用户名: 密码: 验证码:
纳米复合PZT压电陶瓷的制备及其力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合陶瓷是指纳米相颗粒均匀、弥散地分布在陶瓷基体中形成的复合材料。陶瓷结构纳米化可使其力学性能显著提高,突出表现在:断裂强度、断裂韧性和耐高温性能三个方面,同时还能提高材料的硬度、弹性模量、Weibull模数、并对热导率、热膨胀系数、抗热震性等产生有益的影响。
     但是,压电陶瓷的结构纳米化对其性能的影响尚缺乏研究。本文利用Pb(NO_3)_2、Zr(NO_3)_4-5H_2O、Ti(OC4_H_9)_4作为原料,NaOH作为矿化剂,通过溶胶-凝胶法结合水热处理制备了组成近于准同型相界(MPB)的Pb(Zr_0.52Ti_0.48)O_3纳米晶(PZT)粉体并利用传统氧化物烧结法制备组成相同的PZT粉体。通过DSC/TGA、FT-IR、XRD和SEM对合成粉体进行了分析和表征。由此制备了均匀组成和结构的普通和纳米复合PZT陶瓷,并对其弹性模量、弯曲强度、硬度和断裂韧性等力学性能进行了测试分析;且利用SEM分析了PZT陶瓷的断口形貌及断裂方式;又通过Weibull统计评价了PZT陶瓷的弯曲强度的分散性;还通过R曲线模拟分析,研究了极化对PZT陶瓷强度的影响。
     DSC/TGA、FT-IR、XRD和SEM结果表明:溶胶-凝胶法制备的PZT相在220℃开始出现,270℃水热处理2h合成了纯相纳米晶PZT粉体,粉体的晶粒大小为25nm左右。
     纳米复合PZT压电性能测试结果表明其机电耦合系数,介电常数和压电系数等压电性能指标均不低于普通PZT陶瓷。力学性能测试结果表明:纳米复合PZT陶瓷的弹性模量较普通PZT陶瓷有明显提高,约提高36%;纳米复合PZT陶瓷的弯曲强度较普通PZT陶瓷有明显提高,约提高29%,纳米复合PZT强度的升高主要是晶界强化导致的结果;不同载荷下,纳米复合PZT陶瓷硬度均高于普通PZT陶瓷的硬度,并且两种材料都存在压痕尺寸效应;在压痕载荷5Kg条件下,纳米复合PZT陶瓷的断裂韧性较普通PZT陶瓷有明显提高,约提高50%左右;极化状态纳米复合PZT陶瓷的断裂韧性存在各向异性,平行于极化方向的断裂韧性值高于另外两个垂直于极化方向断裂韧性值,并认为这种断裂韧性的各向异性是由极化PZT陶瓷的电畴结构及力致畴变现象造成的。对弯曲强度的Weibull统计分析表明:在试验样品数为26的情况下,普通PZT陶瓷的Weibull模数为3.59,而纳米复合PZT陶瓷材料Weibull模数为8.167,说明纳米复合PZT陶瓷材料弯曲强度波动范围较小。断口的SEM与分形分析表明:普通PZT陶瓷在快速扩展区的断裂方式是沿晶断裂,纳米复相PZT陶瓷是穿晶断裂,穿晶断裂的断口分形维数高于沿晶断裂,分形维数与断裂韧性成正比例关系,这明显表明压电陶瓷微观结构纳米化对断裂韧性的有益影响。R曲线模拟分析表明:极化方向的裂纹扩展阻力随着裂纹深度的增加而增加,体现了畴致偏转对断裂的阻碍作用。
     综上所述,本课题研究表明,PZT压电陶瓷结构的纳米化,可以实现其在压电性能不变或稍有提高的情况下,大幅度地提高力学性能。换言之,结构纳米化,可以在保证PZT压电陶瓷原有性能参数的条件下,显著地改善其力学性能。因此,可以预期,PZT压电陶瓷的结构纳米化将显著改善其力学性能,延长陶瓷制件的服役寿命。
Nano-phase composite ceramic is a composite material which contains nano-phase particles in homogeneous dispersion state. Nano-phase composite ceramic can enhance its mechanical properties which mainly express in three points: fracture strength, fracture toughness and high temperature resistance. And it can enhance hardness, elastic modulus, Weibull modulus of materials; also can produce higher heat conductivity, coefficient of thermal expansion and heat-shock resistance.
     But now there is lacking in the researches of nanotechnology of piezoelectric ceramic structure effecting its properties. To prepare PZT nano-crystal powders with a composition of Pb(Zr_(0.52) Ti_(0.48))O_3,which is near the morphotropic phase boundary (MPB), the raw materials used were reagent grade lead nitrate [Pb(NO_3)_2],zirconium nitrate hydrate [Zr(NO_3)_4·5H_2O], tetra-butyl titanate [Ti(OC_4H_9)_4],using NaOH as the mineralizes, which use sol-gel method with hydro-thermal treating. And it use conventional oxide sintering method to prepare PZT powders with a identical composition. Powders are characterized by DSC/TGA, FT-IR, XRD, and SEM analysis. Common and nano-phase composite PZT ceramics were prepared which owe homogeneous composition and structure using powders, testing and analyzing elastic modulus, flexural strength, hardness and fracture toughness of PZT ceramics. SEM test of PZT ceramics fracture analyses its fracture mode. Weibull statistics evaluates flexural strength dispersibility of PZT ceramics. It also studies that polarization impacts strength in different direction with R curve analysis.
     DSC/TGA, FT-IR, XRD, and SEM results indicate: PZT nano-phase started to form at as low as 220℃,while phase-pure PZT powders were obtained at 270℃for 2h, its grain size is about 25nm.
     The piezoelectric testing results of nano-phase composite PZT ceramics indicate that performance date of electromechanical coupling coefficient, dielectric constant and piezoelectric coefficient is not below that of common PZT ceramics. The test results of mechanical properties indicate: elastic modulus is much higher than that of common PZT ceramics, with increasing about 36%. Flexural strength of nano-phase composite PZT ceramics is much higher than that of common PZT ceramics, with increasing about 29%, as the result of grain boundary strengthening. Hardness of nano-phase composite PZT ceramics is much higher than that of common PZT ceramics at different indentation loading, with indentation size effect. Fracture strength of nano-phase composite PZT ceramics is much higher than that of common PZT ceramics at 5Kg indentation loading, with increasing about 50%. Fracture toughness of nano-phase composite PZT ceramics in polarization state has anisotropy, with that of parallel polarization direction higher than the vertical, owing to its ferroelectric domain structure and mechano-domain transformation. Weibull statistics analysis of flexural strength indicates: common PZT ceramic has a Weibull modulus m=3.59, while nano-phase composite PZT ceramic with a Weibull modulus m=8.167, it also expresses flexural strength of nano-phase composite PZT ceramic fluctuates in a narrower range. SEM test and fractal analysis of PZT ceramics fracture morphology indicate that common PZT ceramic fracture mode is intercrystalline cracking, while nano-phase composite PZT ceramic is intergranular cracking and its fractal dimensionality is higher than that of the intercrystalline,its fractal dimensionality is direct proportional to fracture toughness. It obviously indicates nanotechnology of piezoelectric ceramic structure produces good affecting on its fracture toughness. R curve analysis indicates that resisting force of crack growth in polarization direction increases with crack size increasing, owing to ferroelectric domain deflection.
     To summarize, this study revealed that nanotechnology of piezoelectric ceramic structure can enhance its mechanical properties greatly on the condition of piezoelectric property is unchanged or slightly enhanced.
     In brief, nanotechnology of ceramic structure can enhance its mechanical properties greatly, ensuring intrinsic property parameters of piezoelectric ceramic. Therefore we can anticipate that nanotechnology of piezoelectric ceramic structure can enhance its mechanical properties greatly and can prolong service life of its products.
引文
[1] 曲远方编.功能陶瓷及应用.北京:化学工业出版社,2003:327-329页
    [2] B.贾菲等著.压电陶瓷.林声和译.北京:科学出版社,1979:1-3页
    [3] 钟维烈著.铁电体物理学.北京:科学出版社,1996:366-368页
    [4] 张福学等编.现代压电学(中册).北京:科学出版社,2002:1-4页
    [5] 田中哲郎.罔崎等著.压电陶瓷材料.陈俊彦译.北京:科学出版社,1982:1-5页
    [6] B.JaffeR,S.Roth,S.Mrzullo.Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics.Journal of Application Physics.1954,25:809-810P
    [7] Y.Matsuo,H.Sasaki Formation of lead zirconate-lead titanate solid solutions.Journal of American Ceramic Society.1965,48(6): 289-291P
    [8] 李龙士,张孝文等.低温烧结PZT陶瓷及其在独石压电变压器中的应用.中国电子学会电子元器件无机介质材料专业组第二次技术交流会论文集.浙江温州.1986:423-427页
    [9] B.V.Hiramath,A.I.Kingon,J.V.Biggers.Reaction sequence in the formation of lead zirconate-lead titanate solid solutions.1983,66(1):229-231P
    [10] A.I.Kingon,S.K.Streiffer.Ferroelectric films and devices.Current Opinion.Solid State Material.Science.1999,4(1): 39-44P
    [11] 钱逸泰编著.结晶化学导论.合肥:中国科学技术大学出版社.2002:168-170页
    [12] G Shirane,R.Pepinsky,B.C.Frazer.X-ray and neutron diffraction study of ferroelectric PbTiO_3.Acta Crystall.1965,9: 131-140P
    [13] E.R.Leite,M.Cerqueira,L.A.Perazoli,et al.Mechanism of phase formation in Pb(ZrxTi_(1-x))O_3 synthesized by a partial oxalate method.Journal American Ceramic Society.1996,79(6):1563-1568P
    [14] S.S.Chandatreya,R.M.Fulrath,J.A.Pask.Reaction mechanism in the formation of PZT solid solution.Journal American Ceramic Society.1981,64(7): 422-455P
    [15] K.Kakegawa,J.Mohri,T.Takahashi,et al.A compositional fluctuation and properties of Pb(Zr,Ti)O_3.Solid State Commun.1977,24(11):422-425P
    [16] 田玉明,郝虎在.改进的共沉淀法制备Pb(Zr,Ti)O_3压电陶瓷粉体研究.沈阳化工学院学报.2003,01:48-52页
    [17] B.Guiffard,M.Troccaz.Low temperature synthesis of stoichiometric and homogeneous lead zirconate titanate powder by oxalate and hydroxide coprecipitation.Materials Research Bulletin.1998,33(12): 1759-1768P
    [18] P.Jha,P.R.Aryal,A.K.Ganguli.Dielectric properties of lead zirconium titanates with nanometer size grains synthesized by the citrate precursor route.Materials Chemistry and Physics.2003,82: 355-361P
    [19] M.Traianidis,C.Courtois,A.Leriche.Mechanism of PZT crystallisation under hydrothermal conditions development of a new synthesis route.Journal of the European Ceramic Society.2000,20: 2713-2720P
    [20] Seung Beom Cho,M.Oledzka,E.Richard.Hydrothermal synthesis of acicular lead zirconate titanate (PZT).Journal of Crystal Growth.2001,226:313-326P
    [21] R.N.Das,A.Pathak,S.K.Saha,et al.Preparation,characterization and property of fine PZT powders from the polyvinyl alcohol evaporation route.Materials Research Bulletin.2001,36: 1539-1549
    [22] L.S.Ee,J.Wang,S.C.Ng,et al.Low temperature synthesis of PZT powders via microemulsion processing.Materials Research Bulletin.1998,33(7): 1045-1055P
    [23] Z.J.Xu,R.Q.Chu,G.R.Li,et al.Preparation of PZT powders and ceramics via ahybrid method of sol-gel and ultrasonic atomization.Materials Science and Engineering.2005,117: 113-118P
    [24] 孙华君,陈文,徐庆等.以溶胶.自燃烧法合成PZT为基制备PMZN压电陶瓷.硅酸盐通报.2004,5:102-105页
    [25] S.j.Lee,B.Jun.Preparation of ultrafine PZT powders by ultrasonic spray combustion synthesis (uSCS).Ceramics International.2005,31:53-56P
    [26] 孙华君,刘晓芳,石汝军.压电陶瓷超细粉末湿化学法制备工艺进展.山东陶瓷。2002,25(4):9-11页
    [27] 牟国洪,杨世源,张福平,蔡灵仓.PZT压电陶瓷粉体合成的研究进展.中国陶瓷.2003,39(4):10-13页
    [28] 李涛,彭同江.锆钛酸铅(PZT)纳米陶瓷粉体的液相制备技术.科学技术与工程.2003,3(5):503-507页
    [29] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001:112-138页
    [30] 曹茂盛,关长斌,徐甲强.纳米材料导论.哈尔滨:哈尔滨工业大学出版社,2001:24-46页
    [31] 刘祖武.现代无机合成.北京:化学工业出版社,2001:195-203页
    [32] 刘海涛,杨邮,张树军等.无机材料合成.北京:化学工业出版社,2003:268-352页
    [33] R.Tipakontitikul,S.Ananta.A modified two-stage mixed oxide synthetic route to lead zirconate titanate powders.MaterialsLetters.2004,(58):449-454P
    [34] L.B.Kong,W.Zhu,O.K.Tan.Preparation and characterization of PbZr_(0.52)Ti_(0.48)O_3 ceramics from high-energy ball milling powders.Materials Letters.2000,42: 232-239P
    [35] Z.Brankovic',G Brankovic',C.Jovalekic',et al.Mechanochemical synthesis of PZT powders.Materials Science and Engineering.2003,A(345): 243-248P
    [36] E.Gaffet,D.Michel,L.Mazerolles,et al.Effects of high-energy ball-milling on ceramic oxides.Material Science Forum.1997: (1) 235-238,103-108P
    [37] J.Wang,D.M.Wan,J.M.Xue,et al.Novel mechanochemical fabrication of electroceramics.Singapore Pat.No.9801566-2.1998P
    [38] 吴其胜,高树军,张少明等.机械力化学合成纳米晶PZT的研究.硅酸盐学报.2003,31(12):1197-1201页
    [39] S.E.Lee,J.M.Xue,D.M.wan,et al.Effects of mechanical activation on the sintering and dielectric properties of oxide-derived pzt.acta mater.1999,47(9): 2633-2639P
    [40] K.C.Patil,S.T.Aruna,S.Ekainbaram.Combustion synthesis.Current Opinion in Solid State& Materials Science.1997,2: 156-165P
    [41] J.J.Moore,H.J.Feng.Combustion synthesis of advanced materials,part @@@.Reaction parameters.Progress of Material Science.1995,39: 243-273P
    [42] 孙华君,陈文,徐庆等.以溶胶-自燃烧法合成PZT为基制备PMZN压电陶瓷.硅酸盐学报.2004,5:102-104页
    [43] F.Levassort,P.Tran-Huu-Hue,M.Lethiecq,et al.High-frequency and high-temperature electromechanical performances of new PZT-PNN piezoceramics.Journal Eureape Ceramic Society.2001,21(10):1361-1365P
    [44] 韩杰才,王华彬,杜善义.自蔓延高温合成的理论与研究方法.材料科学与工程.1997,15(2):20-26页
    [45] 江国健,庄汉锐,李文兰等.自蔓延高温合成-材料制备新方法.化学进展.1998,10(3):327-332页
    [46] 岳振星,周济,李龙士等.溶胶-凝胶自燃烧法合成Ni-Zn铁氧体纳米粉末.材料研究学报.1999,13(5):483-486页
    [47] H. H. Nersisyart, B. S. Yang, B. B. Kim, et al. Combustion synthesis and characterization of spherical PZT powder. Materials Letters. 2005, 59:1066-1070P
    [48] D. K. Agrawal. Microwave processing of ceramics. Current Opinion in Solid State & Materials Science. 1998, 3: 480-485P
    [49] R. Roy, S. Komarnenl, L Yang. Controlled microwave heating and melting of gels. Journal of Ceramic Society. 1985, 68: 392-395P
    [50] S. Koniarrieni, R. Roy. Anomalous microwave melting of zeolites. Material Letters. 1986,4: 107-110P
    [51] Z. Xie, J. Yang, Y. Iuang. Densification and grain growth of alumina by microwave processing. Materials Letters. 1998, 37: 215-220P
    [52] M. S. Mizunoa, S. Obataa, S. Takayamaa, et al. Sintering of alumina by 2.45GIIz microwave heating. Journal of the European Ceramic Society.2004, (24): 387-391P
    [53] S. Fujitsu, M. Ikegaini, T. Hyashi. Sintering of partically stabilized zirconia by microwave heating using ZnO-MnO_2-Al_2O_3 plates in a domestic microwave oven. Journal American Ceramic Society. 2000, 83:2085-2087P
    [54] M. C. Valecillos, M. Hirota, Brite, et al. Microstructure and mechanical properties of microwave sintered silicon nitride. Journal of Ceramic Society.1998, 106: 1162-1166P
    [55] P. D. Gigl, E. Breval, J. Cheng, et al. Structure properties of microwave sintered cemented tungsten carbide materials. In Abstract Book of the First World Congress on Microwave Processing. 1997, Jan,5-9, Orlando, Florida, Fredrick. 1997: 108-110P
    [56] A. Abreu, S. M. Zanetti, M. A. S. Oliveira, et al. Effect of urea on lead zirconate titanate-Pb(Zr_(0.52)Ti_(0.48)) O_3-nanopowders synthesized by the Pechini method.Journal of the European Ceramic Society.2005,25:743-748P
    [57] M.A.Zaghete,J.A.Varela,M.Cilense,et al.The effect of isostructural seeding on the microstructure and piezoelectric properties of PZT ceramics.Ceramics International.1999,25(3): 239-241P
    [58] N.S.Gajbhiye,P.S.Sanjay,Venkataramani.Fabrication of PZT Materials from anostructured Powders.Progress in Crystal Growth and Characterization of Materials.2002,44:127-131P
    [59] H.Bruncková,L'.Medveck(?),J.Brianc,et al.Infuence of hydrolysis conditions of the acetate sol-gel process on the stoichiometry of PZT powders.Ceramics International.2004,30: 453-460P
    [60] T.R.N.Kutty,R.Balachandran.Direct precipitation of lead zirconate titanate by the hydrothermal method.Material Research Bull.1984,19:1479-1488P
    [61] H.Cheng,J.Ma,B.Zhu,et al.Reaction mechanism in the formation of PZT solid solution under hydrothermalcondition.Journal American Ceramic Society.1993,76: 625-629P
    [62] B.Su,T.Button,C.Ponton.Hydrothermal formation of perovskite PZT powders.Proceedings of International Conference AIRAPT-16 and HPCJ-38 on high pressure science and technology.Kyoto,Japan,25-29 August 1997.Review of High Pressure Science and Technology.1998,7:1348-1355P
    [63] I.Petrovic,M.M.Lencka,A.A.Anderko,et al.Hydrothermal synthesis of lead zirconate titanate (PbZro.52Tio.48O3) using organic mineralizers.Proceedings of the Tenth IEEE International Symposium on Application of Ferroelectrics.East Brunswick.NJ.1996: 735-738P
    [64] Y.Deng,L.Liu,Y.Cheng,et al.Hydrothermal synthesis and characterization of nanocrystalline PZT powders.Materials Letters.2003,57: 1675-1678P
    [65] K.SHMOMUAR,T.TSURUMI,Y.OHBA.Preparation of lead zirconate titanate thin film by hydrothermal method.Japanese Journal of Applied Physics.1991,30(9B):2174-2177P
    [66] T.KANDA,M.K.KUROSAWA,H.YASUI,et al.Performance of hydrothermal PZT film on high intensity operation.Sensors and Actuators A.2001,89(1-2): 16-21P
    [67] L.Q.DU,F.ARAI,T.FUKUDA,et al.Analysis of driving ability of bimorph-type bending actuators synthesized by hydrothermal method.IEEE/International Symposium on Micromechatronics and Human Science.2001:45-50P
    [68] S.F.Wang,Y.R.Wang,T.Mahalingam,et al.Characterization of hydrothermally synthesized lead zirconate titanate (PZT) ceramics.Materials Chemisty and Physics.2004,87: 53-58P
    [69] N.D.Rabindra,K.P.Ranjan,P.Panchanan.A novel chemical route for the preparation of nanocrystalline PZT powder.Materials Letters.2000,45:350-355P
    [70] 崔正刚,殷福珊.微乳化技术及应用.北京:中国轻工业出版社,1999:87-90页
    [71] 李干佐,郭荣.微乳液理论及其应用.北京:石油工业出版社,1999:65-70页
    [72] 施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用.功能材料.1998,29(2):136-139页
    [73] N.Kumada,N.Kinomura,S.Komarneni.Microwave Hydrothermal Synthesis of ABi_2O_6(A=Mg,Zn).Materials Research Bulletin.1998,33(9):1411-1414P
    [74] S.Komarneni,V.C.Menon.Hydrothermal and Microwave -Hydrothermal preparation of silica gels.Materials Letters.1996,27(6): 313-315P
    [75] I.R.Abothu,S.F.Liu,S.Komarneni,et al.Processing of pb(Zr_(0.52)Ti_(0.48))O_3(PZT) ceramics from microwave and conventional hydrothermal powders.Materials Research Bulletin.1999,34(9):1411-1419P
    [76] 邓宏,姜斌,曾娟等.微波-水热法合成PZT粉体的研究.电子元件与材料.2001,20(2):12-14页
    [77] H.X.Liu,H.Deng,Y.Li,et al.Microwave Hydrothermal Synthesis PZT of Nanometer.Journal of Materials Science & Technology.2004,20 (5):637-638P
    [78] Y.Lida,K.Yasui,T.Tuziuti,et al.Sonochemistry and its dosimetry.Microchemical Journal.2005,80(2): 159-164P
    [79] W.L.Guo,Z.M.Lin,X.K.Wang,et al.Sonochemical synthesis of nanocrystalline TiO_2 by Hydrolysis of titanium alkoxides.Microelectronic Engineering.2003,(66): 95-101P
    [80] M.Gasgnier,L.Albert,J.Derount,et al.Ulteasound Effects on Various Oxides and Ceramics.Macroscopic AnalysesJournal of Solid State Chemistry.1995,115 (2): 532-539P
    [81] 张伟龙,胡国荣,方正升等.超声喷雾热分解制备锂离子电池正极材料LiNi_(1/3)CO_(1/3)Mn_(1/3)O_2及表征.无机材料学报.2007,22(4):637-641页
    [82] J.Z.Wang,Y.Hu,R.Zhang,et al.Sonochemical preparation of net-lead zirconate titanate (PZT).Journal of Crystal Growth.2004,263: 377-384P
    [83] 岳振星,周济,李龙土等.溶胶.凝胶自燃烧法合成Ni-Zn铁氧体纳米粉末.材料研究学报.1999,13(51):483-486页
    [84] 张明福,赫晓东,杜善义等.自燃烧法合成BaNd_2Ti_5O_(14)的凝胶化及热处理研究.无机材料学报.2000,15(5):879-883页
    [85] T.T.Kodas, M.J.Hampden-Smith.Aerosol Processing of Materials.Wiley- VCH, Canada.1988P
    [86] 赵文明,翟长生,王俊等.纳米复合陶瓷材料强韧化的研究进展.材料导报,19卷专集Ⅴ 2005,11:173-175页
    [87] 陈大明.纳米陶瓷复合材料进展.材料工程.1996:8-10页
    [88] 张玉军,张伟儒.结构陶瓷材料及应用.北京:化学工业出版社.2005:40-46页
    [89] 刘瑞堂,刘文博,刘锦云编.工程材料力学性能测试.哈尔滨工业大学出版社.2001:34-42页
    [90] 周玉.陶瓷材料学(第二版).北京:科学出版社,2004:205-237,246-277页
    [91] 王继辉,舒庆琏,邓京兰.结构陶瓷断裂韧性测试方法的研究.武汉工业大学学报.1997,19(2):83-84页
    [92] 吴湘伟,段学臣,陈振华.溶胶.凝胶法制备PZT纳米晶反应机理.中国有色金属学报.2003,13(1):127-131页
    [93] J.贝拉米.复杂分子的红外光谱.黄维垣,聂崇实译.北京:科学出版社,1975:368-370页
    [94] P.L.Kumler.Compounds of titanium and polyols I-J.Journal American Chemical Society.1953, 75: 4346-4348P
    [95] L A.Brown.Sol-gel processing on complex oxide film.Journal American Chemical Society.1995, 77: 255-258P
    [96] 林广勇,雷廷权.陶瓷材料断裂韧性的评定方法.宇航材料工艺.1995.25(4):12-19页
    [97] 高濂,靳喜海,郑珊.纳米复相陶瓷.北京:化学工业出版社,2004:2-6,18,105-106,110-114,293页
    [98] 赵文明,翟长生,王俊等.纳米复合陶瓷材料强韧化的研究进展.材料导报.2005,19(11):173-175页
    [99] G J.Liu, H.B.Qiu, R.Todd, et al.Processing and mechanical behavior Al_2O_3/ZrO_2 nanocomposites.Material Research Boll.1998,33(2): 281-284P
    [100] 刘含莲,黄传真,秦惠芳.纳米复合陶瓷材料的增韧补强机理研究进展.中国粉体技术.2004,22(2):98-100页
    [101] 丘泰,J.C.Glandus.用压痕法测定Y-TZP断裂韧性的研究.南京化工学院学报.1991:3541页
    [102] 刘瑞堂等.工程材料力学性能.哈尔滨:哈尔滨工业大学出版社,2001:56-60页
    [103] 杨卫著.力电失效学.北京:清华大学出版社,2001:108-110页
    [104] F.Fei,Y.Wei .Poling-enhanced fracture resistence of lead zirconate titantate ferroelectric ceramics.Material Letters,2000,(46): 131-135P
    [105] 龚江宏.陶瓷材料断裂力学.北京:清华大学出版社,2001:154-164页
    [106] 金宗哲,马眷荣,汪林生.脆性材料强度统计分析中Weibull模数估计的试样数量的优化.硅酸盐学报.1989,(17):229页
    [107] 王保林.压电材料及其结构的断裂力学.北京:国防工业出版社,2003:173-174页
    [108] .Niihara,A.Nakahira,T.Sekion.New nanocomposite structural ceramics.Material Research Society Symposium Proceedings.1992,286:405-408P
    [109] T.Sekino,T.Nakajima,K.Niihara.Mechanical and magnetic properties of nickel dispersed alumina-based nanocomposite.Material Letters.1996,29:165-168P
    [110] O.Tatsuki,K.J.Young,H.C.Yong,et al.Strengthening and toughening mechanism of ceramic nanocomposites.Journal Amercan Ceramic Society.1998,81(6): 1453-1456P
    [111] S.Jiao,M.L.Jenkins,R.W.Davidge.Interfacial fracture energy-mechanical behavior relationship in Al_2O_3/SiC and Al_2O_3/TiN nanocomposites.Acta Materials.1997,45(1):149P
    [112] G.P.Cherepanov,A.S.Balankin,V.S.Ivanova,Engineering Fracture Mechanics.1995,51(6):997P
    [113] A.Garg,D.C.Agrawal.Effect of Net PbO Content on Mechanical and Electro-mechanical Properties of Lead Zirconate Titanate Ceramics.Materials Science Engineering.1999,B56: 46P
    [114] 李建华,孙清池,杨会平.共沉淀法制备PZT粉体及性能研究.压电与声光.2006,28(6):704-706P
    [115] Y.Wang,W.Y.Chu,Y.J.Su,et al.Stress corrosion cracking of a PZT piezoeletric Ceramics.Material Letters.2003,57: 1156-1159P
    [116] Y.Wang,W.Y.Chu,Y.J.Su,et al.Anisotropy of stress corrosion cracking of a PZT piezoeletric ceramics.Material Science Enginnering B.2002,95:263P
    [117] Y.Wang,W.Y.Chu,K.W.Gao,et al.Delayed fracture of lead zirconate titanate ferroelectric ceramics under sustained electric field.Application Physics Letter.2003: 82-86P
    [118] 黄海友,褚武扬,宿彦京等.电场对铁电陶瓷压痕裂纹的作用.中国腐蚀与防护学报.2004,(24)2:87-90页
    [119] 王毅,褚武扬,宿彦京等.陶瓷断裂的耦合作用.中国科学.2004,(34)6:628-638页
    [120] 赵显武,褚武扬,宿彦京等.应力和电场单独或耦合作用下PZT-5H卸载压痕裂纹的扩展.金属学报.2005,(41)7:708-712页
    [121] 黄海友,褚武扬,宿彦京等.PZT-5铁电陶瓷恒载荷压痕裂纹在空气和水中的扩展过程.金属学报.2004,(40)9:962-966页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700