用户名: 密码: 验证码:
Claudin-3作为候选癌标在前列腺癌诊治中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌为中老年男性常见的恶性肿瘤和主要死亡原因之一。在美国男性的癌症相关致死原因中前列腺癌占据了第二的位置。在恶性肿瘤中,前列腺癌的自然病史较为独特,它发病隐匿,早期缺乏特征性表现,易发生早期转移,出现症状后,往往已是晚期。另一方面,目前前列腺癌多采用手术治疗,创伤较大,虽然可以应用内分泌疗法进行治疗,但治疗是姑息性的,肿瘤最终将失去对内分泌治疗的敏感性而继续发展,导致患者死亡;而且前列腺肿瘤对化疗敏感性差,治疗较为棘手。上皮来源的肿瘤占了全部恶性肿瘤的90%,他们对化疗药物的不敏感成为临床上遇到的主要问题之一。在前列腺癌诊断和治疗领域,寻找和鉴定前列腺癌差异表达基因,将其作为前列腺癌诊断及治疗靶点目前已经成为国际上研究前列腺癌的热点之一。
     研究表明在肿瘤发生过程中,细胞间的紧密连接、连接粘附分子和基底蛋白等膜蛋白存在异常表达。这些研究提示异常表达的膜蛋白对于作用于肿瘤细胞的药物来说可能具有重要意义。
     Claudin蛋白是存在于紧密连接中的分子量约为23KDa的跨膜蛋白,它在紧密连接的屏障功能当中起了非常重要的作用。包括Claudin-3和Claudin-4在内,Claudin蛋白家族有超过20个成员,并且它们表现出明显的组织特异性。有趣的是,在卵巢癌、肝细胞癌、胰腺癌、前列腺癌等上皮来源的恶性肿瘤中,常常观察到Claudin蛋白有上调表达。而且研究发现Claudin-3有可能作为前列腺癌的上调表达基因,成为前列腺癌新的候选癌标进行临床诊治的研究。
     随着化学、药理学、蛋白质组学、基因组学等研究领域的快速发展,目前发现并研制了很多新的抗肿瘤药物,但就临床应用来说,有必要找到一种使这些新药更有选择性发挥其作用的药物传输系统。产气荚膜梭菌肠毒素(CPE)可能成为这一系统,它是一个分子量为35KDa的多肽,能导致食物中毒并与大多数的人食源性传染病相关。该肠毒素有两个功能不同的区域组成:一个是N-末端大约为22KDa的区域,主要起细胞毒作用;另一个是C-末端大约为13KDa的区域,这一结构域介导了CPE和目标细胞膜的结合并使之部分的进入胞质内部,引发细胞对大量小分子通透性的改变,从而引起细胞的空泡变和溶解。在Claudin蛋白家族中只有Claudin-3和4是CPE的受体,可以结合CPE并引起胞溶作用。这些发现表明CPE可以用来特异性结合上皮来源癌细胞中的Claudin跨膜蛋白。目前CPE已经被成功的用于治疗高表达Claudin-3和4的卵巢癌和胰腺癌中。本研究拟通过实验探讨Claudin-3作为CPE的靶标在前列腺癌诊治中可否成为一个候选癌标。
     方法:采用免疫组化及Western blot方法检测Claudin-3在前列腺增生及前列腺肿瘤组织的表达状态,同时分析Claudin-3与前列腺癌病理分期的关系,评价Claudin-3作为前列腺癌诊断候选癌标的价值。培养并鉴定表达肠毒素的产气荚膜梭菌标准菌株64615,接着提取细菌的基因组DNA,PCR扩增克隆出全长cpe基因并连接入pET-28a载体质粒中,构建含全长cpe基因的重组表达质粒pET-28a-cpe,经酶切及测序鉴定正确后,转化入感受态E.coli BL21中表达,并优化表达条件,进行最适诱导剂浓度和最适诱导时间的筛选;再通过Ni-NTA柱进行亲和层析纯化。纯化后的CPE作用于体外培养的人前列腺癌细胞株22RV1以及前列腺癌荷瘤裸小鼠模型,在CPE安全剂量下观察CPE激发的对前列腺癌癌细胞的抑制作用,进一步探讨Claudin-3作为前列腺癌治疗候选靶点的可行性及安全性,为CPE今后的临床应用打下基础。
     结果:
     1、前列腺组织石蜡切片免疫组化半定量分析显示Claudin-3在前列腺组织腺体周围细胞的胞膜中均有不同程度的表达;前列腺癌组中的表达显著高于良性前列腺增生组,但在前列腺癌的高、中、低分化组中表达无统计学差异。用Western blot方法对前列腺组织中Claudin-3蛋白的含量分析显示:前列腺癌组中的Claudin-3蛋白表达显著高于前列腺增生组。
     2、复苏、培养产肠毒素的产气荚膜梭菌标准菌株64615,并进行菌株的鉴定。提取细菌的基因组DNA,PCR扩增出全长cpe基因,并与质粒载体pET-28a连接,构建了重组的pET-28a-cpe质粒,酶切鉴定及测序结果表明,成功构建了原核表达质粒pET-28a-cpe。
     3、将质粒pET-28a-cpe转化入E.coli BL21感受态中诱导表达,并优化诱导表达的条件,最后通过Ni-NTA亲和层析进行分离纯化,纯化后的重组CPE蛋白浓度达到90%以上。
     4、进行人前列腺癌细胞株22RV1和PC-3的体外培养,并应用Claudin-3单抗进行免疫荧光染色,证实体外培养的人前列腺癌细胞株22RV1可以特异性高表达Claudin-3。将CPE作用于培养的22RV1,显示CPE对肿瘤细胞具有明显的细胞毒作用,细胞增殖明显降低。
     5、建立种植22RV1的前列腺癌荷瘤裸鼠模型。将CPE进行瘤内注射,发现肿瘤细胞坏死、肿瘤体积明显缩小,肿瘤生长明显延缓。
     结论:Claudin-3在前列腺癌组织中有特异性高表达,但与肿瘤的恶性程度相关性不明显;运用基因工程方法,成功构建了原核表达质粒pET-28a-cpe并转化E.coli BL21,诱导其表达CPE后,通过Ni-NTA亲和层析进行分离纯化,获得了较高纯度的CPE;CPE对特异性高表达Claudin-3的体外培养前列腺癌细胞株及前列腺癌荷瘤裸鼠模型均能产生明显生物学效应,发生细胞毒性作用,使肿瘤细胞坏死、肿瘤生长延缓。上述结果提示Claudin-3可能成为前列腺癌诊断和治疗的新癌标;本研究为CPE应用于肿瘤的临床研究及治疗提供了可能的前景。
Prostate cancer is a most common malignant carcinoma and main reason for death in male in the world. Mortality attributable to prostate cancer is the second factor causing of cancer-related death in men of United States. The failure rate of local therapy for early stage disease combined with the limited duration of effective palliative management with hormonal manipulation for advanced metastatic disease beg the development of newer therapeutic agents and strategies. Recent advances in the use of combination chemotherapy for advanced hormone-refractory prostate cancer are encouraging but remain inadequate. Epithelial-derived tumors account for 90% of all malignant tumors, and their resistance to chemotherapy is a major clinical problem. Recent progress in combinatorial chemistry, proteomics, and genomics research has further advanced the development of effective drugs against carcinomas, but, for clinical application, it is also essential to develop selective and efficient drug delivery systems for these novel drugs.
     Tight junctions (TJs), which are points of intercellular contact and interaction, are characteristic and complex structures in the epithelia. TJs play a critical role in forming a barrier between apical and basal sides of the cell, and they are present on the lateral side of the cell where they mediate intercellular interactions. Loss of polarity is a typical feature of transformation in epithelial cells.
     Furthermore, abnormal localization of membrane proteins, including TJ components, adherence junction proteins, and apical and basal proteins, is observed during carcinogenesis. These findings indicate that abnormally localized membrane proteins may be useful for targeting drugs to carcinoma cells.
     Claudin is an approximately 23KDa transmembrane protein found in the TJs, and it plays a pivotal role in the barrier function of the TJ. There are more than 20 members of claudin family including Claudin-3 and Claudin-4, and they are expressed in a tissue-specific manner. Interestingly, the overexpression of claudins is frequently observed in the epithelium of ovarian cancer, hepatocellular carcinoma, malignant pancreatic cancer, and prostate cancer. Therefore, claudins are promising candidates for the targeting of anticancer drugs to carcinoma cells.
     Clostridium perfringens enterotoxin (CPE) is a single polypeptide with a molecular mass of 35 KDa that causes food poisoning associated with most human food-borne illnesses. CPE is made up of two functionally distinct domains: an approximately 22-KDa N-terminal domain that mediates cytotoxicity, and an approximately 13KDa C-terminal domain (C-CPE) that mediates binding allowing partial insertion of CPE into the target cell membrane with resultant initiation of massive small molecule permeability changes, osmotic cell ballooning, and lysis. However, only claudin-3 and 4 in the family of claudin proteins are the receptors for CPE to bind it and mediate toxin-dependent cytolysis. These findings suggest that CPE could be used for the targeting of claudins on epithelial carcinoma cells. Indeed, CPE has been successfully used to treat human ovarian and pancreatic cancers, both of which express high levels of claudin-3 or -4. The present study was designed to determine whether claudin-3 is expressed in malignant epithelial cells of prostate cancer to serve as a potential target for a CPE-mediated therapeutic strategy.
     Methods: The expressions of Claudin-3 protein in prostate cancer and benign hyperplasia of prostate were detected by immunohistochemistry and Western blot, and its contribution on pathological stage of tumor were analysed. The stand Clostridium perfringens 64615 which could produce Clostridium perfringens enterotoxin was incubated and identified. Then the full-length gene of cpe which was extracted and amplified from the whole-length DNA of the Cl. Perfringens was correctly inserted into the vector pET-28a by restriction endonuclease digestion with NdeI plus XhoI. The protein CPE was expressed after IPTG induction, then it was isolated and purified from the total proteins of E. coli BL21 transformed by the recombinant prokaryotic plasmid pET-28a-cpe depending on Ni-NTA affinity chromatography. The human prostate cancer cell line 22RV1 and PC-3 were cultured separately and detected by fluorescein stain. Changes of the cultured human prostate cancer cell line 22RV1 were observed after CPE was added into the 96 well plate. The Nude mice Balb/c were subcutaneously inoculated human prostate cancer cell line 22RV1. The mice of different groups were injected different dose of CPE in the local position of the inoculated tumor. The volume of the mice tumor were recorded and the pathological changes were observed by HE staining and immunohistochemistry.
     Results:
     1. Claudin-3 was expressed on the cell membrane of prostate inequablely. Compared with those sections of benign hyperplasia of prostate, the expression of Claudin-3 was significantly increased in the cases of prostate cancer by immunohistochemistry and Western blot.
     2. The stand Clostridium perfringens 64615 which could produce Clostridium perfringens enterotoxin was revived、incubated and identified. The full-length gene of cpe which was extracted and amplified from the whole-length DNA of the Cl. Perfringens was correctly inserted into the vector pET-28a by restriction endonuclease digestion with NdeI plus XhoI. The recombinant prokaryotic plasmid pET-28a-cpe was confirmed by partial nucleotide sequencing and restriction endonuclease digestion.
     3. The reconstructed protein was expressed after IPTG induction and isolated and purified from the total proteins of E. coli BL21. By induction of IPTG, the E. coli BL21 transformed by the recombinant prokaryotic plasmid pET-28a-cpe. Ni-NTA affinity chromatography was used for the Purification. The purity of the protein CPE was detected with SDS-PAGE, which was confirmed to have a purity of more than 90%.
     4. The human prostate cancer cell line 22RV1 could highly expressed claudin-3 detected by fluorescein stain compared with the human prostate cancer cell line PC-3. Cell line 22RV1 was inhibited by CPE mediating toxin-dependent cytolysis after CPE was added into the 96 well plate.
     5. The Nude mice Balb/c were subcutaneously inoculated human prostate cancer cell line 22RV1 successfully. After injecting CPE in the local position of the inoculated tumor, the volume of the mice tumor was reduced and the cellular necrosis of the inoculated tumor was observed by HE staining and immunohistochemistry.
     Conclusions: Claudin-3 protein is significantly highly expressed in prostate cancer. The protein CPE was successfully expressed in E. coli BL21 and purified by gene engineering. CPE could cause biological effect and mediate toxin-dependent cytolysis in cultured cells in vitro and in inoculated tumor of the Nude mice. Claudin-3 protein may become a new marker in the diagnose and treatment of prostate cancer. It is may be possible that CPE would be used as a new therapeutic strategy on the reasearch of clinic treatment for tumor in future.
引文
1.周志耀.前列腺恶性肿瘤.见:吴阶平主编.吴阶平泌尿外科.上卷.济南:山东科学技术出版社,2004.
    2.梅骅:前列腺癌的临床诊断。泌尿外科专集(一):前列腺增生与前列腺癌(第一版)郭应禄主编,北京:人民卫生出版社出版。1998年:第175页。
    3. Stephan C, Yousef GM, Scorilas A, et al. Hepsin is highly over expressed in and a new candidate for a prognostic indicator in prostate cancer. J Urol. 2004 Jan; 171 (1): 187-91.
    4. Boon K, Osorio EC, Greenhut SF, et al. An anatomy of normal and malignant gene expression. Proc Natl Acad Sci USA. 2002, 99(17):11287-11292.
    5. Rangel LB, Agarwal R, D'Souza T, et al. Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res. 2003 Jul;9(7):2567-75.
    6. Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, et al. Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin Cancer Res. 2004 Jul l;10(13):4427-36.
    7. Lu KH, Patterson AP, Wang L, et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin Cancer Res. 2004 May 15;10(10):3291-300.
    8. Soini Y. Claudins 2, 3, 4, and 5 in Paget's disease and breast carcinoma. Hum Pathol. 2004Dec;35(12):1531-6. 14.
    9. Tokes AM, Kulka J, Paku S, et al. Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res. 2005;7(2):R296-305.
    10. Long H, Crean CD, Lee WH, et al. Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res. 2001 Nov 1;61(21):7878-81.
    11. Sawada N, Murata M, Kikuchi K, et al. Tight junctions and human diseases. Med Electron Microsc, 2003, 36(3): 147-156.
    12. Hirohashi S, Kanai Y. Cell adhesion system and human cancer morphogenesis. Cancer Sci, 2003,94(7): 575-581.
    13. Gonzalez-Mariscal L, Betanzos A, Nava P, et al. Tight junction proteins. Prog BiophysMol Biol, 2003 ,81(l):l-44.
    14. Morita K,Sasaki H ,Furuse M, et al . Endothelial claudin: claudin-5P TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol ,1999 ,147 (1):185-194.
    15. Furuse M, Fujita K, Hiiragi T, et al . Claudin-1 and -2: novel integral membrance proteins localizing at tight junctions with no sequence similarity to occluding. J Cell Biol,1998 ,141(7): 1539-1550.
    16. Chem Y, Miller C ,Mosher R , et al . Identification of cervical cancer markers by cDNA and tissue microarrays. Cancer Res ,2003 ,63(8):1927-1935.
    17. Lee J W, Lee S J , Seo J , et al . Increased expressions of claudin-1 and claudin-7 during the progression of cervical neoplasia. Gynecol Oncol ,2005 ,97(1) :53-59.
    18. Sobel G, Paska C, Szabo I, et al . Increased expression of claudins in cervical squamous intraepithelial neoplasia and invasive caricinoma. Hum Pathol ,2005 ,36 (2): 162-169.
    19.丁啸梅,周文郁,彭俊云等.组织化学手册[M].北京:人民卫生出版社,1992.280-281.
    20. Heiskala M, Peterson PA, Yang Y. The roles of claudin superfamily proteins in papacellular transport. Traffic, 2001, 2:93-98.
    21. Harhaj NS, Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol, 2004, 36(7): 1206-1237.
    22. Mitic LL , Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol ,1998 ,60:121-142.
    23. Sakaguchi T, Gu X, Golden M, et al. Cloning of the human claudin-2,-5'-flanking region revealed a TATA-less promoter with conserved binding sites in mouse and human for caudalrelated homeodomain proteins and hepatocyte nuclear factor-1 alpha. J Biol Chem, 2002, 277(24): 21361-21370.
    24. Agarwal R, Souza T, Morin PJ . Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res , 2005 ,65:7378-7385.
    25. Sato N , Fukushima N , Maitra A ,et al . Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol, 2004 ,164:903-914.
    26. De Oliveiraa SS , De Oliveira IM, Souza WD. Claudins upregulation in human colorectal cancer. FEBS Lett, 2005,579: 6179-6185.
    27. Lu KH, Patterson AP, Wang L, et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin cancer res, 2004, 10:3291-3300.
    28. Vanitalle CM, Coleglio OR,Amderson JM, et al. The cytoplasmic tails of claudins can influence tight junction barrier ropertier trough effects on protein stability. J Men-br Biol, 2004, 199: 29-38.
    29. Long H ,Crean CD ,Lee WH ,et al . Expression of clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res , 2001 ,61 :7878-7881.
    30. Michl P, Barth C, BuchholzM, et al. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res, 2003, 63 (19): 6265-6271.
    31. Michl P ,Gress TM.Bacteria and bacterial toxins as therapeutic agents for solid tumors. Curr Cancer Drug Targets , 2004 ,4 :689-702.
    32. Kominsky SL, ValiM, KorzD, et al. Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin-3 and 4. Am J Pathol,2004, 164 (5): 1627-1633.
    33. Santin AD, Cane S, Bellone S, et al. Treatment of chemotherapy resistant human ovarian cancer xenografts in CB217/SCID mice by intraperitoneal administration of Clostridium perfringens enterotoxin. Cancer Res, 2005, 65 (10): 4334-4342.
    34. Nichols LS , Ashfaq R , Iacobuzio2Donahue CA. Claudin-4 protein expression in primary and metastatic pancreatic cancer : support for use as a therapeutic target. AmJ Clin Pathol, 2004 ,121 :226-230.
    35. Cass B, Pham PL, Kamen A, et all Purification of recombinant proteins from mammalian cell culture using a generic double - affinity chromatography scheme. Protein Expr Purif, 2005, 40 (1): 77 -85.
    36. Ferrer SL, Cedano J, Querol E, et al. Cloning, expression and purification of human epidermal growth factor using different expression systems. J Chromatogr B Analyt Technol Biomed Life Sci, 2003, 788 (1): 113- 123.
    1. Tsukita S, Furuse M, Itoh M, et al. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol, 2001, 2(4): 285-293.
    2. Yeaman C, Grindstaff K K,NelsonW J, et al. New perspective on mechanisms involved in generating ep ithelial cell polarity. Physiol Rev, 1999, 79 (1): 73-98.
    3. Ebnet K, Aurrand2LionsM, Kuhn A, et al. The junctional adhesion molecule ( JAM) family members JAM-2 and JAM-3 associate with the cell polarity p rotein PAR-3: a possible role for JAMs in endothelial cell polarity. Journal of Cell Science, 2003, 116(2): 3879-3891.
    4. Furuse M, Hiiragi T, Fujimoto K, et al. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occluding. J Cell Biol, 1998,141 (7):391-401.
    5. P Claude. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol, 1978, 39 (223): 219-232.
    6. Tsukita S, Furuse M. Occludin and claudins in tight junction strands: leading orsupporting p layers? Trends Cell Biol,1999, 9 (7): 268-273.
    7. Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol, 1993, 123 (622): 1777-1788.
    8. FuruseM, Sasaki H, Fujimoto K, et al. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol, 1998, 143 (2): 390-401.
    9. Kubota K, Furuse M, Sasaki H, et al. Ca2+-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. Curr Biol, 1999,9(18): 1035-1038.
    10. Zhong Y, Saitoh T, Minase T, et al. Monoclonal antibody 7H6 reacts with a novel tight junction-associated protein distinct from ZO-1, cingulin and ZO-2. J Cell Biol, 1993, 120 ( 2): 477-483.
    11. Keon B H, Schafer S, Kuhn C, et al. Symp lekin, a novel type of tight junction plaque protein. Cell Biol, 1996, 134 (4 ): 1003-1018.
    12. Citi S, Sabanay H, Jakes R, et al. Cingulin, a new peripheral component of tight junctions. J Nature, 1988, 333 (6170) :272-276.
    13. Weber E, Berta G, Tousson A, et al. Expression and polarized targeting of a rab3 isoform in epithelial cells. J Cell Biol, 1994, 125 (3): 583-594.
    14. Yamamoto T, Harada N, Kano K, et al. The Ras TargetAF-6 Interactswith ZO-1 and Serves as a Peripheral Component of Tight Junctions in Epithelial Cells. J Cell Biol, 1997, 139(3 ):785-795.
    15. Izumi Y, Hirose T, Tamai Y, et al. An Atyp ical PKC Directly Associates and Colocalizes at the Ep ithelial Tight Junction with ASIP, a Mammalian Homologue of Caenorhabditis elegans Polarity Protein PAR-3. J Cell Biol, 1998, 143 (1): 95-106.
    16. Chandana S, Sanjay K, Nigam, et al. Expanding Role of G Proteins in Tight Junction Regulation: GaS Stimulates TJ Assembly. Biochemical and Biophysical Research Communications, 2001, 285 (2): 250-256.
    17. Ma TY, Tran D, Hoa N, et al. Mechanism of extracellular calcium regulation of intestinal ep ithelial tight junction permeability: role of cytoskeletal involvement. Microsc Res Tech, 2000,51 (2): 156-168.
    18. Tobias NM, Jennifer Hunt, Catherine Schwesinger, et al. Gal2 regulates epithelial celljunctions through Src tyrosine kinases. Am J Physiol Cell Physiol, 2003, 285 (5) : C1281-C1293.
    19. Shobha Gopalakrishnan, Narayan Raman, Simon J. Atkinson Rho GTPase signaling regulates tight junction assembly and protects tight junctions during ATP depletion. Am J Physiol Cell Physiol, 1999, 275 (3): C798-C809.
    20. T Sakaguchi, H Kohler, X Gu, et al. Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell Microbiol, 2002, 4 (6) : 367-381.
    21. Tobias NM, Catherine Schwesinger, Bradley MD. Zonula occludens-1 is a scaffolding protein for signalingmolecules. J Biol Chem, 2002, 277 (28): 24855-24858.
    22. X Han, MP Fink, RL Delude. Proinflammatory cytokines cause NO-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock, 2003, 19 (3): 229-237.
    23. Giulia Ranaldi, Iolanda Marigliano, Isabella Vesp ignani, et al. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line (1). J Nutr Biochem, 2002, 13 (3): 157-167.
    24. Mine Y, Zhang JW. Surfactants enhance the tight junction permeability of food allergens in human intestinal ep ithelial Caco-2 cells. Int Arch Allergy Immunol, 2003, 130 (2): 135-142.
    25. Eveline E, Schneeberger, RobertD. Lynch. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol, 2004, 286 (6): cl213-cl228.
    26. BM Gumbiner. Signal transduction of beta-catenin. Curr Op in Cell Biol, 1995, 7 (5): 634-640.
    27. Johnson L G. App lications of imaging techniques to studies of epithelial tight junctions. Adv Drug Deliv Rev, 2005, 57 (1 ): 111-121.
    28. James Melvin Anderson. Molecular Structure of Tight Junctions and Their Role in Epithelial Transport. News Physiol Sci, 2001, 16 (6): 126-130.
    29. Martin Padura I, Lostaglio S, Schneemann M, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol, 1998, 142 ( 1 ) : 117-127.
    30. Christina M. Van Itallie and James Melvin Anderson. The Molecular Physiology of Tight Junction Pores. PHYSIOLOGY, 2004,19 (12): 331-338.
    31. DW Powell. Barrier function of epithelia. Am J Physiol-Legacy Content, 1981, 241 (4): G275-288.
    32. Laura LMitic, ChristinaM, Van Itallie, et al. Molecular Physiology and Pathophysiology of Tight Junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol, 2000, 279 ( 2 ): G250-G254.
    33. Yan-Hua Chen, Qun Lu, Daniel A, et al. Nonreceptor Tyrosine Kinase c-Yes Interacts with Occludin during Tight Junction Formation in Canine Kidney Epithelial Cells. Mol Biol Cell, 2002, 13 (4): 1227-1237.
    34. Asma Nusrat, Jason A Chen, Chris S Foley, et al. The Coiled-coil Domain of Occludin Can Act to Organize Structural and Functional Elements of the Epithelial Tight Junction. J Biol Chem, 2000, 275 (38): 29816-29822.
    35. Mitinori Saitou, Kazushi Fujimoto, Yoshinori Doi, et al. Occludin-deficient Embryonic Stem Cells Can Differentiate into Polarized Epithelial Cells Bearing Tight Junctions. J Cell Biol, 1998, 141 (2) : 397-408.
    36. Mitinori Saitou, Mikio Furuse, Hiroyuki Sasaki, et al. Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands. Mol Biol Cell, 2000, 11 (12): 4131-4142.
    37. Mikio Furuse, Hiroyuki Sasaki, Shoichiro Tsukita. Manner of Interaction of Heterogeneous Claudin Species Within and Between Tight Junction Strands. J Cell Biol, 1999, 147(4): 891-903.
    38. Oscar R Colegio, Christina Van Itallie, Christoph Rahner, et al. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol, 2003, 284 (6): 1346-1354.
    39. Yoko Hamazaki, Masahiko Itoh, Hiroyuki Sasaki, et al. Multi-PDZ Domain Protein 1 (MUPP1) Is Concentrated at Tight Junctions through Its Possible Interaction with Claudin-1 and Junctional Adhesion Molecul. J Biol Chem, 2002,277(1) :455-46J.
    40. Michel Aurrand-Lions, Lidia Duncan, Christoph Ballestrem, et al. JAM-2, a Novel immunoglobulin Superfamily Molecule, Expressed by Endothelial and LymphaticCells. J Biol Chem, 2001, 276 (4): 2733-2741.
    41. M Pia Arrate, JoseM Rodriguez, TuanM Tran, et al. Cloning of Human Junctional Adhesion Molecule-3 ( JAM-3) and Its Identification as the JAM-2 Counter-receptor. J Biol Chem, 2001, 276 (49): 45826-45832.
    42. Susumu Hirabayashi, Makiko Tajima, Ikuko Yao, et al. JAM-4, a Junctional Cell Adhesion Molecule Interacting with a Tight Junction Protein, MAGI-1. Mol Cell Biol, 2003, 23 ( 12 ) :4267-4282.
    43. A Fukuhara, K Irie, H Nakanishi, et al. Involvement of nectin in the localization of junctional adhesion molecule at tight junctions. Oncogene, 2002, 21 (50): 7642-7655.
    44. Sawada N, MurataM, Kikuchi K, et al. Tight junctions and human diseases. Med Electron Microsc, 2003, 36 ( 3 ): 147-156.
    45. Gonzalez-Mariscal L, BetanzosA, Nava P, et al. Tight junction proteins. Prog Biophys Mol Biol, 2003, 81(1): 1-44.
    46. Konstantin Adamsky, Katya Arnold, Helena Sabanay, et al. Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase (RPTP ) and tyrosine-phosphorylated proteins. J Cell Sci, 2003, 116 (7): 1279-1289.
    47. Atsushi Suzuki, Tomoyuki Yamanaka, Tomonori Hirose, et al. Atypical Protein Kinase C Is Involved in the Evolutionarily Conserved PAR Protein Complex and Plays a Critical Role in Establishing Epithelia specific Junctional Structures. J Cell Biol, 2001, 152(6): 1183-1196.
    48. Grieb P, Forster R E, Strome D, etal. O2 exchange between blood and brain tissues studied with 18O2 indicator-dilution technique. J Appl Physiol, 1985, 58: 1929- 1941.
    49. Pardridge W M, Eisenherg J, Yang J. Human blood-brain barrier insulin receptor. J Neurochem, 1985,4: 1771-1778.
    50. Zhang Y, Pardridge W M. Rapid transferrin efflux from brain to blood across the blood-brain barrier. J Neurochem, 2001, 76:1597-1600.
    51. Allt G, Lawrenson J G. Pericytes: cell biology and pathology. Cells Tissues Organs, 2001,169:1-11.
    52. Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res, 1998, 53: 637-644.
    53. Bandopadhyay R, Orte C, Lawrenson J G, etal. Contractile proteins in pericytes at theblood-brain and blood-retinal barriers. J Neurocytol, 2001, 30: 35-44.
    54. Lindahl P, Johansson B R, Leveen P, et al. Pericyte loss and microaneurysm formation in PDGF-p-deficient mice. Science, 1997, 277: 242-245.
    55. Morita K, Sasaki H, Fujimoto K, et al. Claudin-11/OSP-based tight junction of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol, 1999, 145: 579-588..
    56. Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol, 1999, 147: 891-903.
    57. Liebner S, Fischmann A, Rascher G, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol(Berl), 2000, 100: 323-331.
    58. Morita K, Sasaki H, Furuse M, et al. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol, 1999, 147: 185-194
    59. Liebner S, Kniesel U, Kalbacher H, et al. Correlation of tight junction morphology with the expression of tight junction protein in blood-brain barrier endothelial cells. Eur J Cell Biol, 2000, 79: 707-717.
    60. Lippoldt A, Kniesel U, Liebner S, et al. Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneoously hypertensive rat blood-brain barrier endothelial cells. Brain Res, 2000, 885: 251-261.
    61. Ando-Akatsuka Y, Saitou M, Hirasc T, et al. Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog and ratkangaroo homologues. J Cell Biol, 1996, 133: 43-47.
    62. Hirase T, Staddon J M, Saitou M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci, 1997, 110: 1603-1613.
    63. Papadopoulos M C, Saadoum S, Woodrow CJ, et al. Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol, 2001, 27: 384-395.
    64. Matter K, Balda M S. Signalling to and from tight junction. Nat Rev Mol Cell Biol. 2003,4: 225-236.
    65. Sonoda N, Furuse M, Sasaki H, et al. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight unction barrier. J Cell Biol, 1999,147: 195-204.
    66. Aurrand-Lions M, Johnson-Leger C, Wong C, et al. Heterogeneity of endotbelial junction is reflected by difierential expression and specific subcellular localization of the three JAM family members. Blood, 2001, 98: 3699-3707.
    67. Bazzoni G, Martinez-Estrada 0 M, Mueller F, et al. Homophilic interaction of junctional adhesion molecule. J Biol Chem, 2000, 275: 30970-30976.
    68. Itoh M, Furuse M, Morita K, et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3 with the COOH termini of claudins. J Cell Biol, 1999,147: 1351-1363.
    69. Ebnet K, Schulz C U, Meyer Zu Brickwedde M K, et al. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem, 2000, 275: 27979-27988.
    70. Haskins J, Gu L, Wittchen E S, et al. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol, 1998, 141: 199-208.
    71. Wolburg H, Wolburg-Buchholz K, Liebner S, et al. Claudin-1, claudin-2 and claudin-11 are present in tight junction of choroid plexus epithelium of the mouse. Neurosci Lett, 2001, 307: 77-80.
    72. Stewart P A, Wiley M J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol, 1981, 84: 183-192.
    73. Janzer R C, Raft M C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 1987, 325: 253-257.
    74. Broadwell R D, Charlton H M, Ebert P, et al. Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts with in the CNS. Prog Brain Res, 1990, 82: 95-101.
    75. Rubin L L, Barbu K, Bard F, et al. Differentiation of brain endothelial cells in cell culture. Ann N Y Acad Sci, 1991, 633: 420-425.
    76. Neuhaus J, Risau W, Wolburg H. Induction of blood-brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann N Y Acad Sci, 1991,633:578-580.
    77. Mitic LL ,Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol,1998 ,60:121-142.
    
    78. Soini Y. Expression of claudins 1 ,2 ,3 ,4 ,5 and 7 in various types of tumours. Histopathology ,2005 , 46 : 551-560.
    79. AI Moustafa AE, Alaoui-Jamali MA , Batist G, et al. Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene ,2002 ,21 : 2634-2640.
    80. Long H ,Crean CD ,Lee WH ,et al . Expression of clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res , 2001,61 :7878-7881.
    81. Rangel LB , Agarwal R , D'Souza T , et al . Tight junction proteins claudin^ and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res ,2003 ,9 :2567-2575.
    82. Kominsky SL , Vali M, Korz D , et al. Clostridiumperfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin-3 and-4. AmJ Pathol, 2004 ,164 :1627-1633.
    83. Montgomery E , Mamelak AJ , Gibson M, et al. Overexpression of claudin proteins in esophageal adenocarcinoma and its precursor lesions. Appl Immunohistochem Mol Morphol, 2006 ,14 :24-30.
    84. Nichols LS , Ashfaq R , Iacobuzio2Donahue CA. Claudin-4 protein expression in primary and metastatic pancreatic cancer : support for use as a therapeutic target.. AmJ Clin Pathol, 2004 ,121 :226-230.
    85. Resnick MB , Gavilanez M, Newton E , et al . Claudin expression in gastric adenocarcinomas : a tissue microarray study with prognostic correlation. Hum Pathol, 2005 ,36 :886-892.
    86. de Oliveiraa SS , de Oliveira IM, Souza WD. Claudins upregulation in human colorectal cancer. FEBS Lett, 2005 ,579 :6179-6185.
    87. Michl P ,Barth C ,BuchholzM,et al . Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res, 2003 ,63 :6265-6271.
    88. Hoevel T ,Macek R ,Swisshelm K, et al . Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer 2004,108 :374-383.
    89. Yamauchi K,Rai T , Kobayashi K,et al . Disease-causing mutant WNK4 increasesparacellular chloride permeability and phosphory-lates claudins. Proc Natl Acad Sci USA , 2004 ,101 :4690-3694.
    90. Agarwal R ,D'Souza T ,Morin PJ . Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res , 2005 ,65 :7378-7385.
    91. Sato N ,Fukushima N ,Maitra A ,et al . Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am JPathol, 2004 ,164:903-914.
    92. Lodi C , Szabo E , Holczbauer A , et al . Claudin-4 differentiates biliary tract cancers from hepatocellular carcinomas. Mod Pathol, 2006 , 19 :460-469.
    93. Cheung ST ,Leung KL , Ip YC ,et al . Claudin-10 expression level is associated with recurrence of primary hepatocellular carcinoma. Clin Cancer Res , 2005 ,11 :551-556.
    94. Aldred MA ,Huang Y,Liyanarachchi S ,et al . Papillary and follicular thyroid carcinomas show distinctly different microarray expression proliles and can be distinguished by a minimum of five genes. J Clin Oncol 2004 ,22 :3531-3539.
    95. Michl P ,Gress TM.Bacteria and bacterial toxins as therapeutic agents for solid tumors. Curr Cancer Drug Targets , 2004 ,4 :689-702.
    96. Michl P , Buchholz M, Rolke M, et al . Claudin-4 :a new target for pancreatic cancer treatment using clostridium perfringens enterotoxin. Gastroenterology , 2001 ,121 : 678-684.
    97. Offner S ,Hekele A ,Teichmann U ,et al. Epithelial tight junction proteins as potential antibody targets for pancarcinoma therapy. Cancer Immunol Immunother 2005, 54:431-445.
    1. Batholomew B A, Stringer M F, Watson G N, et al. Development and application of an enzyme-linked immunosorbent assay for Clostridium perfringens type A enterotoxin. J Clin Pathol 1985, 38:222-228.
    2. Abrahao C, Carman R, Hahn H, et al. Similar frequency of detection of Clostridium perfringens enterotoxin and Clostridium difficile toxins in patients with antibiotic-associated diarrhea. Eur J Clin Microbiol Infect Dis 2001, 20:676-677.
    3.宋厚辉,方维焕,周继勇等.产气荚膜梭菌主要毒力因子的分子生物学研究进展.预防兽医学进展2002,3(1):14-15.
    4.陆德源主编.医学微生物学(第五版).北京:人民卫生出版社,2001:139-142.
    5. Billington S J, Winekowski E U, Sarker M R, et al. Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin sequencesp . Infect Immun 1998, 66:4531-4536.
    6. Jackson S, Yip chunk D, Clark J. Diagnostic importance of Clostridium perfringens enterotoxin analysis in recurring enteritis among the elderly Chronic care psychiatric patients. Microbiology 1986, 23:748-751.
    7. Zhao Y, Melville S B. Identification and characterization of spoulation-dependent promoters upstream of the enterotoxin gene (CPE) Clostridium perfringens. Bacteriology 1998, 180:136-142.
    8. Gibert M, Jolivet-Beynancl C, Popott M R, et al. Beta 2 toxin, a novel toxin produced by Clostridium perfringens. Gene 1997, 203:65-73.
    9. Sarken M R, Carman R J, Me Clane B A, et al. Inactiration of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two CPE positive C. perfringens type A human gastrointestinal disease isolates to affect rabbitileal loops. Molec J Microbiology 1999, 33:946-958.
    10. Melville S B, Labbe R, Sonenshein A L. Expression from the Clostridium perfringens cpe promoter in C. perfringens and Bacillus subtilis. Infect Immun 1994, 62:5550-5558.
    11. Horiguchi Y, Miyamoto K G, Morino C Y, et al. Organization of the plasmid cpe locus of Clostridium perfringens type A isolates. Infect Immun 2002, 52:31-35.
    12. Ochi S, Oda M, Matsuda H, et al. Clostridium perfringens alpha-toxin activates the sphingomyelin metabolism system in sheep erythro-cytes. J Biol Chem, 2004, 279(13):12181-12189.
    13. Flores-Diaz M, Alape-Giron A. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene.Toxicon, 2003, 42(8):979-986.
    14. Sheedy SA, Ingham AB, Rood JI, et al. Highly conserved alpha-toxin sequences of avian isolates of Clostridium perfringens. J Clin Microbiol, 2004,42(3): 1345-1347.
    15. Stevens DL, Titball RW, Jepson M, et al. Immunization with the C-domain of alpha-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens. J Infect Dis, 2004, 190(4):767-773.
    16.刘家森,刘怀然,陈洪岩.产气荚膜梭菌a毒素亚单位基因的表达及表达产物活性分析.中国比较医学杂志,2003,6(13):332-335.
    17.林明辉,荫俊,邢洪光,等.重组A型产气荚膜梭菌a毒素保护性抗原的制备及初步免疫保护作用研究.生物工程学报,2004,20(1):63-65.
    18.赵宝华,许崇波,边艳青.抗A型产气荚膜梭菌a毒素单链抗体基因的克隆、表达及其生物学活性.中国生物化学与分子生物学报,2003,9(6):690-697.
    19. Baums CG, Schotte U, Amtsberg G, et al. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet Microbiol, 2004, 100(1-2): 11-16.
    20. Al-Khaldi SF, Villanueva D, Chizhikov V. Identification and characterization of Clostridium perfringens using single target DNA microarray chip. Int J Food Microbiol, 2004,91(3):289-296.
    21. Lovland A, Kaldhusdal M, Redhead K, et al. Maternal vaccination against subclinical necrotic enteritis in broilers. Avian Pathol, 2004, 33(l):83-92.
    22. Nagahama M, Hayashi S, Morimitsu S, et al. Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J Biol Chem, 2003, 278(38):36934-36941.
    23. Gibert M, Jolivet-Renaudc, Popoff MR, et al. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene, 1997, 203(l):65-73.
    24. Bacciarini LN, Boerlin P, Straub R, et al. Immunohistochemical localization of Clostridium perfringens beta2-toxin in the gastro-intestinal tract of horses.Vet Pathol, 2003,40(4):376-381.
    25. Waters M, Savoie A, Garmory HS, et al. Genotyping and phenotyping of beta2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. J Clin Microbiol, 2003,41(8):3584-3591.
    26. Bueschel DM, Jost BH, Billington SJ, et al. Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Vet Microbiol, 2003, 94(2): 121-129.
    27.王玉炯,邓光存,曾瑾,等.产气荚膜梭菌的B2毒素基因克隆及其核苷酸序列分析.宁夏大学学报(自然科学版),2004,25(1):63-65.
    28. Soler-Jover A, Blasi J, Gomez de Aranda I, et al. Effect of epsilon toxin-GFP on MDCK cells and renal tubules in vivo. J Histochem Cytochem, 2004, 52(7):931-942.
    29. Cole AR, Gibert M, Popoff M. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat Struct Mol Biol, 2004, ll(8):797-798.
    30. Rosskopf-Streicher U, Volkers P, Noeske K, et al. Quality assurance of C. Perfringens epsilon toxoid vaccines-ELISA versus mouse neutralisation test. ALTEX, 2004, 21 (Suppl 3):65-69.
    31. Rosskopf-Streicher U, Volkers P, Werner E. Control of Clostridium perfringens vaccines using an indirect competitive ELISA for the epsilon toxin component-examination of the assay by a collaborative study. Pharmeuropa Bio, 2004, 2003(2): 91-96.
    32. Stiles BG, Hale ML, Marvaud JC, et al. Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex. Biochem J, 2002, 367(3): 801-808.
    33. Knapp O, Benz R, Gibert M,et al. Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component la. J Biol Chem, 2002, 277(8):6143-6152.
    34. Marvaud JC, Stiles BG, Chenal A, Clostridium perfringens iota toxin. Mapping of the la domain involved in docking with Ib and cellular internalization. J Biol Chem, 2002, 277(46):43659-43666.
    35. Tsuge H, Nagahama M, Nishimura H, et al. Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J Mol Biol, 2003, 325(3):471-483.
    36. Nagahama M, Yamaguchi A, Hagiyama T, et al. Binding and internalization of Clostridium perfringens iota-toxin in lipid rafts. Infect Immun, 2004, 72(6):3267-3275.
    37. Hale ML, Marvaud JC, Popoff MR, et al. Detergent-resistant membrane microdomains facilitate Ib oligomer formation and biological activity of Clostridium perfringens iota-toxin. Infect Immun, 2004, 72(4):2186-2193.
    38. Andersson A, Ronner U, Granum P E, et al. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int J Food Microbiol 1995, 28: 145-155.
    39.周阳生.动物性食品微生物学检验.中国农业出版社1996:145-152.
    40. Awad M M, Rood J I. Isolation of alpha-toxin, the theta-toxin and kappa-toxin mutants of Clostridium perfringens by Tn916 mutagenesis. Microb Pathog 1997, 22:275-284.
    41. Aschfalk A, Muller W. Clostridium perfringens enterotoxin types in hooded seals in the Greenland Sea, determined by PCR and ELISA. J Vet Med B Infect Dis Vet Public Health 2001,48:765-769.
    42. Ba-Thein W, Inui S, Shimizu T, et al. Genomic diversity in the pfoA region of the theta-toxin-deficient strains of Clostridium perfringens. Microbiol Immunol 1997, 41: 629-631.
    43. Pimbley D W , Patel P D. A review of analytical methods for the detection of bacterial toxins. Symp Ser Soc Appl Microbiol 1998, 27:98-109.
    44. McLauchlin J, Ripabelli G, Brett M M, et al. Ampified fragment length polymorphism(AFLP) analysis of Clostridium perfringens for epidemiological typing. Int J Food Microbiol 2000, 56:21-28.
    45. Katahira J, Sugiyama H, Inoue N, et al. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 1997,272:26652-26658.
    46. Czeczulin J R, Hanna P C , McClane B A. Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Eschrichia coli. Infect Immun 1993, 61:3429-3439.
    47. McDonel J L , McClane B A. Binding vs biological activity of Clostridium perfringens enterotoxin in vero cells. Biochem Biophys Res Commun 1979, 87: 497-504.
    48. Granum P E, Stewart G S A. Molecular biology of Clostridium perfringens enterotoxin, in Genetics and Molecular biology of Anaerobic Bacteria, eds, Sebald M. Newyork:Springer-Verlag. 1993:235-247.
    49. Saito M. Production of enterotoxin by Clostridium perfringens derived from humans, animals, foods, and the natural environment in Japan. J Food Prot 1990, 53:115-118.
    50. Tschirdewadn B, Notermans S, Wernars K, et al. The presence of enterotoxinic Clostridium perfringens strains in faeces of various animals. Int J Food Microbiol 1992, 14:175-178.
    51. Niilo L. Enterotoxin Clostridium perfringens type A isolated from intestinal contests of cattle, sheep, and chicken. Can J Comp Med 1978,42:357-363.
    52. Johnson S, Gerding M N. Enterotoxemic infections. In The Clostridium: Molecular Biology and Pathogenesis, eds, Rood J, McClane B A, Songer J G, et al. Academic Press, London, 1997:117-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700