用户名: 密码: 验证码:
亚快速凝固条件下镁合金的凝固行为及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为最轻的商用金属结构材料,具有高的比强度、比刚度,优良的阻尼性能和电磁屏蔽性能,良好的铸造性能及丰富的资源优势等特点,在汽车、通讯、电子及航空航天等领域具有重要的应用价值和广阔的应用前景。传统铸造工艺得到的镁合金产品的显微组织及析出相比较粗大且分布不均衡,致使其强度、塑性变形性能、热稳定性能、抗氧化性能及耐腐蚀性能不够理想,难以满足高性能结构材料的需求,因而镁的现有使用情况远没有充分发挥镁合金材料的潜在优势。亚快速凝固具有较高的凝固冷却速率,能够显著细化晶粒和第二相,增加组织和成分的均匀性,扩展合金元素的固溶度和形成新的亚稳相等,从而可大幅度提高镁合金的力学性能、加工性能和耐蚀性能。因此,通过亚快速凝固使镁合金获得不同于常规凝固方式的组织结构,是提高镁合金性能,扩展其应用前景的有效途径。
     本文利用自行开发设计的几种不同的工艺装置实现了镁合金的亚快速凝固,研究了不同工艺及冷却速率下镁合金的凝固组织特征及形成机理,分析了显微组织与铸件力学性能、耐腐蚀性能的关系,探讨了不同凝固条件下镁合金铸件的强化机制和腐蚀行为。主要研究内容和结果如下:
     设计了真空吸铸急冷模法制备镁合金小尺寸薄片铸件工艺装置,实现了镁合金的亚快速凝固。研究了亚快速凝固条件下镁合金凝固组织的特点,并与常规凝固镁合金铸件的显微组织进行了比较分析。结果表明:常规凝固条件下,镁合金的凝固组织晶粒粗大且不均匀:主要由初生α-Mg及晶间大量分布的β-Mg_(17)Al_(12)(包括离异共晶组织β相及二次析出β”相)两相组成;溶质元素Al、Zn在凝固过程中富集、偏析于晶界处形成金属间化合物β-Mg_(17)Al_(12)相,而只有少量的合金元素固溶于晶粒(初生α-Mg相)内,元素的微观偏析严重。亚快速凝固镁合金薄片铸件等轴晶区的晶粒明显细化,晶粒度达到几个微米,且随着冷却速率的增加,晶粒度不断减小;较高的冷却速率抑制了溶质元素的扩散,形成了以过饱和α-Mg相为主的凝固组织,晶界处析出的β-Mg_(17)Al_(12)相极少或者消失,增加了铸件成分及组织的均匀性;溶质元素大量固溶于基体Mg中,Al原子以置换的形式取代晶体结构中的Mg原子,导致了晶体Mg的晶格常数减小,其XRD衍射峰向右偏移。
     测量了亚快速凝固铸件显微组织中二次枝晶臂间距,从数量级上估算了亚快速凝固的冷却速率,结果表明,本实验镁合金薄片铸件的冷却速率达到了10~2~10~4 K·s~(-1),其凝固过程属于亚快速凝固范畴。探讨了镁合金不同凝固过程中的溶质分配原理、组织演化及形成机理,分析表明:亚快速凝固条件下,极快的冷却速率使得熔体凝固过程中固/液界面推移的速率很快、局部凝固时间很短,合金元素来不及完全扩散就已经被高速移动的界面“淹没”而凝固,使其很大程度上固溶于基体α-Mg中。较快的冷却速率下,形核在以晶核为中心沿六个方向生长过程中,绝大部分还没有来得及长大,就彼此交集生成细小的等轴晶粒;另一部分晶核不能完全发育长大或者由于受到其它形核生长的阻挡,生长成近似花瓣状(花瓣实质为一次枝晶组织)结构,而只有少部分形核最终能够长大成具有细小的二次枝晶臂的枝晶结构组织。
     通过对AZ61A镁合金不同铸件的力学拉伸性能和腐蚀性能的测试,研究了亚快速凝固组织对镁合金性能的影响,探讨了亚快速凝固镁合金的强化机制和腐蚀行为。结果表明:与常规凝固镁合金铸件相比,亚快速凝固镁合金的拉伸性能及耐腐蚀性能都有了不同程度的提高;亚快速凝固铸件强度及塑性的提高是细晶强化、固溶强化和位错强化综合作用的结果,而耐蚀性的改善则主要归因于细小而均匀分布的晶粒组织,抑制了晶界处不连续分布的β相的析出,以及大量的溶质元素Al固溶于α-Mg基体中。
     设计了真空吸铸-阻尼冷却管法实验装置,实现了AZ91D镁合金半固态浆料的制备与铸件流变成形的一体化,得到了AZ91D镁合金半固态浆液的亚快速凝固组织,观察显示:镁合金半固态浆液具有触变性及更高的黏度,以平稳、层流的充型方式完成充型,能够有效改善成形件的质量。其凝固过程可分为两部分:“第一次凝固”—近液相线温度的金属液流经阻尼冷却通道时的凝固,产生了大量初生α-Mg固相颗粒及晶核并裹入存活于熔体而形成了半固态浆料;“第二次凝固”—半固态浆液高速射入模具型腔后,在紫铜模具的激冷作用下,残留液相亚快速凝固生成细小的二次α-Mg晶粒和β-Mg_(17)Al_(12)相,初生α-Mg固相颗粒弥散分布在由非常细小的二次α-Mg相及β相构成基体组织中,初生α-Mg固相颗粒的尺寸主要在15μm~35μm,二次α-Mg相晶粒尺寸约为6μm。
     在对亚快速凝固镁合金小尺寸薄片铸件凝固组织特点、凝固行为及性能研究的基础上,利用冷模离心铸造工艺制备大口径镁合金薄壁管,以此实现较大尺寸规格的镁合金铸件的亚快速凝固。制备得到了形状完整、壁厚均匀的AZ61A镁合金薄壁管,铸管显微组织晶粒得到了显著细化,形成以过饱和初生相α-Mg为主相的凝固组织,合金元素的固溶度大大提高,微观偏析及成分起伏明显减小,整体分布均衡;拉伸力学性能得到提高,塑性得到了明显改善,断口形貌存在大量拉伸韧窝,具有准解理断裂特性。
Magnesium and its alloys,with a number of desirable features including low density,the highest strength-to-weight ratio of any of commonly used non-ferrous and ferrous metallic materials,better damping characteristics and shielding properties,well castability,and abundant resources,are thus very attractive for applications in the automotive,electronic and aeronautical industries.However,the magnesium alloys produced by conventional casting process exhibit the drawbacks of less than desirable strength,inferior formability,low thermal stability,inadequate creep resistance,poor oxidation resistance and inferior corrosion. Consequently,the extensive use of the magnesium-base alloys is restricted.In general,the grain size and microstructure of cast metal are directly influenced by the cooling rate. Different degrees of structural refinement and transformation can be obtained by the sub-rapid solidification technique,which presently provide high cooling rates up to 10~3 K·s~(-1).The microstructure changes,which involve microcrystalline structures,phases with large and non-equilibrium solid solubility,new metastable crystalline phases,can improve the mechanical properties,processability and corrosion resistance.Therefore,sub-rapid solidification process may be an effective technology to achieve better microstructures and obtain Mg alloy castings with the maximum combination of mechanical properties and corrosion resistance.
     In the present paper,sub-rapidly solidified Mg alloy castings were prepared by using several different methods with self-designed devices.The microstructure characteristics and formation mechanism of Mg alloy castings produced by different processes were studied.In addition,according to the investigation of the performances of the Mg alloy castings,it could be clearly seen that the final microstructures had a close relationship with mechanical properties and corrosion resistance.And then strengthening mechanisms and corrosion behavior of Mg alloy castings produced by different technique were investigated.Main research details and results are as follows:
     The small size AZ-series Mg alloys sheets were prepared by using sub-rapid solidification technique with the self-designed vacuum suction casting(VSC) setup.The microstructure characteristics of sub-rapidly solidified Mg alloy sheets,including grain size, phase composition and the microdistribution of alloying elements,were studied.For comparison,conventionally solidified castings were also produced and investigated.The results show that the typical micrographs of conventional castings consist of well-developed primaryα-Mg dendrites withβ-Mg_(17)Al_(12)(including divorced eutecticβphase and secondary precipitatedβ" phase) along theα-Mg grain boundaries in the form of network;In addition, grain size is quite large and its distribution is non-uniform.The alloying elements Al,Zn elements mainly distribute on grain boundaries and only a very small amount exist in grains (primaryα-Mg phase),and thus,the microsegregation of alloying elements is severe in the conventionally solidified microstructure.Whereas,the grains of sub-rapidly solidified sheets are obviously refined,and mean grain size is only a few micrometers.The higher cooling rate there is,the smaller grain size become.The elements segregation and enrichment inherent for conventional castings are suppressed to a great extent due to high cooling rates and thus,the microstructures of sub-rapidly solidified sheets dominantly consist of supersaturatedα-Mg solid solution,which may lead to the change of lattice constant of Mg.Therefore,it can be seen that a little migration of diffraction peaks in the XRD patterns of sub-rapidly solidified sheets.
     The cooling rate during sub-rapid solidification process was estimated in order of magnitude by measuring the secondary dendrite arm spacing.The results show that the cooling rate of the Mg alloys sheets produced by sub-rapid solidification technology is up to about 10~2~10~4 K·s~(-1).Solute redistribution mechanism,microstmcture evolution and formation mechanism under different solidification conditions are discussed systematically.The analysis shows that in sub-rapid solidification process,the movement velocity of solid/liquid interface is very fast and the solidification time is very short due to the extremely high cooling rate. Consequently,there is no time for the solute atoms near interface to enrich and diffuse sufficiently to the far distance of the melt and thus,they are captured by the high-speed moving solid/liquid interface and solubilized in the matrixα-Mg phase.In addition,under sub-rapid solidification condition,the vast majority of nuclei have no time to grow up and thus,they generate large numbers of fine equiaxed grains.A portion of nuclei can grow up and generate the petal shaped microstructures,which are essentially the primary dendrite arms. Only a small quantity of nuclei eventually generates the dendrite structure with extremely fine secondary arms showing sixfold symmetry.
     The mechanical properties and corrosion resistance of AZ61A Mg alloy castings produced by different technique were studied in detail and subsequently,the influence of sub-rapid solidification microstructure on these properties was investigated.Moreover,the strengthening mechanisms and corrosion behavior were discussed.The results show that the mechanical properties and corrosion resistance of sub-rapidly solidified sheets are improved in varying degrees compared with those of the conventionally solidified Mg alloy castings. The improved mechanical properties of Mg alloy castings can be ascribed to the conjoint and mutually interactive influences of the fine-grain strengthening,solution strengthening and dislocations strengthening.The improvement of corrosion resistance is mainly attributed to the refining and homogeneous distribution of grains,the disappearance of the discontinuously distributedβphase on grain boundaries,and the supersaturated matrixα-Mg solid solution containing abundant Al element.
     A novel semi-solid processing technique,called vacuum suction casting—damper cooling tube method(VSC-DCT method),was used to manufacture high quality components of AZ91D Mg alloy directly from a liquid metal.The outstanding feature of the VSC-DCT process is attributed to the fact that it combines the semi-solid slurry making and component forming operation into one step and thus,the sub-rapid solidification of Mg alloy semi-solid metal(SSM) are achieved.The resulting apparent morphologies and microstructures are characterized in detail,and linked to the corresponding mold-filling behavior and subsequent solidification behavior.It is revealed that the SSM with higher viscosity can be caused to fill the mold with "solid-front fill",as compared with the liquid metal "spraying" in the conventional vacuum suction casting(CVSC) process,and the surface quality of the sheets fabricated by the VSC-DCT method is improved significantly.Solidification in the VSC-DCT process takes place in two distinctive stages;one is primary solidification in the shear-cooling system under high intensity of turbulence,and the other one is secondary solidification inside the mold cavity with high cooling rate.The final microstructures of the sheets via VSC-DCT method exhibit that the "preexisting" primary solid particles formed in the primary solidification,with the morphology of near-globules or rosettes,are surrounded by the eutectic mixture of fine secondaryα-Mg grains and fine precipitates ofβ-Mg_(17)Al_(12) intermetallics,resulting from the rapid solidification of the remaining liquid of SSM in the secondary solidification step.The final primary solid size is within a range of 15μm~35μm as examined by quantitative metallography,and the average size of the fine secondaryα-Mg grains is about 6μm in diameter.
     On the basis of the experimental results and sub-rapid solidification principle presented above,a thin-walled AZ61A Mg alloy tube was fabricated by using centrifugal casting technique,and the sub-rapid solidification of large-sized Mg alloy casting was achieved.The microstructure and mechanical properties of the centrifugal casting tube were presented and discussed.The results show that the grain size of the tube is significantly refined.The eutectic transformation L→α-Mg+β-Mg_(17)Al_(12) and microsegregation are suppressed to a great extent. As a consequence,the alloying elements Al,Zn show much higher solid solubility and the microstructure of the tube dominantly consists of supersaturatedα-Mg solid solution. Mechanical properties and corresponding fractography of the centrifugal tube are significantly improved compared with those of the conventionally solidified Mg alloy casting.The fracture surfaces of the centrifugal tube exhibit ductile fracture characteristics.
引文
[1]左铁镛.中国镁及镁合金发展战略[J].科学中国人.2006,(02).
    [2]Eliezer D,Aghion E,Froes F H.Magnesium Science,Technology and Applications[J].Advanced Performance Materials.1998,5(3):201-212.
    [3]Friedrich H,Schumann S.Research for a "new age of magnesium" in the automotive industry [J].Journal of Materials Processing Technology.2001,117(3):276-281.
    [4]Mordike B L,Ebert T.Magnesium:Properties—applications—potential[J].Materials Science and Engineering A.2001,302(1):37-45.
    [5]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社,2007.
    [6]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004.
    [7]Friedrich E H,Mordike B L.Magnesium Technology[M].Berlin:Springer,2006.
    [8]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [9]Kubota K,Mabbuch M,Higashi K.Review processing and mechanical properties of fine-grained magnesium alloys[J].Journal of Materials Science.1999,34(10):2255-2262.
    [10]Froes F H,Kim Y-W,Krishnamurthy S.Rapid solidification of lightweight metal alloys [J].Materials Science and Engineering A.1989,117:19-32.
    [11]Das S K,Davis L A.High performance aerospace alloys via rapid solidification processing[J].Materials Science and Engineering A.1988,98:1-12.
    [12]StJohn D,Qian M,Easton M,et al.Grain refinement of magnesium alloys[J].Metallurgical and Materials Transactions A.2005,36(7):1669-1679.
    [13]Govind,Suseelan Nair K,Mittal M C,et al.Development of rapidly solidified(RS)magnesium-aluminium-zinc alloy[J].Materials Science and Engineering.A.2001,304-306:520-523.
    [14]Minkoff I.Solidification and cast structure[M].New York:Wiley,1986.
    [15]周尧和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [16]2008年1-11月我国原镁产量统计情况.中国镁业网(中国有色金属工业协会镁业分会主办):http://www.chinamagnesium.org/.
    [17]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [18]马衍伟.强磁场条件下新型功能材料制备及其研究进展[J].功能材料信息.2007,(05).
    [19]Liu H,Chen Y,Tang Y,et al.The microstructure,tensile properties,and creep behavior of as-cast Mg-(1-10)%Sn alloys[J].Journal of Alloys and Compounds.2007,440(1-2):122-126.
    [20]Mordike B L.Creep-resistant magnesium alloys[J].Materials Science and Engineering A.2002,324(1-2):103-112.
    [21]Neubert V,Stulikova I,Smola B,et al.Thermal stability and corrosion behaviour of Mg-Y-Nd and Mg-Tb-Nd alloys[J].Materials Science and Engineering A.2007,462(1-2):329-333.
    [22]Smola B,Stulikova I,yon Buch F,et al.Structural aspects of high performance Mg alloys design[J].Materials Science and Engineering A.2002,324(1-2):113-117.
    [23]Niu J-x,Chen Q-r,Xu N-x,et al.Effect of combinative addition of strontium and rare earth elements on corrosion resistance of AZ91D magnesium alloy[J].Transactions of Nonferrous Metals Society of China.2008,18(5):1058-1064.
    [24]Sheng S-D,Chen D,Chen Z-H.Effects of Si addition on microstructure and mechanical properties of RS/PM(rapid solidification and powder metallurgy) AZ91 alloy[J].Journal of Alloys and Compounds.In Press,Corrected Proof.
    [25]程素玲,杨根仓,樊建锋,等.Ca,Y对AZ91镁合金显微组织和力学性能的影响[J].稀有金属材料与工程.2006,35(09):683-686.
    [26]Zhu S M,Mordike B L,Nie J F.Creep properties of a Mg-Al-Ca alloy produced by different casting technologies[J].Materials Science and Engineering A.2008,483-484:583-586.
    [27]Liu S F,Li B,Wang X H,et al.Refinement effect of cerium,calcium and strontium in AZ91 magnesium alloy[J].Journal of Materials Processing Technology.In Press,Corrected Proof.
    [28]白晶,孙扬善,强立峰,等.锶和钙在镁-铝系合金中的应用及研究进展[J].铸造.2006,55(01):1-5.
    [29]樊昱,吴国华,高洪涛,等.Ca对镁合金组织、力学性能和腐蚀性能的影响[J].中国有色金属学报.2005,15(02):210-216.
    [30]Daloz D,Steinmetz P,Michot G.Corrosion behavior of rapidly solidified magnesium-aluminum-zinc alloys[J].Corrosion.1997,53(12):944-954.
    [31]Song G,Atrens A,Wu X,et al.Corrosion behaviour of AZ21,AZ501 and AZ91 in sodium chloride[J].Corrosion Science.1998,40(10):1769-1791.
    [32]Song G,Atrens A,Dargusch M.Influence of microstructure on the corrosion of diecast AZ91D[J].Corrosion Science.1999,41(2):249-273.
    [33]Ambat R,Aung N N,Zhou W.Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J].Corrosion Science.2000,42(8):1433-1455.
    [34]Tamura Y,Haitani T,Yano E,et al.Grain Refinement of High-Purity Mg-Al Alloy Ingots and Influences of Minor Amounts of Iron and Manganese on Cast Grain Size[J].Materials Transactions.2002,43(11):2784-2788.
    [35]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.
    [36]谢建昌,李全安,李建弘,等.Ca对AZ81镁合金高温性能的影响[J].轻金属.2007,(12).
    [37]黄晓锋,周宏,何镇明.阻燃镁合金起燃温度的研究[J].稀有金属材料与工程.2002,31(03):221-224.
    [38]辛明德,吉泽升,梁维中,等.加入Ce和Ca对AZ91D镁合金起燃温度的影响[J].中国有色金属学报.2003,13(03):731-734.
    [39]杨光昱,郝启堂,介万奇,等.Ca加入量对Mg-5Al-0.4Zn基铸造合金组织与力学性能的影响[J].金属学报.2005,41(09):933-939.
    [40]Zeng X,Zhang Y,Lu C,et al.Precipitation behavior and mechanical properties of a Mg-Zn-Y-Zr alloy processed by thermo-mechanical treatment[J].Journal of Alloys and Compounds.2005,395(1-2):213-219.
    [41]Zeng X,Wang Q,Yizhen L,et al.Behavior of surface oxidation on molten Mg-9Al-0.5Zn-0.3Be alloy[J].Materials Science and Engineering A.2001,301(2):154-161.
    [42]Wang X,Wu W,Tang Y,et al.Early high temperature oxidation behaviors of Mg-10Gd-3Y alloys[J].Journal of Alloys and Compounds.2009,474(1-2):499-504.
    [43]Wang X,Zeng X,Wu G,et al.Surface analysis and oxidation behavior of Y-ion implanted AZ31 magnesium alloys[J].Applied Surface Science.2007,253(7):3574-3580.
    [44]曾小勤.阻燃镁合金及其阻燃机理研究[D].上海:上海交通大学,2001.
    [45]徐锦锋,翟秋亚,袁森.AZ91D镁合金的快速凝固特征[J].中国有色金属学报.2004,14(06):939-944.
    [46]冯辉,杨林,邱克强,等.快速凝固AZ91镁合金的组织与压缩性能[J].铸造.2006,55(05):448-451.
    [47]Li Y,Chen Y,Cui H,et al.Microstructure and mechanical properties of spray-formed AZ91 magnesium alloy[J].Materials Characterization.2009,60(3):240-245
    [48]王渠东,丁文江.镁合金研究开发现状与展望[J].世界有色金属.2004,(07):8-11.
    [49]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展.2004,(03):39-46.
    [50]El.Mahallawy N A,Taha M A,Lofti Zamzam M.On the microstructure and mechanical properties of squeeze-cast Al-7 wt%Si alloy[J].Journal of Materials Processing Technology.1994,40(1-2):73-85.
    [51]Cavaliere P,De Marco P P.Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting[J].Materials Characterization.2007,58(3):226-232.
    [52]Avedesian M M,Baker H.Magnesium and Magnesium Alloys[J].ASM international.Materials Park,USA.1999.
    [53]Cerri E,Leo P,De Marco P P.Hot compression behavior of the AZ91 magnesium alloy produced by high pressure die casting[J].Journal of Materials Processing Technology.2007,189(1-3):97-106.
    [54]Kangas S.Advanced Die Casting Machines[J].Die Casting Engineer.1999,5-6:38-45.
    [55]Czerwinski F.On the generation of thixotropic structures during melting of Mg-9%Al-1%Zn alloy[J].Acta Materialia.2002,50(12):3265-3281.
    [56]Czerwinski F,Zielinska-Lipiec A,Pinet P J,et al.Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy[J].Acta Materialia.2001,49(7):1225-1235.
    [57]Chen T J,Ma Y,Li B,et al.Effects of processing parameters on wear behaviors of thixoformed AZ91D magnesium alloys[J].Materials and Design.2009,30(2):235-244.
    [58]Mansoor B,Mukherjee S,Gbosh A.Microstructure and Porosity in Thixomolded Mg alloys and Minimizing Adverse effects on Formability[J].Materials Science and Engineering A.In Press,Accepted Manuscript.
    [59]Fan Z.Development of the rheo-diecasting process for magnesium alloys[J].Materials Science and Engineering A.2005,413-414:72-78.
    [60]Fan Z,Liu G.Solidification behaviour of AZ91D alloy under intensive forced convection in the RDC process[J].Acta Materialia.2005,53(16):4345-4357.
    [61]Ji S,Fan Z,Bevis M J.Semi-solid processing of engineering alloys by a twin-screw rheomoulding process[J].Materials Science and Engineering A.2001,299(1-2):210-217.
    [62]Zhang X,Li T,Xie S,et al.Microstructure analysis of rheoformed AZ91 alloy produced by rotating magnetic fields[J].Journal of Alloys and Compounds.2008,461(1-2):106-112.
    [63]Mao W,Zhen Z,Yan S,et al.Rheological Behavior of Semi-Solid AZ91D Alloy[J].Journal of Materials Science and Technology.2004,20(05):580-582.
    [64]Wang Y,Liu G,Fan Z.Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment[J].Acta Materialia.2006,54(3):689-699.
    [65]Flomings M C.Behavior of metal alloys in the semisolid state[J].Metallurgical and Materials Transactions A.1991,22(5):957-981.
    [66]Fan Z.Semisolid metal processing[J].International Materials Reviews.2002,47(2):49-85.
    [67]Kirkwood D H.Semisolid metal processing[J].International Materials Reviews.1994,39:173-189.
    [68]Atkinson H V.Modelling the semisolid processing of metallic alloys[J].Progress in Materials Science.2005,50(3):341-412.
    [69]Decker R F.Semi-solid metal forming[J].Advanced Materials and Processes.1996,2:41-42.
    [70]Yim C D,Seok H K,Lee J C,et al.Semi-solid processing of magnesium alloys[J].Materials Science Forum.2003,419-422:611-616.
    [71]吕宜振,尉胤红,曾小勤,等.镁合金铸造成形技术的发展[J].铸造.2000,49(07):383-388.
    [72]Bai Y,Mao W,Gao S,et al.Filling ability of semi-solid A356 aluminum alloy slurry in rheo-diecasting[J].Journal of University of Science and Technology Beijing.2008,15(1):48-52.
    [73]Spinelli J E,Tosetti J P,Santos C A,et al.Microstructure and solidification thermal parameters in thin strip continuous casting of a stainless steel[J].Journal of Materials Processing Technology.2004,150(3):255-262.
    [74]Lee J H,Kim T S,Maeng D Y,et al.Characteristics of ceramic particle reinforced Al composite powder manufactured by a stone mill type crusher using twin roll cast Al alloy flake:a model on the formation of composite powder[J].Materials Science and Engineering A.2001,304-306:632-636.
    [75]Haga T,Takahashi K,Ikawa M,et al.A vertical-type twin roll caster for aluminum alloy strips[J].Journal of Materials Processing Technology.2003,140(1-3):610-615.
    [76]丁培道,蒋斌,杨春楣,等.薄带连铸技术的发展现状与思考[J].中国有色金属学报.2004,14(S1):192-196.
    [77]Strezov L,Herbertson J.Experimental studies of interfacial heat transfer and initial solidification pertinent to strip casting[J].ISIJ International.1998,38(9):959-966.
    [78]Watari H,Davey K,Rasgado M T,et al.Semi-solid manufacturing process of magnesium alloys by twin-roll casting[J].Journal of Materials Processing Technology.2004,155-156:1662-1667.
    [79]Watari H,Haga T,Koga N,et al.Feasibility study of twin roll casting process for magnesium alloys[J].Journal of Materials Processing Technology.2007,192-193:300-305.
    [80]Chen H,Kang S B,Yu H,et al.Microstructure and mechanical properties of Mg-4.5Al-1.0Zn alloy sheets produced by twin roll casting and sequential warm rolling [J].Materials Science and Engineering A.2008,492(1-2):317-326.
    [81]刘天喜,傅定发,夏伟军,等.双辊快淬制备镁合金薄带碎片的工艺研究[J].铸造.2006,55(04):327-330.
    [82]Ding P D,Pan F S,Jiang B,et al.Twin-roll strip casting of magnesium alloys in China [J].Transactions of Nonferrous Metals Society of China.2008,18:S7-S11.
    [83]You B S,Yim C D,Kim S H.Solidification of AZ31 magnesium alloy plate in a horizontal continuous casting process[J].Materials Science and Engineering A.2005,413-414:139-143.
    [84]李月珠.快速凝固技术和材料[M].北京:国防工业出版社,1993.
    [85]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:科学出版社,2004.
    [86]程天一,章守华.快速凝固技术与新型合金[M].北京:宇航出版社,1990.
    [87]王成全,于艳,方园,等.亚快速凝固技术的研究进展[J].钢铁研究学报.2005,17(05):11-15.
    [88]张承甫,肖理明,黄志光.凝固理论与凝固技术[M].武汉:华中工学院出版社,1985.
    [89]王祖锦,黄韬,李建国,等.亚快速定向凝固中枝胞转变的原位观测[J].材料研究学报.1995,9(02):167-170.
    [90]傅恒志,王祖锦.亚快速单向凝固晶体生长的非稳态演化[J].材料研究学报.1996,10(03):253-258.
    [91]耿兴国,傅恒志.亚快速凝固中枝晶→细胞晶转变的理论研究[J].金属学报.1997,33(07):673-676.
    [92]Fu H,Xie F.The solidification characteristics of near rapid and supercooling directional solidification[J].Science and Technology of Advanced Materials.2001,2(1):193-196.
    [93]Zhang L Y,Jiang Y H,Ma Z,et al.Effect of cooling rate on solidified microstructure and mechanical properties of aluminium-A356 alloy[J].Journal of Materials Processing Technology.2008,207(1-3):107-111.
    [94]蒋成保,胡汉起.亚快速凝固枝胞的转变[J].北京科技大学学报.1993,15(06):543-548.
    [95]蒋成保,胡汉起,张虎.亚快速凝固结晶取向对结晶形态选择的影响[J].北京科技大学学报.1994,16(01):31-34.
    [96]巴发海,沈宁福.快速凝固Ni-Al合金中的组成相[J].金属学报.2001,37(08):845-851.
    [97]冯坚,黄卫东,林鑫,等.Al-0.53Zn合金近快速定向凝固条件下的胞晶间距选择[J].金属学报.1998,34(12):1267-1272.
    [98]冯坚,张长瑞,黄卫东,等.金属近快速定向凝固过程的数值模拟[J].中国有色金属学报.2004,14(03):329-334.
    [99]Shield J E,Kappes B B,Meacham B E,et al.Microstructures and phase formation in rapidly solidified Sm-Fe alloys[J].Journal of Alloys and Compounds.2003,351(1-2):106-113.
    [100]徐春杰,郭学锋,郑水云,等.快速凝固Mg_(94.6)Zn_(4.8)Y_(0.6)合金薄带微观结构及显微偏析[J].铸造技术.2007,28(07):926-929.
    [101]徐锦锋,翟秋亚.快速凝固AZ91D镁合金的相结构及位错[J].稀有金属材料与工程.2004,33(08):835-838.
    [102]王鹏程,徐春杰,杨林,等.快速凝固与普通凝固Mg-Zn-Y镁合金的耐腐蚀性能[J].铸造技术.2006,27(06):609-612.
    [103]郑水云,徐春杰,张忠明,等.快速凝固MR_(94.6)Zn_(4.8)Y-(0.6)镁合金薄带的组织与性能[J].铸造技术.2006,27(01):39-42.
    [104]Cai J,Ma G C,Liu Z,et al.Influence of rapid solidification on the microstructure of AZ91HP alloy[J].Journal of Alloys and Compounds.2006,422(1-2):92-96.
    [105]Cai J,Ma G C,Liu Z,et al.Influence of rapid solidification on the mechanical properties of Mg-Zn-Ce-Ag magnesium alloy[J].Materials Science and Engineering A.2007,456(1-2):364-367.
    [106]朱世杰,杨卿,白小波,等.亚快速凝固Mg7Zn3Y(-Zr)合金的组织演化及凝固动力学[J].稀有金属材料与工程.2008,37(07):1157-1162.
    [107]张梅,朱世杰,陈贵林,等.Mg7Zn3Y0.55Zr合金单辊条带显微组织的研究[J].铸造技术.2005,26(10):983-985.
    [108]Maeng D Y,Kim T S,Lee J H,et al.Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys[J].Scripta Materialia.2000,43(5):385-389.
    [109]Maeng D.Y,Lee J H,Hong S I.The effect of transition elements on the superplastic behavior of Al-Mg alloys[J].Materials Science and Engineering A.2003,357(1-2):188-195.
    [110]Maeng D Y,Lee J H,Hong S I,et al.Microstructure and mechanical properties of rapidly solidified Al-7wt.%Mg-X(X=Cr,Zr or Mn) alloys[J].Materials Science and Engineering A.2001,311(1-2):128-134.
    [111]Srivatsan T S,Vasudevan S,Petraroli M.The tensile deformation and fracture behavior of a magnesium alloy[J].Journal of Alloys and Compounds.2008,461(1-2):154-159.
    [112]Srivatsan T S,Vasudevan S,Petrorali M.An investigation of the quasi-static fracture behavior of a rapidly solidified magnesium alloy[J].Journal of Alloys and Compounds.2008,460(1-2):386-391.
    [113]Warner T J,Thorne N A,Nussbaum G,et al.A Cross-Sectional TEM Study of Corrosion Initiation in Rapidly Solidified Magnesium-Based Ribbon[J].Surface and Interface Analysis.1992,19:386-392.
    [114]Tzimas E,Zavaliangos A.A comparative characterization of near-equiaxed microstructures as produced by spray casting,magnetohydrodynamic casting and the stress induced,melt activated process[J].Materials Science and Engineering A.2000,289(1-2):217-227.
    [115]Celotto S.TEM study of continuous precipitation in Mg-9wt%Al-1 wt%Zn alloy[J].Acta Materialia.2000,48(8):1775-1787.
    [116]Mathieu S,Rapin C,Hazan J,et al.Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys[J].Corrosion Science.2002,44(12):2737-2756.
    [117]梁敬魁.粉末衍射法测定晶体结构(上)[M].北京:科学出版社,2003.
    [118]Feurer U,Wunderlin R,cited by Kurz W,Fisher D J.Fundamentals of Solidification[M].Aedermannsdorf,Switzerland:Trans Tech Publications Ltd.,1986.
    [119]Ni H,Sun B,Jiang H,et al.Effect of JDN-Ⅰ flux on DAS of A356 alloy at different cooling rate[J].Materials Science and Engineering A.2003,348(1-2):1-5.
    [120]Cante M V,Spinelli J E,Ferreira I L,et al.Microstructural Development in Al-Ni Alloys Directionally Solidified under Unsteady-State Conditions[J].Metallurgical and Materials Transactions A.2008,39(7):1712-1726.
    [121]Kirkwood D H.A simple model for dendrite arm coarsening during solidification[J].Materials Science & Engineering A.1985,73:L1-L4.
    [122]Osorio W R,Santos C A,Quaresma J M V,et al.Mechanical properties as a function of thermal parameters and microstructure of Zn-Al castings[J].Journal of Materials Processing Technology.2003,143-144:703-709.
    [123]Mortensen A.Secondary Arm Spacing[M].New York:McGrawhill Inc.,1991.
    [124]李晨希,郭太明,李荣德,等.二次枝晶臂间距的研究[J].铸造.2004,53(12):1011-1014.
    [125]L(o|¨)ser W,Thiem S,Jurisch M.Solidification modelling of microstructures in near-net-shape casting of steels[J].Materials Science and Engineering A.1993,173(1-2):323-326.
    [126]Aziz M J.Model for solute redistribution during rapid solidification[J].Journal of Applied Physics.1982,53(2):1158-1168.
    [127]Cahn J W,Coriell S R,Boettinger W J.in Laser and Electron Beam Processing of Materials.ed.by White C W and Peercy P S[M].New York:Academic,1980.
    [128]Jackson K A,Gilmer G H,Leamy H J.in Laser and Electron Beam Processing of Materials.ed.by White C W and Peercy P S[M].New York:Academic,1980.
    [129]Herlach D M,Feuerbacher B.Non-equilibrium solidification of undercooled metallic melts[J].Advances in Space Research.1991,11(7):255-262.
    [130]Herlach D M,Gao J,Holland-Moritz D,et al.Nucleation and phase-selection in undercooled melts[J].Materials Science and Engineering A.2004,375-377:9-15.
    [131]Shao G,Tsakiropoulos P.Prediction of phase selection in rapid solidification using time dependent nucleation theory[J].Acta Metallurgica et Materialia.1994,42(9):2937-2942.
    [132]Dahle A K,Lee Y C,Nave M D,et al.Development of the as-cast microstructure in magnesium-aluminium alloys[J].Journal of Light Metals.2001,1(1):61-72.
    [133]刘志勇,许庆彦,柳百成.铸造镁合金的枝晶生长模拟[J].金属学报.2007,43(04):367-373.
    [134]张俊善.材料强度学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [135]余琨,黎文献,王日初.Mg-Al-Zn(RE)镁合金轧制变形行为及强化机制[J].稀有金属材料与工程.2006,35(11):1748-1752.
    [136]Polmear I J.Magnesium alloys and applications[J].Materials Science and Technology.1994,10(1):1-16.
    [137]石德珂.位错与材料强度[M].西安:西安交通大学,1988.
    [138]Guo X,Remennik S,Xu C,et al.Development of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr magnesium alloy and its microstructural evolution during processing[J].Materials Science and Engineering A.2008,473(1-2):266-273.
    [139]Guo X F,Shechtman D.Reciprocating extrusion of rapidly solidified Mg-6Zn-1Y-0.6Ce-0.6Zr alloy[J].Journal of Materials Processing Technology.2007,187-188:640-644.
    [140]Ji Z S,Wen L H,Li X L.Mechanical properties and fracture behavior of Mg-2.4Nd-0.6Zn-0.6Zr alloys fabricated by solid recycling process[J].Journal of Materials Processing Technology.In Press,Corrected Proof.
    [141]Ortega Y,Leguey T,Pareja R.Tensile fracture behavior of aging hardened Mg-1Ca and Mg-1Ca-1Zn alloys[J].Materials Letters.2008,62(23):3893-3895.
    [142]Penghuai P,Liming P,Haiyan J,et al.Fracture behavior and mechanical properties of Mg-4Y-2Nd-1Gd-0.4Zr(wt.%) alloy at room temperature[J].Materials Science and Engineering A.2008,486(1-2):572-579.
    [143]黄正华,郭学锋,张忠明,等.铈对铸造镁合金AZ91D显微组织与力学性能的影响[J].稀有金属.2004,28(04):683-686.
    [144]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.
    [145]Song G,Atrens A,Stjohn D,et al.The electrochemical corrosion of pure magnesium in 1 N NaCl[J].Corrosion Science.1997,39(5):855-875.
    [146]Wang L,Zhang J,Zeng Z,et al.Fabrication of a nanocrystalline Ni-Co/CoO functionally graded layer with excellent electrochemical corrosion and tribological performance [J].Nanotechnology.2006,17(18):4614-4623.
    [147]Feng Q,Li T,Teng H,et al.Investigation on the corrosion and oxidation resistance of Ni-Al203 nano-composite coatings prepared by sediment co-deposition[J].Surface and Coatings Technology.2008,202(17):4137-4144.
    [148]肖纪美,曹楚南.材料腐蚀学原理[J].北京:化学工业出版社.2004.
    [149]Song G L,Atrens A.Corrosion Mechanisms of Magnesium Alloys[J].Advanced Engineering Materials.1999,1(1):11-33.
    [150]Hermann F,Sommer F,Jones H,et al.Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing[J].Journal of Materials Science.1989,24(7):2369-2379.
    [151]Ambat R,Aung N N,Zhou W.Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy[J].Journal of Applied Electrochemistry.2000,30(7):865-874.
    [152]Song G L,Atrens A.Understanding Magnesium Corrosion-A Framework for Improved Alloy Performance[J].Advanced Engineering Materials.2003,5(12):837-858.
    [153]Makar G L,Kruger J.Corrosion Studies of rapidly solidified magnesium alloys[J].Journal of Electrochemistry Society.1990,137(2):414-421.
    [154]Baliga C B,Tsakiropoulos P.Development of corrosion resistant magnesium alloys Part 2 Structure of corrosion products on rapidly solidified Mg-16Al alloys[J].Materials Science and Technology.1993,9(6):513-519.
    [155]Zhao M,Liu M,Song G,et al.Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91[J].Corrosion Science.2008,50(7):1939-1953.
    [156]Shi Z,Song G,Atrens A.Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy[J].Corrosion Science.2006,48(8):1939-1959.
    [157]Lunder O,Lein J E,Aune T K,et al.The role of Mg_(17)Al_(12) phase in the corrosion of Mg alloy AZ91[J].Corrosion.1989,45(9):741-748.
    [158]Li Y,Zhang T,Wang F.Effect of microcrystallization on corrosion resistance of AZ91D alloy[J].Electrochimica Acta.2006,51(14):2845-2850.
    [159]Lafront A M,Zhang W,Jin S,et al.Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques[J].Electrochimica Acta.2005,51(3):489-501.
    [160]Mathieu S,Rapin C,Steiumetz J,et al.A corrosion study of the main constituent phases of AZ91 magnesium alloys[J].Corrosion Science.2003,45(12):2741-2755.
    [161]Song G,Atrens A,John D S,et al.The anodic dissolution of magnesium in chloride and sulphate solutions[J].Corrosion Science.1997,39(10-11):1981-2004.
    [162]Song G L,Bowles A L,Stjohn D H.Corrosion resistance of aged die cast magnesium alloy AZ91D[J].Materials Science and Engineering A.2004,366(1):74-86.
    [163]Yang H,Xie S,Li L.Numerical simulation of the preparation of semi-solid metal slurry with damper cooling tube method[J].Journal of University of Science and Technology Beijing.2007,14(5):443-448.
    [164]张小立,谢水生,李廷举,等.阻尼冷却管法制备A356铝合金半固态浆料的研究[J].稀有金属材料与工程.2007,36(05):915-919.
    [165]张小立.铝、镁合金半固态浆料制备技术的研究[D].大连:大连理工大学,2008.
    [166]Kleiner S,Beffort O,Wahlen A,et al.Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys[J].Journal of Light Metals.2002,2(4):277-280.
    [167]毛卫民,闫时建,甄子胜,等.半固态AZ91D镁合金的触变性[J].金属学报.2005,41(02):191-195.
    [168]Czerwinski F.Near-liquidus molding of Mg-Al and Mg-Al-Zn alloys[J].Acta Materialia.2005,53(7):1973-1984.
    [169]Mada M,Ajersch F.Rheological model of semi-solid A356-SiC composite alloys.Part Ⅰ:Dissociation of agglomerate structures during shear[J].Materials Science and Engineering A.1996,212(1):157-170.
    [170]Modigell M,Koke J.Rheological modelling on semi-solid metal alloys and simulation of thixocasting processes[J].Journal of Materials Processing Technology.2001,111(1-3):53-58.
    [171]张伯明.离心铸造[M].北京:机械工业出版社,2004.
    [172]刘庆星.离心铸管[M].北京:机械工业出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700