用户名: 密码: 验证码:
双峰驼皱胃淋巴集结区的结构和功能及其与年龄之间的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双峰驼皱胃淋巴集结区是王雯慧于2003年在我国阿拉善双峰驼的胃中发现并报道的特殊结构,为骆驼所特有(在其它动物和人未见有类似报道)。为了进一步探讨该结构的免疫形态学特征和功能及其与年龄之间的关系,本文首先以正常双峰驼为研究对象,运用解剖学、组织学、组织化学和电子显微镜技术等研究方法,将不同年龄的阿拉善双峰驼分为驼羔(0.5~2岁)、青年驼(3~5岁)、壮龄驼(6~16岁)和老龄驼(17~20岁)4个组,分别对其皱胃淋巴集结区的解剖学位置、黏膜的解剖学特点、微观结构特点、超微结构特点,及这些结构特点与年龄之间的关系进行了详细的观察、测定与研究。在此基础之上,本文又以枯草芽孢杆菌作为口服抗原示踪物,建立了双峰驼动物模型,通过各项相关指标的检测,对双峰驼皱胃淋巴集结区的功能和免疫机制进行了探讨。此外,本文还从发育形态学的角度研究了双峰驼淋巴集结区在胚胎发育过程中的形态结构变化及其发育时间。结果显示:(1)双峰驼皱胃淋巴集结区不仅具有特殊的解剖学位置和黏膜结构,而且其发达程度与年龄之间存在密切的关系。该结构呈长三角带状,位于胃颈之后,沿胃小弯壁分布;其黏膜褶较其周围区域宽厚,与周围非淋巴集结区形成明显界限;根据其黏膜褶表现形式的不同,可分为网格黏膜褶区和纵行黏膜褶区;对各年龄组皱胃淋巴集结区的面积、重量,及黏膜皱褶的高度和数量的测量和统计结果显示,皱胃淋巴集结区在双峰驼青春期之前是逐渐增大的,到青春期达到其一生中最发达时期,之后逐渐减小、萎缩,但20岁时仍然存在,没有完全消失。(2)双峰驼皱胃淋巴集结区既具有与其他肠道相关淋巴组织相似之处,又具有其自身的一些特点,并随年龄而有所改变。驼羔和青年驼皱胃淋巴集结区的黏膜褶高而宽厚,淋巴小结几乎都沿黏膜褶轴心两侧均匀分布,多为圆形、椭圆形或楔形,呈单层连续排列于黏膜下层,黏膜褶厚的地方淋巴小结可呈2~3层排列;黏膜褶内滤泡相关上皮丰富;生发中心明显:淋巴小结的数量及黏膜褶中网状纤维和浆细胞的数量都在随年龄逐渐增多,到青春期达到其一生中最发达时期。而壮龄驼和老年驼皱胃淋巴集结区的黏膜褶变低变薄,淋巴小结仍分布于黏膜褶轴心两侧,但不均匀,常常是一侧多,而另一侧稀少,甚至缺如:淋巴小结多为椭圆形或不规则形,呈不连续排列,且老龄驼的淋巴组织多以弥散形式存在;淋巴小结生发中心仍然明显;其数量及黏膜褶中网状纤维和浆细胞的数量都在逐渐减少。这些结果与大体解剖学研究结果一致,它们从微观水平进一步证实并解释了双峰驼皱胃淋巴集结区的结构特征随年龄变化的规律及免疫学意义。(3)超微结构研究显示,与皱胃非淋巴集结区相比,淋巴集结区具有其特殊的超微结构特征,不同年龄组之间也存在差异。青年驼皱胃淋巴集结区贲门腺的开口较小,其中的腺体细胞较多,黏膜表面的抗原摄取部位-滤泡相关的上皮数量较多,其表面的黏液也较多。而老龄驼皱胃淋巴集结区贲门腺的开口较大,其中的腺体细胞很少,黏膜表面滤泡相关上皮的数量也较少。因此,随着年龄的增长,双峰驼皱胃淋巴集结区的机械屏障和黏膜免疫屏障均发生了不同程度的萎缩和退化。(4)动物模型的观察结果显示,实验组皱胃淋巴集结区的黏膜表面,尤其是滤泡相关上皮表面有很多枯草芽孢杆菌黏附,并有少量细菌穿过黏膜表面进入黏膜固有层,而没有滤泡相关上皮的黏膜表面细菌数量相对较少,但比非淋巴集结区多,对照组中没有发现枯草芽孢杆菌。此外,实验组皱胃淋巴集结区的上皮内淋巴细胞、浆细胞、肥大细胞和亲银细胞等免疫相关细胞的数量均发生了显著增殖;超微研究显示,皱胃淋巴集结区黏膜表面的黏液量增加,上皮细胞发生增殖,M细胞的数量增加,黏膜的表面结构从原来的“蜂窝”状变成了表面有许多小孔的多孔状结构。(5)双峰驼皱胃淋巴集结区的发育形态学研究结果显示,双峰驼皱胃淋巴集结区的初级淋巴小结在妊娠中期开始发育,并在妊娠最后1~2个月内发育成熟;此外,皱胃淋巴集结区内淋巴小结的最初发育部位在黏膜固有层,之后部分淋巴小结穿过黏膜肌层到达黏膜下层。
     综上所述,双峰驼皱胃淋巴集结区不仅具有特殊的消化结构,还具有特殊的免疫形态学结构,其随年龄的增长而逐渐萎缩的现象属于一种生理性萎缩现象,是机体免疫衰老和黏膜免疫衰老的一个有力证据。当有外源性抗原侵入时,双峰驼皱胃淋巴集结区会产生一系列与防御相关的免疫细胞学和黏膜屏障结构的变化;其抗原摄取部位主要位于滤泡相关上皮处,其黏膜免疫机制和肠道派伊尔结相似。另外,双峰驼皱胃淋巴集结区在胚胎时期就已经发育成熟,并在青春期之后逐渐萎缩、退化,具有与牛、羊等动物回肠派伊尔结类似的发育特点,可能属于一种初级免疫器官。
The aggregated lymphoid nodule area(ALNA) in the third compartment of the stomach of Chinese Alashan Bactrian camels is a recently(2003) described species-specific anatomical structure by Wang Wen-hui.To further investigate the immunological morphological characteristics and function of it,and establish the relationship between this structure and animal age,normal Bactrian camels were firstly studied using the technologies of anatomy, histology,histochemistry and electron microscopy while the age groups were defined as follows:young camels(0.5-2 years old),pubertal camels(3-5 years old),middle-aged camels (6-16 years old) and old camels(17-20 years old).The exact anatomical location,and the anatomical,microstuctural and ultrastructural characteristics of the mucosa of the ALNA were described in detail as was the relationship between this structure andanimal age.On the above basis,Bactrian camel models were imitated using Bacillus subtilis as an oral tracer antigen,then the function and immune mechanisms of the ALNA were discussed after detecting relevant indicators.In addition,the changes of morphological characteristics of the ALNA and its development time during the ontogenic courses were also studied.The results showed that:(1) The ALNA of the Bactrian camels not only has a particular anatomical location and distinct mucosal structure,but also changes with age.The ALNA extended along the ventral wall of the isthmus,from the origin of the proximal enlargement and along the curvatura ventriculi minor.The mucosal folds of the ALNA were much thicker than and were clearly demarcated from those of adjacent non-ALNA.Based on the morphology of the mucosal folds,the ALNA could be divided into reticular and longitudinal regions.On statistical analysis,the ALNA was found to enlarge prior to puberty,peak in size at puberty, and then regress.A small remnant ALNA was found in 20-year-old camels,although the germinal centres of the contained lymphoid nodules were not as obvious at this time.(2) In addition to some similarities to gut-associated lymphoid tissues,the ALNA also has its special histological characteristics which may change with ageing.The mucosal folds on the ALAN of the young and pubertal camels are higher and wider than those of older animals,and most lymphoid nodules are round,oval,and cuneiform shaped aggregating in the submucosa continuously although some nodules are arranged in two or more rows,especially at the top of wide mucosal folds.All the lymphoid nodules are with distinct germinal centers,and are distributed evenly on both sides of the axis of the mucosal folds.The number of the follicular associated epithelium(FAE) and lymphoid nodules in the mucosal folds are very abundant as well as the number of reticular fibers and plasma cells.On the contrary,the mucosal folds on the ALNA of the middle-aged and old camels become lower and thinner than those of the young animals.Most lymphoid tissues of this age are diffuse lymphoid tissues while lymphoid nodules are oval and irregular shapes,and are arranged interruptedly on both sides of the mucosal fold axis unevenly,which are generally more on one side,fewer on the other side,or even absent.Furthermore,the germinal centers are still obvious while the number of the lymphoid nodules in the mucosal folds as well as the number of reticular fibers and plasma cells decrease gradually.These results are consistent with the anatomical findings,and can further confirm and explain the regularity and immunological significance of structural characteristics changes with ageing of the ALNA.(3) The ultrastructural studies suggested that the ALAN has its unique ultrastructural characteristics compared to the non-ALNA of stomach,and the ultrastructural characteristics are different between age groups.The cardiac glands in the ALNA of young Bactrian camels have more gland cells with small opening diameter,and the numbers of antigen uptake sites -FAE on the mucosal surface are very abundant as is the mucus.Whereas the cardiac glands in the ALNA of the old camels have wider opening and fewer gland ceils while the quantity of FAE and mucus on the mucosal surface also becomes fewer.Therefore,both the mechanical barrier and mucosal immune barrier of the ALNA regress with increasing age in Bactrian camels.(4) Observations on animal models showed that:while many Bacillus subtilis adhere to the mucosal surface of the FAE,there are a fewer on the non-FAE and non-ALNA in the experimental group,and there is none anywhere of the control group.In addition,there are a few Bacillus subtilisis penetrating the epithelium into the laminae propria of the FAE in the experimental group. Moreover,the numbers of immune-related cells,such as intraepithelial lymphocytes,plasma cells,mast cells and argyrophilic cells have all significant proliferated in the experimental group.Ultrastructural studies indicated that after feeding bacteria,the mucus and M cells of the ALNA increase whlie the epithelial cells proliferate prominently,which leads to the surface structure of the ALNA changed from "honeycomb" into porous structure.(5) The results of the ontogenic morphology of the ALNA showed that the first primordial lymphoid nodules of the ALNA was encountered in the midterm of gestation whereas the lymphoid nodules development was observed to have been completed in the last one or two months of pregnancy.In addition,the initial development location of lymphoid nodules location was in the lamina propria,and partial lymphoid nodules penetrated the lamina muscularis into the submucosa.
     In conclusion,the ALNA of the Bactrian camels not only has special digestive structure, but also has special immune morphological structure.The changes of ALNA with ageing were related to the physiological atrophy,and is a useful evidence of immunesenescence and mucosal immunesenescence.A series of the immune celluar reactions and mucosal barrier changes of ALNA take place to defend the invasion of exogenous antigen,and the mucosal immune mechanism of the ALNA is similar to PP in the intestine while the FAE is the main antigen uptake sites.In addition,similar to the development characteristics of the ileal Peyer's patches that reported in bovine and sheep,the development of the ALNA has been completed in the gestation,and it regress after puberty,so it may be a primary immune organ.
引文
[1] David W K, Acheson, Stefano Luccioli. Mucosal immune responses [J]. Best Practice & Research Clinical Gastroenterology, 2004, 18: 387-404.
    
    [2] Wershil B K and Furuta G T. Gastrointestinal mucosal immunity [J]. J Allergy Clin Immunol, 2008: 380-383.
    
    [3] Parrott D M V. The gut as a lymphoid organ [J]. Clin Gastroenterology, 1976, 5: 211-228.
    [4] Quiding M, Nordstrom I, Kilander A, et al. Intestinal immune responses in humans. Oral cholera vaccination induces strong intestinal antibody responses and interferon-gamma production and evokes local immunological memory [J]. J Clin Invest, 1991, 88(1): 143-148.
    [5] Poonia B, Nelson S, Bagby G J, et al. Intestinal lymphocyte subsets and turnover are affected by chronic alcohol consumption: implications for SIV/ HIV infection [J]. J Acquir Immune Defic Syndr, 2006, 41(5): 537-547.
    [6] McDermott M R and Bienenstock J. Evidence for a Common Mucosal Immunologic System-I. Migration of B Immunoblasts into Intestinal, Respiratory, and Genital Tissues [J]. The Journal of Immunology, 1979,122: 1892-1898.
    
    [7] 佘锐萍,高齐瑜,王彩虹.肠相关性淋巴样组织研究概况[J].动物医学进展, 2002,23(4): 29-33.
    
    [8] Wittig B M and Zeitz M. The gut as an organ of immunology [J]. Int J Colorectal Dis, 2003, 18(3):181-187.
    
    [9] Cornes J. Peyer's patches in the human gut [J]. Porc R Soc Med, 1965, 58(9): 716.
    [10] Owen R L. Sequential up take of horseradish peroxidase by lymphoid follicle epithclium of Peyer's Patch in the normal unobstructed mouse intestine: An ultrastructural study [J]. Gastroenterology, 1977,72:440-451.
    
    [11] Newberry R D, lorenz R G. Organizing a mucosal defence [J]. Immunol Rev, 2005,206(1): 6- 21.
    [12] John R, Carlson, Robert L. Structure and functional role of Peyer's patches, In: Immunopathologoy of the Small Intestine [M]. Johe Wiley Sons, 1987, 21-44.
    [13] Baryg M, Draper L R. Migration of thymus cells to the developing gut-associated lymphoid tissues of the young rabbit cell [J]. Immunol, 1975, 20: 177-186.
    [14] Butcher P D, McFadden J J, Murray A M, et al. Immunoprecipitation of antigen-associated [32P]-labelled nucleic acids from Crohn's diseasemesenteric lymph nodes [J]. Br J Exp Pathol, 1985,6(6): 679-687.
    [15] Hayday A, Theodoridis E, Ramsburg E, et al. Intraepithelial lymphocytes: exploring the Third Way in immunology [J]. Nat Immunol, 2001, 2(11): 997-1003.
    [16] Lefrancoi L. Intraepithelial lymphocytes of the intestinal mucosa: curiouser and couriouser [J]. Semin Immunol, 1991, 3 (2): 99-108.
    [17] Neutra M R, Frey A, Kraehenhahl J P. Eipthelial M cells: gateways for mucosal infection and immunization [J]. Cell, 1996, 86: 345-348.
    [18] Neutra M R. Current concept in mucosal immunity [J]. American Physiological Socieyt, 1998, 193: 785-781.
    [19] Beagley K W and Husband A J. lntraepithelial lymphocytes: origins, distribution, and function [J]. Crit Rev Immunol, 1998, 18(3): 237-254.
    [20] Lefrancois L. lntraepithelial lymphocytes of the intestinal mucosa: curiouser and curiouser [J]. Semin Immunol, 1991, 3(2): 99-108.
    [21] Hodgkin P D, Yamashita C, Seymour B, et al. Members from both Thl and Th2 T cells: Clones stimulate B cell proliferation and prepare B cell for lymphokine induced differentiation to secreate Ig [J]. J Immunol, 1991,147(11): 3696-3702.
    [22] Mosmann T R, Coffman R L. Th1 and Th2 cells: different patterns of lymphokine secretion lead to functional properties [J]. Annu Rew Tmmunol, 1989,7: 145-173.
    
    [23] Xu-Amano J, Beagley K W, Mega J, et al. Induction of T helper cells and cytokines for mucosal IgA responses [J]. Adv Exp Med Biol, 1992, 327: 107-117.
    [24] Farstad I N, Carlsen H, Morton H C, et al. Immunogiobulin A cell distribution in the human small intestion: phenotypic and functional characteristic [J]. Immunology, 2000, 101 (3): 354-363.
    [25] Brandtzaeg P, Farstad I N, Johanse F E, et al. The B-cell system of human mucosae and exocrine glands [J]. Immunol Rev, 1999, 171: 45-87.
    [26] Medina F, Segundo C, Carnpos-Caro A, et al. Isolation, maturational level, and functional capacity of human colon lamina propria plasma cell [J]. Gut, 2003, 52 (3): 383-389.
    [27] Schieferdecker H L, Ullrich R, Hirseland H, et al. T cell differentiation antigens on lymphocytes in the human intestinal lamina porpria [J]. Immunol, 1992, 149(8): 2816-2822.
    [28] Zivny J H, Moldoveanu Z, Vu H L, et al. Mechanisms of immune tolerance to food antigens in humans[J].Clin Immunol, 2001, 101(2):158-168.
    [29] Garside P and Mowat A M. Mechanisms of oral tolerance [J]. Crit Rev Immunol, 1997, 17(2): 119-137.
    [30] Bockman D E, Cooper M D. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricirs, appendix and peyer's patches. An electron microscopic study [J]. Am J Anat, 1973, 136:455-478.
    [31] Bhalla D K, Ow en R L. Migration of B and T lymphocytes to M cells in peyer's patch follicle epithelium: An auto-radiographic and immunocytochemical study in mice [J]. Cell Immunol, 1983, 81:105-107.
    [32] Keljo D J, Ham ilton J R. Quantitative determination of macromolecular transported across intestinal peger's patches [J]. Am J Physiol, 1983, 244: 637-644.
    [33] Rickert R R, Carter H W. The early ulcerative lesions of Crohn's disease: Correlative light and scanning electron microscopic studies [J]. J Clin Gastroenterology, 1980, 2: 11-19.
    [34] Bye W A, Allan C H, Trier J S. Structure, distribution and origin of M cell in Peyer's patches of mouse ileum [J]. Gastroenterology, 1984, 86: 789-801.
    [35] Michel J R, Antonio R. Dome epithelial M cells dissociated from rabbit gut-associated lymphoid tissues [J]. Am Res, 1986,47 (12): 2577-2583.
    [36] Morin M J. A pathway for entry of reoviruses into the host through M cells of the respiratory tract [J].J Exp Med, 1994, 180: 1523-1527.
    [37] Owen R L, Nemanic P. Antigen processing structures the mammalian intestinal tract: An SEM study of lymphoepithelial organs [J]. Scanning Edlectron Microscopy, 1978, 2: 367-378.
    [38] Wolf J L. Intestinal M cells: A Pathway for entry of reovirus into the host [J]. Science, 1981, 212 (24): 471-472.
    [39] Andreas Gebert, Susanne Fassbender, Kerstin Werner, et al. The Development of M Cells in Peyer's Patches is Restricted to Specialized Dome-Associated Crypts [J]. American Journal of Pathology, 1999, 154(5): 1573-1583.
    [40] Neutra M R. Antigen sampling across epithelial barriers and induction mucosal immune response [J]. Annu Rev Immunol, 1996, 14: 257-261.
    [41] Farstad I N, Halstensen T S, Fausa O, et al. Heterogeneity of M-cell- associated B and T cells in human Peyer's patches [J]. Immunology, 1994, 83: 457-464.
    [42] Gerbert A, Hach G, Bartles H. Co-locolization of viment and cytokeratins in M cells of rabbit gut-associated lymphoid tissue [J]. Cell Tissue Res, 1992, 269: 331.
    [43] Savidge T C. Smith M W, James P S, et al. Salmonella induced M cell formation in germ-free mouse peyper's patch tissue [J]. Am J Pathol, 1991, 139: 177.
    [44] Kenreis S, Anna B, Kraehenhahl J P, et al. Coversion by payer's patch lymphocyte of humanenterocyte into M cells that transport bacteria [J]. Science, 1997,277: 949.
    [45] Gianasca P J, James S A, Thomas P, et al.Targeted delivery of antigen to hamster nasal lymphoid tissue with M cell deteced lectins [J]. Infect and Immune, 1997, 10: 4288.
    [46] Amerongen H M, Weltzin R, Farnet C M, et al. Transepithelial transport of HIV-1 by intestinal M cells:a mechanism for transmission of AIDS [J]. J Acquir Immune Defic Syndr, 1991, 4(8): 760-765.
    [47] Jensen V B, Harty J T, and Jones B D. Interactions of the Invasive Pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M Cells and Murine Peyer's Patches [J]. Infection and Immunity, 1998, 66(8): 3758-3766.
    [48] Kaneko K, Uehar K and Ogawa M. Uptake of Killed Yersinia enterocolitica by Pseudopodia of M Cells in the Peyer's Patches of the Murine Small Intestines [J]. J Vet Med Sci, 1999, 61(10): 1175-1177.
    [49] Foti M. Ricciardi-Castaguoll P. Antigen sampling by mucosal dendritic cells [J]. Trends Mol Med, 2005, 11(9): 394-396.
    [50] Man A L, Prieto-Gareia M E, Nicoletti C. Improving M cell mediated transport across mucosal barriers, do certain bacteria hold the keys? [J]. Immunology, 2004, 113(1):15-22.
    [51] Gebert A, Steinmetz I, Fassbender S, et al. Antigen transport into peyer's patches: increased uptake by constant numbers of M cells [J]. Am J Pathol, 2004, 164(1): 65-72.
    [52] Jang M H, Kweon M N, watani K, etal. Intestinal villous M cells: fill antigen entry site in the mucesal epithelium [J]. PrncNatl Acad Sci USA, 2004, 101(16): 6110-6115.
    [53] Mark A M, Ann C, Jepson N L, et al. Selective binding and transcytosis of ulex europaers- I lection by mouse peyer's patch M cells in vivo [J]. Histochemistry, 1993, 100: 441.
    [54] Neutra M R. Interaction of virus and micropaticles with apical plasma membrances of M cells: implication for human immunodeficiency virus transmission [J]. Infect Dis, 1997, 179: 441.
    [55] Wolf H M, Haubber 1, Guile H. Anti - inflammatory properties of human serum IgA: induction of IL-1 receptor antagonist and FC alpha R(CD89)-mediated down-regulation of tumor necrosis factor-alpha ( TNF- α ) and IL-6 in human monocytes [J]. Clin Exp Immunol, 1996, 105: 537-543.
    [56] George A, Cebra J J. Responses of single germinal center B cells in T-cell-dependent microculture [J]. Proc Natl Acad Sci USA, 1991,88(1): 11-15.
    [57] Liu L M, MacPherson G G. Antigen acquisition by dendritic cells, intestinal dentritic cells acquire antigen administered orally and c;an prime naive T cells in vivo[J]. J Exp Med, 1993, 177 (5): 1299-1307.
    [58] Cella M, ngering A, Pinet V, et al. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells [J]. Nature, 1997,388(6644): 782-787.
    [59] Rescigno M, Martino M, Sutherland C, et al. Dendritic cell survival and maturation are regulated by different signaling pathways [J]. Exp Med, 1998, 188(11):2175-2180.
    [60] Caux C, Liu Y, Banchereau J. Recent advances in the study of dendirtic cells and follicular dendritic cells [J]. Immunol Today, 1995, 16(1): 2-4.
    
    [61]多田富雄.粘膜免疫の世界[J].细胞工程,1994, 14(2) : 131.
    [62] Hase K and Ohno H. Epithelial cells as sentinels in mucosal immune barrier [J]. Nihon Rinsho Meneki Gakkai Kaishi, 2006, 29(1): 16-26.
    [63] Nazi A,Yang P C, Jury J, et al. Epithelia under metabolic stress perceive commensal bacteria as a threat [J]. Am Pathol, 2004, 164(3): 947-957.
    [64] Kabelitz D, Marischen L, Oberg H H, et al. Epithelial Defence by gammadelta T Cells [J]. Int Arch Allergy Immunol, 2005, 137(1): 73-81.
    [65] Philips-Quagliata J M. Lamm M E. Migration of lymphocytes in the mucosal immune system in: Migration and homing of lymphoid cell, Volunm II [M]. CRC Press Boca Raton F L, 1988, 53: 156-160.
    [66] Lazarus N H, Kunkel E I, Johnston B, etal. A common mucosal chemokine (mucosal- associateed epithelial chemokine/ CCL28) selectively attracts IgA plasmablasts [J]. J Immunol, 2003, 170(7):3799-3805.
    [67] Kantele A, Arvilommi H, Likkanen K, et al. Unique characteristics of the intestinal immune system as an inductive site after antigen reencounter [J]. J Infect Dis, 2005, 191(2): 312-317.
    [68] Kagnoff M F. Mucosal immunology: New frontiers [J]. Immunology Today, 1996, 17 (2): 57-59.
    [69] Ball J M, Herdy M E, Atmar RL, et al. Oral immunization with recombinant Norwalk virus like particles induces a systemic and mucosal immune response in mice [J]. J virol, 1998, 72(2): 1345.
    [70] Mantis N J, McGuinness C R, Sonuyi O, et al. Immunoglobulin A Antibodies against Ricin A and B Subunits Protect Epithelial Cells from Ricin Intoxication [J]. Infect Immun, 2006, 74(6): 3455-3462.
    [71] Mary B M, John G N, Charlotte S K, et al. A three-titred view of the role of IgA in mucosal defense [J]. Immunol Today, 1993, 14 (9): 430.
    [72] Telemo E, Korotkova M, Hanson L A. Antigen presentation and processing in the intestinal mucosa and lymphocyte homing [J]. Ann Allergy Asthma Immunol, 2003, 90 (6): 28.
    [73] Kilian M, Mestecky J, and Russell M W. Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases [J]. Rev, 1988, 52 (2): 296-303.
    [74] Go M F, Crowe S E. Virulence and pathogenicity of Helicobacter pylori [J]. Gastroenterol Clin North Am, 2000, 29: 649-670.
    [75] Keates S, Hitti Y S, Upton M, et al. Helicobacter pylori infection activates NF-kappa B in gastric epithelial cells [J]. Gastroenterology, 1997, 113: 1099-1109.
    [76] Fischbach W. Helicobacter pylori eradication therapy in primary high-grade gastric MALT lymphoma [J]. Gastroenterology, 2002, 123: 393.
    [77] Gaetan Gavazzi and Karl-Heinz Krause. Ageing and infection [J]. The Lancet Infectious Diseases, 2002, 2: 659-666
    [78] Tarazona R, Solana R. Basic biology and clinical impact of immunosenescence [J]. Exp Gerontol, 2002,37(2-3): 183-189.
    [79] Lavoie E T, Sorrell E M, Perez D R, et al. Immunosenescence and age-related susceptibility to influenza virus in Japanese quail [J]. Developmental and Comparative Immunology, 2007, 31: 407-414.
    [80] Martina Prelog. Aging of the immune system: A risk factor for autoimmunity [J]. Autoimmunity Reviews, 2006, 5: 136-139.
    [81] Malaguarnera L, Ferlito L, Imbesi R M, et al. Immunosenescence: a review [J]. Archives of Gerontology and Geriatrics, 2001, 32: 1-14.
    [82] Lia Ginaldi, Maria Francesca Loreto, Maria Pia Corsi, et al. Immunosenescence and infectious diseases [J]. Microbes and Infection, 2001, 3: 851-857.
    [83] Khorram O, Garthwaite M, Golos T. The influence of aging and sex hormones on expression of growth hormone-releasing hormone in the human immune system [J]. J Clin Endocrinol Metab, 2001, 86(7): 3157-3161.
    [84] Stmub R H, Cutolo M, Zietz B, et al. The Process of aging changes the interplay of the immune, endocrine and nervous systems [J]. Mech Ageing Dev, 2001, 122(14): 1591-1611.
    [85] Larbi A, Douziech N, Khalil A, et al. Effects of methyl-beta-cyclodextrin on T lymphocytes lipid rafts with aging [J]. Exp Gemntol, 2004, 39(4): 551-558.
    [86] Rafael Solana, Graham Pawelec, and Raquel Tarazona. Aging and Innate Immunity[J]. Immunity, 2006,24:491-494.
    [87] Christian R Gomez, Eric D Boehmer and Elizabeth J Kovacsl. The aging innate immune system [J]. Current Opinion in Immunology, 2005, 17: 457-462.
    [88] Malaguamera L, Ferlito L, Di Mauro S, et al. Immunosenescence and Cancer, a review [J]. Arch Gerontol Geriatr, 2001, 32(2): 77-93.
    [89] Pawelec G, Adibzadeh M, Pohla H, et al. Immunosenescence: ageing of the immune system [J]. Immunol Today, 1995, 16(9): 420-422.
    [90] Sansoni P, Vescovini R, Fagnoni F, et al. The immune system in extreme longevity [J]. Experimental Gerontology, 2008, 43:61-65.
    
    [91] Kendall M D. Functional anatomy of the thymic microenvironment [J]. J Anat, 1991, 177: 1-29.
    [92] Mosley R L, Koker M M, Miller R A. Idiosyncratic alteration of TCR size distributions affecting both CD_4 and CD_8 T cell subsets in aging mice [J]. Cell Immunol, 1998, 189: 10-18.
    [93] Solana R, Pawelec G. Molecular and cellular basis of immunosenescence [J]. Mech Ageing Dev, 1998, 102(2-3):115-129.
    [94]Buzzetti R,Berczi I.A critical assessment of the interaction between the immune system and the hypothalamus-pituitary-adrenal axis[J].J Endocri nol,1989,120(1):183-190.
    [95]Bliss T,Lmo T.Long-lasting potentiation of synaptie transmission in the dentate area of the unanasthetized rabbit fol lowing stimulation of the perforant path[J].J physiod,1993,232:331.
    [96]Mu X Y,Thoman M L.Aging affects the regeneration the CD_8~+ T cell compartment in bone marrow transplanted mice[J].Mech Ageing Dev,2000,112:113-124.
    [97]邓阳勇,伍参荣,扈凤平,等.芦荟多糖对衰老小鼠免疫器官的影响[J].湖南中医药大学学报,2008,28(2):25-27.
    [98]Bodey B.Sigel S E.Molecularbiological ontogenesis of the thymic reticulo-epithelial cell network during the organization of the celluar microenviroment[J].In Vivo,1999,13:267.
    [99]Dennett N S,Barcia R N,Mcleod J D.Age associated decline in CD25 and CD28 expression correlate with an increased susceptibility to CD95 mediated apoptosis in T cells.Exp Gerontol[J],2002,37:271.
    [100]Trzonkowski P,Mysliwska J.Association between cytomegalovirus infection,enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination-an impact of immunosenescence[J].Vaccine,2003,21(25-26):3826-3836
    [101]Arosa I A.CD_8~+ CD28~- T cell certainties and uncertainties of a prevalent human T-cell subset[J].Immuol Cell Biol,2002,80(1):1.
    [102]Aspinall R,Carrol J,Jiang S.Age-related changes in the absolute number of CD95 positive cells in T cell subsets in the blood[J].Exp Gerontol,1998,33:581.
    [103]Potestio M,Pawelec G,DI Lorenzo G,et al.Age-related in the expression of CD95(APOI/FAS)on blood lymphyocytes[J].Exp Gerontol,1999,34:659.
    [104]邱海霞,何贤辉.人外周血CD8 T细胞CD28、CD56及CD57表达水平的老年性改变[J].中国病理生理杂志,2003,29(4):477.
    [105]Miller R A.Effect of aging on T lymphocyte activation[J].Vaccine,2000,18:1654.
    [106]王跃,付玉荣,刘明方,等.双歧杆菌脂磷壁酸抗免疫衰老的实验研究[J].中国免疫学杂志,2006,22:200-203.
    [107]邓阳勇,扈凤平.T细胞免疫衰老的研究进展[J].美国中华临床医学杂志,2004,6(1):82-84.
    [108]Lio D,Balistreri C R,Candor C,et al.In vitro treatment with interleakin-2 normalizes type-1cytokine production by lymphocytes from elderly[J].Immunopharmcol Immunotoxicol,2000,22:195.
    [109]Skate-Kaneko S,Wakatsuki Y,Madtsunage Y,et al.Altered Th1/Th2 commitment in human CD_4~+T cells with ageing[J].Clin Exp Immunol,2000,120:267.
    [110]Humphrevs N E,Grencis R K.Effects of ageing on the immunoregulation of parasitic infection [J].Infect Immune,2002,70(9):5148-5157.
    [111]Phelouzat M A,rbogast A,Laforge T,et al.Excessive apoptosis of mature T lymphocytes is a characteristic feature of human immune senescence[J].Mech Aging Dev,1977,88:25.
    [112]Aggarwal S,Gupta S.Increased apoptosia of T cell subsets in ageing humans:altered expression of Fas(CD95)Fasligand Bcl-2 and Bax[J].J Immunol,1998,160(4):1627-1637.
    [113] Lenado M, Chan F K M. Mature T lymphocyte apoptosis immuse regulation in dynamic and unpredictable antigenic environment [J]. Ann Rev Immunol, 1999,17: 211.
    [114] Ginaldi D E, Martinis M D, Ostilio A, et al. Cell proliferation and apoptosis in the immune system in the elderly [J]. Immunol Res, 2000,21:31.
    [115] Dahse R, Fiedler W, Ernst G. Telomeres and telomerase: biological and clinical importance [J]. Clin Chem, 1997, 43(5): 708-714.
    [116] Monteiro J, Batliwalla F, Ostrer H, et al. Shortened telomeres in clonally expanded CD28~-CD_8~+ T cells imply a replicative history that is distinct from their CD_(28)~+ CD_8~+ counterparts [J]. J Immunol, 1996, 156(10): 3587-3590.
    [117] Soares M V, Maini M K, Beverley D C, et al. Regulation of apoptosis and replicative senescence in CD_8~+T cells from patients with viral infections [J]. Biochemical Society, 2000,28(2): 255-258.
    
    [118] Appay V, Dunbar P R, Callan M, et al. Memory CD8 T cells vary in differentiation phenotype in different persistent virus infections [J]. Nat Med, 2002, 8(4): 379-385.
    [119] Bouchikovich K J, Greider C W. Telomerase regulation during entry into the cell cycle in normal human T cells [J]. Mol Biol Cell, 1996, 7(9): 1443-1454.
    [120] Bodnar A G, Kim N W, Effros R B. Mechanism of telomerase induction during T cell activation [J]. Exp Cell Res, 1996, 228(1): 58-64.
    
    [121] Hayflick L. Human cells and aging [J]. Scient Amer, 1968, 218: 32-37.
    [122] Whisler R L, Newhouse Y G, Chen J R. Proliferative responders of B cells from elderly humans: Abnormalities in early responsiveness are related in B cell activation molecules [J]. Lyphokine Cytokine Res, 1991,10: 1-6.
    [123] Reyes E, Prieto A, Carrion F, et al. Morphological variants of leukemic cells in B chronic lymphocytic leukemia are associated with different T cell and NK cell abnormalities [J]. Am J Hematol, 1997,55: 175-182.
    [124] Hijmans W, Radl J, Bottazzo G F, et al. Autoantibodies in highly aged humans [J]. Mech Ageing Dev, 1984,26:83-89.
    [125] Ben-Yehuda A, Szabo P, Dyall R, et al. Bone marrow declines as a site of B-cell precursor differentiation with age: relationship to thymus involution [J]. Proc Natl Acad Sci USA, 1994, 91: 11988-11992.
    [126] Joel L, Paul S, Marc E W. Effect of age on humoral immunity, selection of the B cell repertoire and B cell development [J]. Immunol Rev, 1997, 160 (1): 115-120.
    [127] Morimoto S, Kanno Y, Tanaka Y, et al. CD134L engagement enhances human B cell IG production: CD154: CD40, CD70: CD27 and CD134: CD134L interactions coordinately regulate T cell-dependent B cell responses [J]. J Immunol, 2000, 164,4097-4104.
    [128] Yang X H, Stedra J, Cerny J. Relative contribution of T and B cells to hypermutation and selection of the antibody repertoire in germinal centers of aged mice [J]. J Exp Med, 1996, 183: 959-970.
    [129] Song H, Price P W, Cerny J. Age - related changes in antibody repertoire: contribution from T cells [J]. Immunol Rev, 1997, 160(1): 55-61.
    [130] Bovbjerg D H, Kim Y T, Schwab R, et al. "Cross-wiring" of the immune response in old mice: increased autoantibody response despite reduced antibody response to nominal antigen [J]. Cell Immunol, 1991, 135 (5): 519-527.
    [131] Ray S K, Putterman C, Diamond B. Pathogenic autoantibodies are routinely generated during the response to foreign antigen: a paradigm for autoimmune disease [J]. Proc Natl Acad Sci USA, 1996, 93:2019-2024.
    
    [132] Miller R A. Aging and immune function [J]. Int Rev Cytol, 1991, 124: 187-215.
    [133] McLachlan J A, Serkin C D, Morreyciark K M, et al. Immunologica! functions of add human monocytes [J]. Pathobiology, 1991, 63: 148-159.
    [134] Sijben J W, Schrama J W, Nieuwland M G, et al. Immunomodulatory effects of indomethacin and prostaglandin E2 on primary and secondary antibody response in growing layer hens [J]. Poult Sci, 2000, 79: 949-955.
    [135] Steger M M, Maczek C, Grubeck-Loebenstein B. Peripheral blood dendritic cells reinduce proliferation in in vitro aged T cell populations [J]. Mech Ageing Dev, 1997, 93, 125-130.
    [136] Wick G and Grubeck-Loebenstein B. Primary and secondary alterations of immune reactivity in the elderly: impact of dietary factors and disease [J]. Immunol Rev, 1997, 160, 171-184.
    [137] Furumoto K, Inoue E, Nagao N, et al. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress [J]. Life Sci, 1998, 63,935-948.
    [138] Garcia-Maurino S, Gonzalez-Haba M G, Calvo J R, et al. Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD_4~+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes [J]. J Immunol, 1997, 159: 574-581.
    [139] Hoft D F, Farrar P L, Kratz-Owens K, et al. Gastric invasion by trypanosoma cruzi and induction of protective mucosal immune responses [J]. Infection and Immunty, 1996, 64(9): 3800-3810.
    [140] Silvey J K, Hutchings B A, Vajdy M, et al. Role of immunoglobulin A in protection against reovirus entry into murine Peyer's patches [J]. Journal of Virology, 2001, 75(22): 10870-10879.
    [141] Michetti P, Mahan M J, Slauch J M, et al. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium [J]. Infection and Immunity, 1992,60(5): 1786-1792.
    [142] Koga T, McGhee J R, Kato H, et al. Evidence for early aging in the mucosal immune system [J]. Journal of Immunology, 2000, 165: 5352.
    [143] Hirotomo Katol, Kohtaro Fujihashil, Rie Katol, et al. Lack of oral tolerance in aging is due to sequential loss of Peyer's patch cell interactions [J]. International Immunology, 2003, 15(2): 145-158.
    [144] Bernstein E, Kaye D, Abrutyn E, et al. Immune response to influenza vaccination in a large healthy elderly population [J]. Vaccine, 1999, 17: 82.
    
    [145] Wick G, Jansen-Durr P, Berger P, et al. Diseases of aging [J]. Vaccine, 2000, 18: 1567-1583.
    [146] Schmucker D, Owen R. Aging and the gastrointestinal mucosal immune response [J]. Curr Opin Gastroenterol, 1997, 13: 534-541.
    [147] Batory G, Jansco A, Puskas E. Antibody and immunoglobulin levels in aged humans [J]. Arch Gerontol Geriatr, 1984, 3: 175-179.
    [148] Jeandel C, Laurain M, Decottignies F. Infectious diarrhea in the aged [J]. Revue du Praticien, 1996, 46: 184-188.
    [149] Takashi Ogino, Soichiro Miura, Shunsuke Komoto, et al. Senescence-associated decline of lymphocyte migration in gut-associated lymphoid tissues of rat small intestine [J]. Mechanisms of Ageing and Development, 2004, 125: 191-199.
    [150] Cornes J S. Number, size and distribution of Peyer's patches in the human small intestine [J]. Gut, 1965,6:25-33.
    [151] Van Kruiningen H J, West A B, Freda B J, et al. Distribution of Peyer's Patches in the distal ileum [J]. Inflammatory Bowel Diseases, 2002, 8(3): 180-185.
    [152] Marta Sa'nchez Carril, Joaqui'n Prado Arago'n, A' frica Gonza'lez Ferna'ndez. Age-related accumulation of memory cells in mouse Peyer's patches [J]. Immunology Letters, 2002, 83: 39-45.
    [153] Yasuda M, Jenne C N, Kennedy L J, et al. The sheep and cattle Peyer's patch as a site of B cell development [J].Vet Res, 2006,37: 401-415.
    [154] Reynolds J D and Morris B. The evolution and involution of Peyer's patches in fetal and postnatal sheep [J]. Eur J Immunol, 1983, 13(8): 627-635.
    [155] Sminia T, Janse E M, and Plesch B E. Ontogeny of Peyer's patches of the rat [J]. Anat Rec, 1983,207(2): 309-316.
    [156] Pabst R, Geist M, Rothk(o|¨)tter H J, et al. Postnatal development and lymphocyte production of jejeunal and ileal Peyer's patches in normal and gnotobiotic pigs [J]. Immunology, 1988, 64: 539-544.
    [157] Landsverk T, Halleraker M, Aleksandersen M, et al. The intestinal habitat for organized Iymphoid tissues in ruminants; comparative aspects of structure, function and developments [J]. Vet Immunol immunopathol, 1991, 28: 1-16.
    [158] HogenEsch H, and Felsburg P T. Immunohistology of Peyer's patches in the dog [J]. Vet Immunol Immunpathol, 1992,30, 147-160.
    [159] Reynolds J D, Morris B. The effect of antigen on the development of Peyer's patches in sheep [J]. Eur J Immunol, 1984, 14: 1-6.
    [160] Beyazl F and Asti R N. Development of Ileal Peyer's Patches and Follicle Associated Epithelium in Bovine Foetuses [J]. Anat Histol Embryol, 2004, 33: 172-179.
    [161] Abe K and ItoT A. qualitative and quantitative morphologic study of Peyer's patches of the mouse [J]. Arch Histol Jpn, 1977, 40: 407-420.
    [162] Barman N N, Bianchi A T J, Zwart R J, et al. Jejunal and ileal Peyer's patches in pigs differ in their postnatal development [J]. Anat Embryol, 1997, 195: 41-50.
    [163] Landsverk T, Janson A, Nicander L, et al. Carbonic anhydrase-a marker for particles shed from theepithelium to the lymphoid follicles of the ileal Peyer's patches in goat kids and lambs [J]. Immunol Cell Biol, 1987,65:425-429.
    [164] Yasuda M, Shoga T, Arakawa H, et al. A comparative study of gut-associated lymphoid tissue in calf and chicken [J]. Anat Rec, 2002, 266:207-217.
    [165] Jeurissen S H M, Janse E M, Koch G, et al. Postnatal development of mucosa-associated lymphoid tissues in chickens [J]. Cell Tissue Res, 1989, 258, 119-124.
    [166] Befus A D, Johnston N, Leslie G A, et al. Gut-associated lymphoid tissue in the chicken. I.Morphology, ontogeny, and some functional characteristics of Peyer's patches [J]. The Journal of Immunology, 1980, 125(6): 2626-2632.
    [167] Noorjahan Alitheen, Susan McClure, Peter McCullagh. Development of B cells in the gut-associated lymphoid tissue of mid-gestational fetal lambs [J]. Developmental and Comparative Immunology, 2003, 27: 639-646.
    [168] Gerber H A, Morris B, Trevella W. The role of gut-associated lymphoid tissues in the generation of immunoglobulinbearing lymphocytes in sheep [J]. Aust J Exp Biol Med Sci, 1986, 64: 201-213.
    [169] Masahiro Yasuda, Motoko Fujino, Tetsuo Nasu, et al. Histological studies on the ontogeny of bovine gut-associated lymphoid tissue: appearance of T cells and development of IgG~+ and IgA~+ cells in lymphoid follicles [J]. Developmental and Comparative Immunology, 2004,28: 357-369.
    [170] Chapman H A, Jhonson J S, and Cooper M D. Ontogeny of Peyer's patches and immunoglobulin containing cells in pigs [J]. J Immunol, 1974, 112: 558-563.
    [171] Chu R M, GIockR D, Ross R F, et al. Lymphoid tissues of the small intestine of swine from birth to one month of age[J].Am J Vet Res, 1979,40(12): 1713-1719.
    [172] Chu R M, Glock R D, and Ross R F. Gut-associated lymphoid tissues of young swine with emphasison dome epithelium of aggregated lymph nodules (Peyer's patches) of the small intestine [J]. Am J Vet Res, 1979,40(12): 1720-1728.
    [173] Pabst R and Rothkotter H J. Postnatal development of lymphocyte subsets in different compartments of the small intestine of piglets [J]. Vet Immunol Immunopathol, 1999, 72(1-2): 167-173.
    [174] Rothkotter H J and Pabst R. Lymphocyte subsets in jejunal and ileal Peyer's patches of normal and gnotobiotic minipigs [J]. Immunology, 1989, 67(1): 103-108.
    [175] Adachi S, Yoshida H, Kataoka H, et al. Three distinctive steps in Peyer's patch formation of murine embryo [J]. Int Immunol, 1997, 9(4): 507-514.
    [176] Yoshida H, Honda K, Shinkura R, et al. IL-7Rα~+CD3~-cells in the embryonic intestine induces the organizing center of Peyer's patches [J]. Int Immunol, 1999, 11: 643-655.
    [177] Adachi S, Yoshida H, Honda K, et al. Essential role of IL-7 receptor alpha in the formation of Peyer's patch anlage [J]. Int Immunol, 1998, 10: 1-6.
    [178] Veiga-Fernandes H, Coles M C, Foster K E, et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis [J]. Nature, 2007, 446: 547-551.
    [179] Fukuyama S, Kiyono H. Neuroregulator RET initiates Peyer's patch tissue genesis [J]. Immunity, 2007, 26: 393-395.
    [180] Hashi H, Yoshida H, Honda K, et al. Compartmentalization of Peyer's patch aniagen before lymphocyte entry [J]. J Immunol, 2001, 166(6): 3702-3709.
    [181] Michelle L B, Erica G, and Robertt G. Ontogeny of the Immune System of the Brushtail Possum, Trichosurus vulpecula [J]. The Anatomical Record, 1999,256: 354-365.
    [182] Spencer J, MacDonald T T, Finn T, et al. The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine [J]. Clin Exp Immunol, 1986, 64(3): 536-543.
    [183] Braegger C P, Spencer J, MacDonald T T. Ontogenetic aspects of the intestinal immune system in man [J]. Int J Clin Lab Res, 1992, 22(1):1-4.
    [184]Kerim Hoorweg,Tom Cupedo.Development of human lymph nodes and Peyer's patches[J].Seminars in Immunology,2008,online.
    [185]Ishino S.Kadota K,Matsubara Y,et al.Immunohistochemical studies on ontogeny of bovine lymphoid tissues[J].J Vet Med Sci,1991,53:877-882.
    [186]Asari M,Kawaguchi N,Wakui S,et al.Development of the bovine ileal mucosa[J].Acta Anat,1987,129:315-324.
    [187]Landsverk T.Is the ileo-caecal Peyer's patch in ruminants a mammalian bursa-equivalent? Acta Pathol[J].Microbiol Scand,1984,92,77-79.
    [188]Kraal G,Duijvestijn A M,and Hendriks H H.The endothelium of the high endothelial venules:a specialised endothelium with unique properties[J].Exp Cell Biol,1987,55:1-10.
    [189]Kai-Inge Lie,Mona Aleksandersen,Thor Landsverk.Lymphoid follicles of different phenotype appear in ileum involution of the sheep ileal Peyer's patch[J].Developmental and Comparative Immunology,2005,29:539-553.
    [190]Dellmann H D,Brown E M.Textbook of veterinary histology[M].3rd ed.Philadelphia P A:Lea and Febiger,1987:229-243.
    [191]谢铮铭.骆驼消化系统的解剖[J].甘肃农业大学学报,1977,(2):1-21.
    [192]Wang J L,Gao L,Wang G X,et al.Anatomy subdivisions of the stomach of the bactrian camel (Camelus bactrianus)[J].Journal of Morphology,2000,244:1-7.
    [193]McIntosh W C.Notes on a female llama[J].J Anat,1930,64:353-362.
    [194]Smuts N M,Bezuidenhout A J.Anatomy of the dromedary[M].Oxford:Clarendon,1987:24-129.
    [195]Hansen A,Schmidt-Nielsen K.On the stomach of the camel with special reference on the structure of its mucous membrane[J].Acta Anatomia,1957,31:353-357.
    [196]Purohit M S,Rather S S.Stomach of the camel in comparison to that of the ox[J].Indian Vet J,1962,39:604-608.
    [197]Hegazi A H.The stomach of the camel[J].British Veterinary Journal,1950,106:209-213.
    [198]Eerdunchaolu,Takehana K,Kobayashi A,et al.Morphological characterization of gland cells of the glandular sac area in the complex stomach of the bactrian camel(Camelus bactrianus)[J].Anat Histol Embryol,1999,28(3):183-191.
    [199]刘胜旺,朱宣人,陈怀涛.双峰驼胃组织学研究[J].中国兽医报,1996,16(5):491-496.
    [200]王雯慧,陈怀涛.双峰驼胃幽门腺区黏膜的组织学与组织化学研究[J].中国兽医科技,2002,3(10):29-32.
    [201]王雯慧,陈怀涛.双峰驼胃腺囊区有腺部的组织学与组织化学研究[J].中国兽医科技,2002,32(9):2-6.
    [202]王雯慧,陈怀涛.双峰驼贲门腺区黏膜组织学与组织化学研究[J].畜牧兽医学报,2003,34(5):471-475.
    [203]王雯慧,陈怀涛.双峰驼胃底腺区黏膜组织与组织化学研究[J].畜牧兽医学报,2003,34(4):372-375.
    [204]王雯慧,陈怀涛,陈秋生,马金玲.双峰驼食管和胃黏膜相关淋巴组织的研究.中国畜牧兽医学会成立70周年会议论文集[M].北京:中国农业出版社,2006:404-409.
    [205]彭克美,张登容.动物组织胚胎学[M].北京:中国农业出版社,2002,131-145.
    [206]Wang W-H.Observation on aggregated lymphoid nodules in the cardiac glandular areas of the Bactrian Camel[J].The veterinary Journal,2003,166:205-209.
    [1]Hirotomo Katol,Kohtaro Fujihashil,Rie Katol,et al.Lack of oral tolerance in aging is due to sequential loss of Peyer's patch cell interactions[J].International Immunology,2003,15(2):145-158.
    [2]Schmucker,D L,Heyworth M F,Owen R L,et al.Impact of aging on gastrointestinal mucosal immunity[J].Digestive Diseases and Sciences,1996,4:1183.
    [3]Cornes J S.Number,size and distribution of Peyer's patches in the human small intestine[J].Gut,1965,6:25-33.
    [4]王雯慧,陈怀涛.双峰驼胃幽门腺区黏膜的组织学与组织化学研究[J].中国兽医科技,2002,3(10):29-32.
    [5]王雯慧,陈怀涛.双峰驼胃腺囊区有腺部的组织学与组织化学研究[J].中国兽医科技,2002,32(9):2-6.
    [6]Wang W-H.Observation on aggregated lymphoid nodules in the cardiac glandular areas of the Bactrian Camel[J].The veterinary Journal,2003,166:205-209.
    [7]王雯慧,陈怀涛.双峰驼贲门腺区黏膜组织学与组织化学研究[J].畜牧兽医学报,2003,34(5):471-475.
    [8]王雯慧,陈怀涛.双峰驼胃底腺区黏膜组织与组织化学研究[J].畜牧兽医学报,2003,34(4):372-375.
    [9]彭克美,张登容.动物组织胚胎学[M].北京:中国农业出版社,2002,131-145.
    [10]Getty R.Sisson and Grossman's the anatomy of the domestic animals[M].London:Saunders W B,1975:884-903.
    [11]Dougbag A,and Berg R.Histological and histochemical studies on the mucosa of the initial dilated and middle long part of the third compartment of the camel's stomach(Camelus dromedarius)[J].Anatomy,Histology and Embryology,1980,148:258-264.
    [12]刘胜旺,朱宣人,陈怀涛.双峰驼胃组织学研究[J].中国兽医学报,1996,16(5):491-496.
    [13]Eerdunchaolu,Takehana K,Kobayashi A,et al.Morphological characterization of gland cells of the glandular sac area in the complex stomach of the Bactrian Camel(Camelus bactrianus)[J].Anatomy,Histology and Embryology,1999,28:183-191.
    [14]Wang J-L,Gao L,Wang G-X,et al.Anatomical subdivisions of the stomach of the Bactrian Camel (Camelus bactrianus)[J].Journal of morphology,2000,245:161-167.
    [15]Abdel-Magied E M,Taha A A M.Morphological,morphometric and histochemical characterization of the gastric mucosa of the camel(Camelus dromedarius)[J].Anatomy,Histology and Embryology,2003,32:42-47.
    [16]苏学轼,税世容,陈北亨.养驼学[M].北京:中国农业出版社(第二版),1990:16-21.
    [17]王雯慧,陈怀涛,陈秋生,等.双峰驼食管和胃黏膜相关淋巴组织的研究.中国畜牧兽医学会成立70周年会议论文集[M].北京:中国农业出版社,2006:404-409.
    [18]Alluwaimi A M,fath EL-Bab,Ahemed M R,et al.Studies on the ileal lymphoid tissue(Peyer's patches) in camels,Najdi sheep and cattle[J].Journal of Camel Practice and Research,1998,5: 13-18.
    [19]王雯慧,陈怀涛.双峰驼脾脏的组织形态学研究[J].畜牧兽医学报,2003,34(3):268-271.
    [20]Koga T,McGhee J R,Kato,et al.Evidence for early aging in the mucosal immune system[J].Journal of Immunology,2000,165:5352.
    [21]Miller R A.The aging immune system:primer and prospectus[J].Science,1996,273:70.
    [22]Bernstein E,Kaye D,Abrutyn E,et al.Immune response to influenza vaccination in a large healthy elderly population[J].Vaccine,1999,17:82.
    [23]Castle S C.Clinical relevance of age-related immune dysfunction[J].Clinical Infectious Diseases,2000,31:578.
    [24]Van Kruiningen H J,Brian W A,Freda B J,et al.Distribution of Peyer's Patches in the distal ileum [J].Inflammatory Bowel Diseases,2002,8(3):180-185.
    [25]Fichtelius K E,Finstad J,Good R A.Bursa equivalents of bursaless vertabrates[J].Laboratory Investigation,1968,19:339.
    [26]Reynolds J D,Morris B.The evolution and involution of Peyer's patches in fetal and postnatal sheep [J].European Journal of Immunology,1983,13:627.
    [27]Reynolds J D,Morris B.The effect of antigen on the development of of Peyer's patches in sheep[J].European Journal of Immunology,1984,14:1.
    [28]Gerber,H,Morris B,Trevella W.The role of gut-associated lymphoid tissues in the generation of immunoglobulin-bearing lymphcytes in sheep[J].Australian Journal of Biomedical Science,1986,64:201.
    [29]张红卫,丛英姿,于世广.山羊羔淋巴集结的研究[J].动物学报,1995,41(2):190-196.
    [30]Pabst R,Geist M,Rothk(o|¨)tter H J,et al.Postnatal development and lymphocyte production of jejeunal and ileal Peyer's patches in normal and gnotobiotic pigs[J].Immunology,1988,64:539-544.
    [31]Landsverk T,Halleraker M,Aleksandersen M,et al.The intestinal habitat for organized lymphoid tissues in ruminants;comparative aspects of structure,function and developments[J].Vet Immunol immunopathol,1991,28:1-16.
    [32]Hogen Esch H,and Felsburg P T.Immunohistology of Peyer's patches in the dog[J].Vet Immunol Immunpathol,1992,30:147-160.
    [33]Gerber H A,Morris B,Trevella W.The role of gut-associated lymphoid tissues in the generation of immunoglobulinbearing lymphocytes in sheep[J].Aust J Exp Biol Med Sci,1986,64:201-213.
    [34]Kai-Inge Lie,Mona Aleksandersen,Thor Landsverk.Lymphoid follicles of different phenotype appear in ileum involution of the sheep ileal Peyer's patch[J].Developmental and Comparative Immunology,2005,29:539-553.
    [35]Hoft D F,Farrar P L,Kratz-Owens K,et al.Gastric invasion by trypanosoma cruzi and induction of protective mucosal immune responses[J].Infection and Immunty,1996,64(9):3800-3810.
    [36]Silvey J K,Hutchings B A,Vajdy M,et al.Role of immunoglobulin A in protection against reovirus entry into murine Peyer's patches[J].Journal of Virology,2001,75(22):10870-10879.
    [37]Michetti P,Mahan M J,Slauch J M,et al.Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium[J].Infection and Immunity,1992,60(5):1786-1792.
    [38]Koga T,McGhee J R,Kato H,et al.Evidence for early aging in the mucosal immune system[J].Journal of Immunology,2000,165:5352.
    [39]Bernstein E,Kaye D,Abrutyn E,et al.Immune response to influenza vaccination in a large healthy elderly population[J].Vaccine,1999,17:82.
    [40]Xiao-Hong Xu,Wen-Hui Wang,Qiang Gao,et al.An anatomical study of the aggregated lymphoid nodules area in the abomasum of the Bactrian camels(Camelus Bactrianus) at different ages[J].The Veterinary Journal,2009,online.
    [41]Myoung Ho Jang,Mi Na Kweon,Koichi Iwatani,et al.Intestinal villous M cells:An antigen entry site in the mucosal epithelium[J].PNAS,2004,101(16):6110-6115.
    [42]Smith M W,Thomas N W,Jenkins P G,et al.Selective transport of microparticles across Peyer's patch follicle-associated M cells from mice and rats[J].Exp Physiol,1995,80:735-743.
    [43]Andreas Gebert,Ivo Steinmetz,Susanne Fassbender,et al.Antigen transport into Peyer's patches:Increased uptake by constant numbers of M cells[J].American Journal of Pathology,2004,164(1):65-72.
    [44]成令忠.组织学[M].北京:人民卫生出版社,1993.
    [45]Husband A J,Watson D L.Immunity in the intestine[J].Veterinary Bulletin,1978,48(11):911-924.
    [46]王雯慧,陈秋生,陈怀涛,张德禄.浆细胞在双峰驼消化管中的分布及形态特征[J].中国兽医科技,2000,30(10):12-14.
    [47]Schmucker D L,Thoreux K,Owen R 1.Aging impairs intestinal immunity[J].Mechanisms of Ageing and Development,2001,122:1397-1411.
    [48]Wick G,Jansen-Durr P,Berger P,et al.Diseases of aging[J].Vaccine,2000,18:1567-1583.
    [49]Schmucker D,Owen R.Aging and the gastrointestinal mucosal immune response[J].Curr Opin Gastroenterol,1997,13:534-541.
    [50]Batory G,Jansco A,Puskas E.Antibody and immunoglobulin levels in aged humans[J].Arch Gerontol Geriatr,1984,3:175-179.
    [51]Jeandel C,Laurain M,Decottignies F,et al.Infectious diarrhea in the aged[J].Revue du Praticien,1996,46:184-188.
    [52]Leus K,Macdonald A A,Goodall G,et al.Light and scanning electron microscopy of the cardiac gland region of the stomach of the Babirusa(Babyrousa babyrussa-Suidae,Mammalia)[J].Biologies C R,2004,327:735-743.
    [53]Cray W C and Moon H W.Experimental Infection of Calves and Adult Cattle with Escherichia coli O157:H7[J].Applied and Environmental Microbiology,1995,1586-1590.
    [54]Bolton A J,Osborne M P,Wallis T S,et al.Interaction of Salmonella choleraesuis,Salmonella dublin and Salmonella typhimurium with porcine and bovine terminal ileum in vivo[J].Microbiology,1999,145:2431-2441.
    [55]Stuart W N,Low J C,Thomas E B,et al.Lymphoid Follicle-Dense Mucosa at the Terminal Rectum Is the Principal Site of Colonization of Enterohemorrhagic Escherichia coli O157:H7 in the Bovine Host[J].Infection and immunity,2003,71(3):1505-1512.
    [56]Wales A D,Clifton-Hadley F A,Cookson A L,et al.Production of attaching-effacing lesions in ligated large intestine loops of 6-month-old sheep by Escherichia coli O157:H7[J].J Med Microbiol,2002,51:755-763.
    [57]Ferguson A,Murray D.Quantitation ofintraepithelial lymphocytes in human jejunum[J].Gut,1971,12:988-994.
    [58]周珍文,胡旭初,余新炳.枯草杆菌芽孢载体疫苗的研究及其在寄生虫病防治中的应用前景[J].热带医学杂志,2007,7(9):935-937.
    [59]周珍文,胡旭初,邓秋连,等.枯草杆菌芽孢抵抗胃肠道环境的耐性评估[J].热带医学杂志,2008,8(3):235-239.
    [60]Alexopoulosc C,Georgoulakis I E,Tzivara A,et al.Field evaluation of the eggect of a probiotic-containing Bacilus licheniformis and Bacilus subtilis spores on the health status,performance,and carcass quality of grower and finisher pigs[J].J Vet Med,2004,51:306-312.
    [61]Due L H,Hong H A,Uyen N Q,et al.Intracellular fate and immunogenicity of B.subtilis spores[J].Vaccine,2004,22:1873-1885.
    [62]周珍文,胡旭初,邓秋连,等.枯草杆菌芽孢抵抗胃肠道环境的耐性评估[J].热带医学杂志,2008,8(3):235-239.
    [63]McGhee J R,Mestechy J,Elson C O,et al.Regulation of IgA synthesis and immune response by T cells and interleukins[J].Clin Immunol,1989,9:175.
    [64]杨倩.SIgA及生长抑素对鸡粘膜免疫调节的研究[D].南京:南京农业大学,2000.
    [65]Lefrancoi L.Intraepithelial lymphocytes of the intestinal mucosa:curiouser and couriouser[J].Semin Immunol,1991,3(2):99-108.
    [66]赵太平,徐玉东,李光千.口服伤寒杆菌后小鼠肠道黏膜上皮内淋巴细胞的变化[J].解剖学研究,2006,28(3):186-189.
    [67]Bucy R P,Chen H,and Cihak J.Avian T cells expressing γδ receptors localize in the splenic sinusoids and the intestinal epithelium[J].Immunol,1988,141:2200.
    [68]杨倩.发现粘膜上皮中淋巴细胞的“腔排”现象[[J].南京农业大学学报,2003,26(3):121-123.
    [69]Taguchi T,Aicher W K and Fujihashi K.Novel function for intestinal intraepithelal lymphocytes Murine CD3+,γδTCR T cells produce IFN-γ and IL-5[J].Immu,1991,147(11):3736.
    [70]Pamela A K,Susan C U,Marian R N.Comparison of the oral,rectal and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women[J].Infect Immu,1997,65(4):1387-1388.
    [71]谢遵江,刘文庆,贺业春,等.小鼠肠上皮淋巴细胞在黏膜免疫应答中的形态学研[J].解剖学报,1997,3(28):309-313.
    [72]杨倩,练高建,黄国庆,等.半胱胺对鸡小肠粘膜中分泌型IgA细胞上皮内淋巴细胞的影响[[J].南京农业大学学报,2002,25(2):89-92.
    [73]金光明,刘胜兵,杨倩,等.猪繁殖与呼吸综合症病毒疫苗不伺接种途径对母猪生殖道粘膜淋巴细胞分布的影响[J].南京农业大学学报,2004,27(1):10-13.
    [74]杨倩,张小飞.淋巴细胞在黏膜上皮中的运动[[J].解剖学杂志,2005,28(2):145-148.
    [75]Kagnoff M F.Mucosal immunology:New frontiers[J].Immunology Today,1996,17(2):57-59.
    [76]Snoeck V,Peters I R,Cox E.The IgA system:a comparison of structure and function in different species[J].Vet Res,2006,37(3):455-467.
    [77]葛忠源,熊东艳,张启勇,等.黏膜免疫的研究进展[J].青海畜牧兽医杂志,2008,38(5):44-47.
    [78]李诺.黄芪提取物对鸡生长发育及免疫功能的影响[D].北京:中国农业大学,2004.
    [79]杨玉荣.益生素及其与ND疫苗协同对雏鸡局部黏膜免疫变化的影响和机理[D].东北农业大学,2003.
    [80]Berin M C,Kiliaan A J,Yang P C,etal.The influence of mast cells on pathways of trans-epithelial antigen transport inratintestine[J].Immunol,1998,161:2561.
    [81]Hiroi T,Yanagita M,Iijima H,etal.Dificiency of IL-5 receptor chainese selectively influences the development of the common mucosal immune system independent IgA producing B1 cell in mucosa associated tissues[J].J Immunol,1999,162:821.
    [82]巢国正,朴正浩等.大鼠乳腺局部免疫的调节机制-泌乳期与静止期乳腺肥大细胞分布的比较[J].中国兽医学报,2005,25(1):53-55.
    [83]呼格吉乐图等.家兔呼吸道肥大细胞分布的研究[J].科学技术与工程,2004,9(9):764-767.
    [84]周金星,高登慧,毕亚玲.动物肥大细胞异质性研究概[J].贵州畜牧兽医,2004,28(10):11-12.
    [85]崔慧林,赵春花等.人胎儿呼吸道肥大细胞的超微结构[J].解剖学杂志,2003,26(3):259-261.
    [86]刘斌.弥散神经内分泌系统[M].组织学(第2版).北京:人民卫生出版社,1993.
    [87]刘介眉,严庆汉,路英杰,等.病理组织染色的理论方法和应用[M].北京:人民卫生出版社,1983,199-204.
    [88]佘锐萍,刘环,严晋荣,等.感染球虫兔圆小囊淋巴组织内嗜银细胞的观察[J].中国兽医科技,2002,32(7):27-30.
    [89]李丕鹏,王平.蛇胸腺中的APUD细胞[J].中国科学(B辑),1994,24(11):1179-1182.
    [90]李丕鹏,邓泽沛,王平.蛇胸腺的神经内分泌细胞[J].解剖学报,1997,28(4):429-431.
    [91]刘环,佘锐萍.注入外源性抗原后兔圆小囊的形态学研究[J].动物医学进展,1999,20(3):180.
    [92]刘环,佘锐萍.注入辣根过氧化物酶及巴氏杆菌后兔圆小囊的细胞化学研究[J].畜牧兽医学报,2003,34(1):82-87.
    [93]Sminia T,Janse E M,and Plesch B E.Ontogeny of Peyer's patches of the rat[J].Anat Rec,1983,207(2):309-316.
    [94]Reynolds J D,Morris B.The effect of antigen on the development of Peyer's patches in sheep[J].EurJ Immunol,1984,14:1-6.
    [95]Beyazl F and Asti R N.Development of Ileal Peyer's Patches and Follicle Associated Epithelium in Bovine Foetuses[J].Anat Histol Embryol,2004,33:172-179.
    [96]Barman N N,Bianchi A T J,Zwart R J,et al.Jejunal and ileal Peyer's patches in pigs differ in their postnatal development[J].Anat Embryol,1997,195:41-50.
    [97]Befus A D,Johnston N,Leslie G A,et al.Gut-associated lymphoid tissue in the chicken.I.Morphology,ontogeny,and some functional characteristics of Peyer's patches[J].The Journal of Immunology,1980,125(6):2626-2632.
    [98]Reynolds J D and Morris B.The evolution and involution of Peyer's patches in fetal and postnatal sheep[J].Eur J Immunol,1983,13(8):627-635.
    [99]Landsverk T,Janson A,Nicander L,et al.Carbonic anhydrase-a marker for particles shed from the epithelium to the lymphoid follicles of the ileal Peyer's patches in goat kids and lambs[J]. Immunol Cell Biol, 1987, 65: 425-429.
    [100] Ishino S. Kadota K, Matsubara Y, et al. Immunohistochemical studies on ontogeny of bovine lymphoid tissues [J]. J Vet Med Sci, 1991, 53: 877-882.
    [101] Asari M, Kawaguchi N, Wakui S, et al. Development of the bovine ileal mucosa [J]. Acta Anat, 1987,129:315-324.
    [102] Owen R L. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer's Patch in the normal unobstructed mouse intestine: An ultrastructural study [J]. Gastroenterology, 1977,72:440-451.
    [103] Michel J R, Antonio R. Dome epithelial M cells dissociated from rabbit gut-associated lymphoid tissues [J]. Am Res, 1986,47 (12): 2577-2583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700