to carrying out stability analysis, this paper utilized polynomial stability analysis theory to find out a method being good for stability analysis --- polynomial stability analysis theory. With the help of DCS platform, we did research under an experimental environment which fits to production control, experiment research further manifests that new algorithm has better controlling features over traditional one. The adopted DCS in experiment is from SUPCON JX-300X system, control program was made from SCX language provided by JX-300X, under the help of JX-300X platform we can quite easily plant control procedure into industrial production.
     The main contents of this paper are like following:
     1. Research on acquirement of characteristic model, introduction of some new methods of obtaining characteristic model, including the one of non-linear, especially taking advantage of testing method and simulation analysis method under the help of Matlab. The parameter zone is introduced to further simplify characteristic model.
     2. Introduced predictive function control algorithm based on characteristic model. New algorithm can conquer the effective control problem when model mismatch happened. With the help of Matlab, we did simulation research on many kinds of controlled objects by traditional algorithm and new one, the simulation results shows that new algorithm is obviously better than traditional one.
     3. Some methods analyzing on system stability of predictive function control algorithm , which model match and model mismatch, were given. Especially adopting polynomial stability analysis method to analyzing on system stability of predictive function control based on characteristic model algorithm.
     4. Carried on research in a production control oriented experimental environment with the help of DCS platform, experimental research further presents that new algorithm obsesses better control features then traditional one. The adopted DCS in experiment is from SUPCON JX-300X system, control procedure was made from SCX language provided by JX-300X, under the help of JX-300X platform we can quite easily plant control procedure into industrial production.
引文
[1]邵惠鹤.工业过程高级控制[M].上海:上海交通大学出版社,1997.
    [2]俞金寿.工业过程先进控制[M].北京:中国石化出版社,2002.
    [3]何衍庆,俞金寿,蒋慰孙.工业生产过程控制[M].北京:化学工业出版社,2003.
    [4]王树青.先进控制技术及应用[M].北京:化学工业出版社,2003.
    [5]舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1997.
    [6]孙优贤,邵惠鹤.工业过程控制技术(应用篇)[M].北京:化学工业出版社,2006.
    [7] Ryan Zurakowski ,AndrewR.Teel. A model predictive control based scheduling method for HIV therapy[J]. Journal of Theoretical Biology,2006,238:368-382.
    [8] Feipeng Da. Sliding mode predictive control for long delay time systems[J]. Physics Letters A ,2006,348:228-232.
    [9] Lars Imsland,Nadav Bar,Bjarne A .Foss. More effcient predictive control[J]. Automatica ,2005,41:1395-1403.
    [10] W.G.Vieira ,V.M.L.Santos,F.R.Carvalho , J.A.F.R.Pereira ,A.M.F.Fileti. Identifcation and predictive control of a FCC unit using a MIMO neural model[J]. Chemical Engineering and Processing,2005,44:855-868.
    [11] M.Leskens,L.B.M.van Kessel,O.H.Bosgra.Model predictive control as a tool for improving the process operation of MSW combustion plants[J].Waste Management,2005,25:788-798.
    [12] Stevan Dubljevic,Prashant Mhaskar,Nael H.El-Farra,Panagiotis D.Christofides[J]. Predictive control of transport-reaction processes[J].Computers and Chemical Engineering, 2005,29 :2335-2345.
    [13] Liuping Wang ,PeterC.Young. An improved structure for model predictive control using non-minimal state space realisation[J]. Journal of Process Control,2006,16:355-371.
    [14] YiCao. A formulation of nonlinear model predictive control using automatic dierentiation[J].Journal of Process Contro,2005,l15:851-858.
    [15] Min Xu, Shaoyuan Li, Wen-jian Cai ,Lu Lu.Effects of a GPC-PID control strategy with hierarchical structure for a cooling coil unit[J].Energy Conversion and Management,2006,47 :132-145.
    [16] Adrian G.Wills, William P.Heath. Application of barrier function based model predictive control to an edible oil refining process[J].Journal of Control ,2005,15(18):3-200.
    [17] Dennis Van Hessem ,Okko Bosgra. Stochastic closed-loop model predictive control of continuous nonlinear chemical processes[J].Journal of Process Control,2006,16:225-241.
    [18] Nóra Moldoványi,Béla G. Lakatos, Ferenc Szeifert. Model predictive control of MSMPR crystallizers[J]. ]ournal of Crystal Growth,2005,275:c1349-c1354.
    [19] Prashant Mhaskar, Nael H.El-Farra,Panagiotis D.Christofides.Brief paper Robust hybrid predictive control of nonlinear systems[J]. Automatica,2005,41:209-217.
    [20] Ming He ,Wen-Jian Cai, Shao-Yuan Li. Multiple fuzzy model-based temperature predictive control for HVACsystems[J].Information Sciences ,2005,169:155-174.
    [21] Farouq S.Mjalli. Neural network model-based predictive control of liquid-liquid extraction contactors[J].Chemical Engineering Scienc,2005, 60:239-253.
    [22] A.Sanchez-Lopez,G.Arroyo-Figueroa,A.Villavicencio-Ramirez.Advancedcontrol algorithms for steam temperature regulation Of thermal power plants[J].Electrical Power and Energy Systems,2004,26:779-785.
    [23] S.Gros,B.Srinivasan,D.Bonvin.Robust predictive control based on neighboring extremals[J].Journal of Process Contro ,2006,l16:243-253.
    [24] IsabelR.F.Guiamba ,Michael Mulholland.Adaptive Linear Dynamic Matrix Control appliedTo an integrating process[J]. Computers and Chemica lEngineering,2004,28:2621-2633.
    [25] Daniel R.Saffer ,Francis J.Doyle.Analysis of linear programming in model predictive control[J]. Computers and Chemical Engineering,2004,28:2749-2763.
    [26] Ning Li ,Shao- Yuan L i ,Yu-Geng Xi. Multi- model predictive control based on the Takagi-Sugeno fuzzy models: a case study[J]. Information Sciences,2004,165:247-263.
    [27] L.F.Mendonca, J.M.Sousa, J.M.G. Sádo Costa. Optimization problems in multivariable fuzzy predictive control[J]. International Journal of Approximate Reasoning ,2004,36:199-221.
    [28] L.Magni,R.Scattolini .Stabilizing model predictive control of nonlinear continuous time systems[J]. Annual Reviews in Control ,2004,28:1-11.
    [29] Leonidas G.Bleris, Jesus Garcia ,Mayuresh V.Kothare ,Mark G. Arnold .Towards embedded model predictive control for System-on-a-Chip applications[J].Journal of Process Control ,2006,16:255-264.
    [30] Leylaǒzkan, Mayuresh V. Kothare. Stability analysis of amulti-model predictive control algorithm With application to control of chemical reactors [J].Journal of Process Control ,2006,16:81-90.
    [31] HuiShao, KenzoNonami, Atytus Wojtara, Ryohei Yuasa, Shingo Amano,Daniel Waterman. Neuro-fuzzy position control of demining tele-operation system based on RNN modeling[J]. Robotics and Computer-Integrated Uanufacturing ,2006,22:25-32.
    [32] Sachin C.Patwardhan,Seema Manuja,Shankar Narasimhan,Sirish L.Shah .From data to diagnosis and control using generalized orthonormal basis flters[J]. PartⅡ:Model predictive and fault tolerant control.Journal of Process Control ,2006,16:157-175.
    [33] M.A.Abdelghani-Idrissi ,M.A.Arbaoui ,L.Estel ,J.Richalet. Predictive functional control of a counter current heat exchanger using convexity property[J]. Chemical Engineering and Processing,2001,40:449~457.
    [34]吴宏鑫,沈少萍.PID控制的应用与理论依据[J].控制工程,2003,10(1):37-42.
    [35]孙优贤,褚健.工业过程控制技术(方法篇)[M].北京:化学工业出版社,2006.
    [36] D.limon,T.Alamo,E.F.Camacho .Brief paper Enlarging the domain of attraction of MPC controllers[J].Automatica,2005,41:629-635.
    [37] Long Cheng, Zeng-Guang Hou,Min Tan. Constrained multi-variable generalized predictive control using a dual neural network[J].Neural Comput and Applicatin, 2007,16:505-512.
    [38] Marco A.Rodrigues,Darci Odloak. An infinite horizon model predictive control for stable and integrating processes[J]. Computers and Chemical Engineering,2003,27:1113-1128.
    [39] Frode Martinsen ,Lorenz T.Biegler ,Bjarne A.Foss .A new optimization algorithm with application to nonlinear MPC[J]. Journal of ProcessControl, 2004,14:853-865.
    [40] Ognjen Marjanovic,Barry Lennox. Infinite horizon model predictive control with no terminal constraint[J]. Computers and Chemical Engineering,2004,28:2605-2610.
    [41] Ramesh Kadali ,Biao Huang, Anthony Rossiter. A data driven subspace approach to predictive controller design[J]. Control Engineering Practice ,2003,11:261-278.
    [42] Yiyang Jenny Wang,James Bawlings. A new robust model predictive control method I:theory and computation[J]. Journal of Process Control,2004,14:231-247.
    [43] Yiyang Jenny Wang,James Bawlings. A new robust model predictive control methodⅡ:examples[J]. Journal of Process Control,2004,14:249-262.
    [44] Ania Lussón Cervantes,Osvaldoe E.Agamennoni, JoséL. Figueroa. A nonlinear model predictive control system based on Wiener piecewise linear models[J]. Journal of Process Control,2003,13:655-666.
    [45] Sarimveis H, Bafas G. Fuzzy model predictive control of non-linear processes using genetic algorithms[J]. Fuzzy Sets and Systems,2003,139:59-80.
    [46] K.K.TAN,T.H.LEE,S.N.HUANGF.M.LEU. Adaptive-Predictive Control of aClass of SISONonlinear Systems[J]. Dynamics and Control,2001,11:151-174.
    [47]叶化,赵曜.基于阶跃响应的模糊预测函数控制[J].计算机仿真,2007,24(1):167-169.
    [48]苏成利,李平,张日东等.预测函数控制在焦化加热炉氧含量控制中的应用[J].石油化工自动化,2007,2:33-36.
    [49]苏成利,张日东,张健明等.焦化加热炉出口温度的预测函数控制[J].化工自动化及仪表,2007,34(1):27-32.
    [50] Po-Feng Tsai, Ji-Zheng Chu,Shi-Shang Jang,Shyan-Shu Shieh.Developing a robust model predictive control architecture through regional knowledge analysis of artifcial neural networks[J]. Journal of Process Control,2002,13:423-435.
    [51] Gabriele Pannocchia, James B.Rawlings. Disturbance Models for Offset-Free Model-PredictiveControl[J]. AIChE Journal ,February,2003,49(2):2-11.
    [52] F.M sahl ,R.ben Abdennour and M.Ksouri. Experimental Nonlinear Model Based Predictive Control for a Class of Semi-Batch Chemical Reactors[J].Int J Adv Manuf Technol,2002,20:459-463.
    [53] D.Odloak. Extended Robust Model Predictive Control[J]. American Institute of Chemical Engineers, 2004,50(8 ):1824-1836.
    [54] Haralambos Sarimveis, George Bafas. Fuzzy model predictive control of non-linear processes using genetic algorithms[J].Fuzzy Sets and Systems,2003,139:59-80.
    [55] IGOR SKRJANC and DRAGOMATKO. Fuzzy Predictive Functional Control in the State Space Domain[J].Journal of Intelligent and Robotic Systems ,2001,31: 283-297.
    [56] Jing Ou, R.Russell Rhinehart. Grouped neural network model-predictive control[J]. Control Engineering Practice 2003, 11:723-732.
    [57] Emad Ali. Heuristic on-line tuning for nonlinear model predictive controllers using fuzzy logic[J].Journal of Process Contro,2003,l3:383-396.
    [58] Nael H.El-Farra,Prashant Mhaskar and Panagiotis D.Christodes. Hybrid predictive control of nonlinear systems:method and applications to chemical processes[J].Int.J.Robust Nonlinear Control 2004,14:199-225.
    [59] Kee-Youn Yoo and Hyun-KuRhee.LF-LPV Input/Output Data-Based Predictive Controller Design for Nonlinear Systems[J]. AIChE Journal September 2002 ,48(9 ):1981-1990.
    [60] BiaoHuang ,Edgar C.Tamayo. Model validation for industrial model predictive control systems[J].Chemical Engineering Science,2000,55:2315-2327.
    [61] MARKO LEPETIC ,IGOR SKRJANC ,HECTOR G.CHIACCHIARINI and DRAGOMATKO. Predictive Functional Control Based on Fuzzy Model:Comparison with Linear Predictive Functional Control and PID Control[J]. Journal of Intelligent and Robotic Systems 2003,36: 467-480.
    [62] GUIDO PONCIA and SERGIO BITTANTI. Multivariable model predictive control of a thermal power plant with built-in classical regulation[J] .INT. J. CONTROL, 2001,74 (11 ):1118-1130.
    [63] Jin-Quan Huang,F.L.Lewis. Neural-Network Predictive Control for Nonlinear Dynamic Systems With Time-Delay[J].IEEE Transzctions on Neural Networks,2003,14(2):377-389
    [64] B. KOUVARITAKIS, M. CANNON and J. A. ROSSITER. Non-linear model based predictive control[J]. INT. J. Control, 1999 ,72( 10) :919-928.
    [65] MATTHEWJ.TENNY, STEPHENJ.WRIGHT, JAMESB.RAWLINGS. Nonlinear Model Predictive Control via Feasibility-Perturbed Sequential Quadratic Programming[J]. Computational Optimization and Applications,2004,28:87-121.
    [66] Ashraf AL-Ghazzzwi, Emad Ali, Adnan Nouh, Evanghelos Zafiriou.On-Line tuning strategy for model predictive controllers[J].Journal of Process ,2001,11:265-284.
    [67] F.Di Palma ,L.Magni. A multi-model structure for model predictive control[J]. Annual Reviews in Control,2004,28:47-52.
    [68]俞金寿.信息科学与工程[M].北京:科学出版社,2007,127-150.
    [69] Richalet J.and Rault A.Model predicyive heuristic control:Application to Idustrial Process[J].Automatica,1978,14(1):413-428.
    [70] Rouhani R.and Mehra R.K.Model Algorithmic Control(MAC):Basic Theorytical Properities[J].Automatica,1982,18(4):401-414.
    [71] Culter C.R.and Ramaker B.L.Dynamic Matrix Control-A Computer Control Algorithm[J].ACC,San Fancisco,WP5-B 1980.
    [72] Clake D.W.Generlized Predictive Control-Part 1, Basic Algorithm[J]. Automatica,1987,23(2):137-148.
    [73] Clake D.W.Generlized Predictive Control-Part 2, Extention and Interpretations[J]. Automatica,1987,23(2):149-160.
    [74] Lelic M.A.and Zarrop M.B.Generalized Pole-placement Self-tunning Controller, Part 1and Part 2[J].Int.J.Control, 1987,46(2): 547-601.
    [75] Ydstic B.E.Theory and Application of an extended horizon self-tunning controller[J].AICHE J, 1985,31(11):1771-1780.
    [76] Kwon W.H.and Pearson A. E. On feedback stabilization of time varying discrete time systems,IEEE Trans[J]. Automatic Control,1978,23(6):497-481.
    [77] S. Joe Qin, Thomas A.Badgwell. A survey of industrial model predictive control technology[J].Control Engineering Practice,2003,11:733-764.
    [78]张化光.模糊广义预测控制及其应用[J].自动化学报,1993,19(1):9-17.
    [79]李静如.模糊预测控制应用研究[J].控制理论与应用,1992,9(3):283-286.
    [80]诸静,黄抗美.复杂系统的广义预测模糊控制[J].电工技术学报,1997,12(2):7-12.
    [81] Oliver Hacker,Oliver Nelles,Olaf Moseler.Nonlinear system identification and predictive control of a heat exchanger based on local fuzzy models[J].In:proceedings of the ACC,1997:3294-3298.
    [82]焦克华,巩军民.基于T-S模型的预测控制在SOFC中的应用[J].自动化与信息工程,2007,3:1-4.
    [83] Celal Batur,Vicken Kasparian. Predictive fuzzy expert controllers[J]. Computer int Engng,1991,20(2):199-209.
    [84] TakagiT ,SugenoM .Fuzzy identification of systems and its applications to modeling andcontrol[J].IEEE Transactions on Systems,Man,and Cybernetics,1985,15:116-132.
    [85] Tanaka K ,Sugeno M .Stability analysis and design of fuzzy control systems[J].Fuzzy Sets and Systems,1992,45:135-156.
    [86] Saso Blazic.Igor Skrjane.Design and stability analysis of fuzzy model-based predictive control-a case study[J].J Intell Robot Syst,2007,49:279-292.
    [87] Liu B,Shen Q,Su H Y,Chen J.A nonlinear predictive control algorithm based on fuzzy on-line modeling and discrete optimization[C].Proceedings of the IEEE Interational Conference on Systems,Man and Cyberntics,2003.816-822.
    [88] Martin Fischer,Martin Schmidt.Nonlinear predictive control based on the extraction of step response models frpm Takagi-Sugeno fuzzy system[J].In:proceedings of ACC,1997.2878-2882.
    [89]刑宗义,胡维礼,贾利民.基于T-S模型的模糊预测控制研究[J].控制与决策,2005,20(5):495-499.
    [90]王寅,荣冈,王树青.给予T-S模糊模型的非线性预测控制策略[J],控制理论与应用,2002,19(4):599-603
    [91] Babuska R. Fuzzy modelling: a control engineering perspective[J]. In:proceedings of 1995 IEEE conference on fuzzy system. ,1995,4:1897-1902.
    [92] B. P Graham,R.B Newell. Fuzzy identification and control of a liquid rig[J]. Fuzzy sets and system,1998,26:255-273.
    [93] Bruce E,Postlewaite. Building a model-based fuzzy controller[J].Fuzzy sets and systems.1996,79:3-13
    [94] J.Valente de Oliveira, J.M Lemos.Long-range predictive adaptive fuzzy-relational control[J].Fuzzy sets and systems,1995,70:337-357.
    [95] Bourke M M,Fisher D G. Identification Algorithms for Fuzzy Relational Matrices, Part 1: Non-optimizing Algorithms[J]. Fuzzy Sets and Systems, 2000,109:305-320.
    [96] Bourke M M,Fisher D.G. Identification Algorithms for Fuzzy Relational Matrices, Part 2: Optimizing Algorithms[J]. Fuzzy Sets and Systems, 2000,109:321-341.
    [97]李少远,李柠.复杂系统的模糊预测控制及其应用[M].北京:科学出版社,2003.
    [98]刘楚平,秦中广等.基于神经网络的过程系统动态建模[J].桂林工学院学报,2000,20(4):415-417.
    [99]陈博,钱锋,刘漫丹.一种基于BP网络的预测控制算法及其应用[J].华东理工大学学报,2003,29(4):400-404.
    [100]禹柳飞,张国云.基于BP神经网络预报的动态矩阵预测控制[J].湖南理工学院学报,2004,17(1):53-55.
    [101]宋宜斌,王培进.一种基于RBF神经网络的预测器模型及其研究[J].计算机工程与应用,2004,6:105-107.
    [102] J.S.Albus. A new approach to manipulator control:cerebellar model articulation controller(CMAC),Trans.ASME[J].J.Dynamics System Measure and Control,1975,97(2):220-227.
    [103]陈博,钱锋,刘漫丹.一种基于BP网络的预测控制算法及其应用[J].华东理工大学学报,2003,29(4):400-404.
    [104] Huang D P,Van Cauwenberghe A R. Neural network-based multiple feedback long-range predictive control[J]. Neurocomputing,1998,18(1):127-139.
    [105]张泉灵,王树青.基于神经网络的非线性预测函数控制[J].浙江大学学报,2001,35(5):497-501.
    [106]刘贺平,张兰玲,孙一康.基于多层局部回归神经网络的多变量非线性系统预测控制[J].控制理论与应用,2001,18(2):27-33.
    [107] P.H.Sorensen, M.Norgaard,O.Ravn. Implementation of Neural Network Based Nonlinear Predictive Control[J]. Neurocomputing,1999,28(1):37-51.
    [108] J.S.Donat. Neural Net Based Model Predictive Control[J]. Int. J. Control, 1991,54(6):1452-1486.
    [109] P.M.Mills,A.Y.Zomaya,M.O.Tade. Adaptive Model-Based Control Using Neural Networks[J]. Int. J. Control,1994,60(6):1163-1192.
    [110]张兴会,杜升之.基于遗传算法的有约束非线性预测控制[J].仪器仪表学报,2003,24(4增刊):556-557.
    [111]林林,申东日,陈义俊.基于最优保留遗传算法的非线性模糊预测控制[J].计算机仿真,2003,20(12):77-79.
    [112] Richalet J,Doss S A A ,Arber C,et al. Predictive functional control: applications to fast and accurate robots[A].In:Isermann R ed. Automatic Control 10th Triennial World Congress of IFAC[C],Oxford:Pergamon Press, 1988,251-258.
    [113] Kuntze H B. Jacubasch A. Richalet J. et al. On the predictive functional control of an elastic industrial robot[C] // 25th IEEE Conference on Decision and Control. Piscataway,USA:IEEE,1986,1877-1881.
    [114] Rawlings J B,Meadows E S ,Muske K .Nonlinear model predictive control:A tutorial and survey[A].Proceedings of IFACAD CHEM[C],Japan,1994.
    [115] Allgower F, Badgwell T A, Qin S J, Rawlings J B, Wright S J. Nonlinear predictive control and moving horizone stimation-anintroductory overview [A].In Frank P M (Eds.) ,Advancesin control:high lights of ECC'99,Berlin:Springer,1999.
    [116] Norquay S J ,Pa lazoqlu A ,RomaqnoliJ A .Model predictive control based on Wien ermodels[J].Chemical Engineering Science,1998,53 (1):75-84.
    [117] Doyle F J, Ogunnaike B A, Pearson R K. Nonlinear model-based control using second-order Volterra models[J].Automatica,1995,31(5):697-714.
    [118]黄道平,朱学峰.基于Hammerstein广义模型的多变量非线性预测控制[J].暨南大学学报,1998,9(1):13-19.
    [119]李嗣福,刘勇,刘禾.基于Laguerro函数模型的预测控制算法[J].中国科技大学学报, 1999,29 (3):281-288.
    [120]姚新元,钱积新.一种双线性系统的广义预测控制算法[J].浙江大学学报,1997,31(2):231-235.
    [121]张泉灵,王树青.基于ARMAX模型的自适应预测函数控制[J].信息与控制,2000,29(5):431-436.
    [122]张泉灵,王树青.基于Hammerstein模型的非线性预测函数控制[J].浙江大学学报:工科版,2002,36(2):119-122.
    [123] Lepetic M. Skrjanc I. Chiacciarini H G. et al. Predictive Functional control based on model: magnetic suspension system case study[J]. Engineering Applications of Artificial Intelligence,2003,16:425-430.
    [124]苏成利,王树青.基于T-S模型的自适应模糊预测函数控制[J].浙江大学学报:工科版,2007,41(3):390-395.
    [125]张日东,王树青.一类非线性系统的自适应预测函数控制[J],控制与决策,2007,22(6):711-715.
    [126] Han Pu,Yu Ping,Wang Guoyu,et al. Predictive functional control in rhermal power unitload system[J], Transactions of China Electrotechnical Society,2004,19(10):47-52.
    [127] Oblak S. S krjanc I. Multivariable fuzzy predictive control of MIMO nonlinear system[J], IEEE Computer Society Press,2005:1029-1034.
    [128] Miao Q,Wang S F.Nonlinear model predictive control based on support vector regression[C].In: Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing,2002,1657-1661.
    [129] Ren Y,Cao G Y,Zhu X J.Predictive control of proton exchange membrane fuel cell(PEMFC) based on support vector regressin machine[C].In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou,2005,18-21.
    [130] Li X,Cao G Y,Zhu X J.Modeling and control of PEMFC based on least squares support vector regressin machines[J].Ebergy Conversion and Management,2006,47(7):1032-1050.
    [131] Zhang W M,Pi D Y,He G L,Sun Y X. SVM with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive control[J].Chinese Journal of Chemical Engineering,2005,13(3):373-379.
    [132] Peng L,Fisher G and Shah S L. Tuning generalized predictive control using a pole-placement criterion[C].1992 ACC/TPB.2391-2395.
    [133] Irving E,Falionwer C M and Fonte C.Adaptive generalized predictive control with multiple reference model[C].2nd IFAC Workshop on Adaptive Systems in Control and Signal Processing,Lund,1986.
    [134] Kon E K.Generalized pole placement for systems requiring fast sampling[C].1992 ACC/WM7,713-714.
    [135] Gorez R,Wertz V and Zhu K Y.On a generalized predictive controlalgorithm[J].System and Control Letters.1987,9:369-377.
    [136] Rossiter J A and Kouvaritakis B.Constrained stable generalized predictive control[J].IEE Proceedings-D.1993,140(4):243-254.
    [137] Dion J M,Dugard Land Tri N M.MIMO adaptive generalized predictive control with input-output constrains[C].IFAC Adaptive Control of Chemical Processes Copenhagen.Denmark,1988,15-20.
    [138] Camacho E F.Constrained generalized predictive control[J].IEEE Trans on Automatic Control,1993,38(2):327-332.
    [139]王朝辉,褚建,苏宏业等.一套面向过程工业的先进控制软件包及其应用[J].测控技术,2000,19(2):24-27.
    [140] Ogata K,Fujii S and Hayakawa Y.Multivariable generalized predictive control with multirate sampling model[J].Transactions of the Society of Instrument and Control Engineers,1993,29(1):39-45.
    [141] Ohshima M,and Hashimoto I.Multi-rate multivariable model predictive control and its application to a polymerization reactor[J].International Journal of Control,1994,59(3):731~742
    [142] Scatolini R. Multi-rate self-tuning predictive controller for multivariable systems[J].Int Journal of Systems Science,1992,23(8):1347-1359.
    [143]潘红华,胡家升,王建明等.交流伺服系统串级预测函数控制的仿真研究[J].系统仿真学报,2003,15(6):852-855.
    [144]王国玉,韩璞,王东风等.PFC-PID串级控制在主汽温控制系统中的应用研究[J].中国电机工程学报,2002,22(12):50-55.
    [145] H.Bouhenchir,M.Cabassud,M.V.Le Lann.Predictive functional control for the temperaturecontrol of a chemical batch reactor[J].Computer and Chemical Engineering 2006,30:1141-1154.
    [146]张智焕,王树青.基于多模型切换的大范围预测函数控制[J].浙江大学学报(工学版),2002,36(3):290-292.
    [147]吴建国,张培建.基于双模型预测函数控制的PVC聚合釜温度系统[J].南京理工大学学报,2005,29(4):441-445.
    [148] Seki H.Ogawa M.and Ooyama S. Industrial Application of a Nonlinear Model Predictive Control to Polymerization Reactor[J]. Control Engineering Practice,2001,9(8):819-828.
    [149]王文新,潘立登,孔德宏等.IMC-PID鲁棒控制器设计及其在蒸馏装置上的应用[J].北京化工大学学报,2004,31(5):93-96.
    [150]龚剑平,王连伟,游浩.用于二阶加纯滞后过程的IMC-PID控制器的研究[J].北京化工大学学报,1999,26(2):59-62.
    [151]吴宏鑫,解永春,李智斌等.基于对象特征模型描述的智能控制[J].自动化学报. 1999.25(1):9-17.
    [152]吴宏鑫,王迎春,邢琰.基于智能特征模型的智能控制及其应用[J].中国科学(E辑). 2002.32(6):805-816.
    [153]吴宏鑫.智能特征模型和智能控制[J].自动化学报. 2002.28(增刊) .
    [154]吴宏鑫,王颖,解永春.非线性系统的特征建模与控制方法[J].控制工程,2002,6:1-7.
    [155]孙庆,吴宏鑫,解永春.一种基于对象特征的自适应模糊控制[J].自动化学报.1999,25(1):122-126.
    [156] Reza M S,Pota H R,Petersen I R.Spatial blanced model reduction for flexible structures[J] .Atomatica,1999,35(2):267-277.
    [157]梁伟,施颂掓,王孟效.两类基于阶跃响应和脉冲响应的模型降阶方法[J].应用科学学报,2002,20(3):263-266.
    [158] Liu W Q,Sreeram V,Teo K L.Model reduction for state-space symmetric systems[J].System and Control Letters,1998,34(4):209-215.
    [159] Bultheel A,Barel M.Pade techniques for model reduction in linear system theory[J].Journal of Computational and applied Mathmatics,1986,14(3):401-438.
    [160] Hutton M F.Routh approximation for high-order linear systems[J].Proceedings of the Ninth Allerton Conference,1971,160-189.
    [161] Hwang C,Lee Y. Multi-frequency Pade approximation via Jordan continued-fraction expansion[J].IEEE Tansactions on Atomatic Control,1989,34(2):444-446.
    [162] Xue D Y,Atherton D P.A suboptimal reduction algorithm for linear systems with a time delay[J].International Journal of Control,1994,60(2):181-196.
    [163]吴宏鑫,王颖,解永春.非线性黄金分割自适应控制.宇航学报[J].2002,23(6):1-8.
    [164]王树青.工业过程控制工程[M].北京:化学工业出版社,2002.
    [165]李少远,蔡文剑.工业过程辨识与控制[M].北京:化学工业出版社,2005.
    [166]陈永春,刘爱伦.一种PID条件下的闭环辨识方法[J].石油化工自动化,2004,3:22-24.
    [167]张彬,杨为民,吴智勇等.乙苯催化脱氢制苯乙烯的预测函数控制及其稳定性分析[J].化工学报,2008,59(7):1640-1645.
    [168] Kharitonov V L.Asymptotic stability of an equilibrium position of a family of system of linear differential equations[J].Differential Equations,1979,14(11):2086-2088.
    [169] Kharitonov V L.Robust stability analysis of time delay systems:A survet[J].Annual Reviews on Control,1999,23:185-196.
    [170]洪兰华.颗粒饲料制粒前调质的机理及操作[J].广东饲料,2001,10(4):25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700