用户名: 密码: 验证码:
高铁酸盐的合成、结构分析和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铁酸盐具有高的氧化还原电势、三个电子的转移能力以及无毒无害的产物。因此,高铁电池具有高电压、高容量以及绿色环保等优势。高铁酸盐电极材料的研究具有重要的理论意义和应用价值,已经引起了电池工作者的广泛关注。本论文针对目前高铁酸盐正极材料研究中仍存在的合成困难、稳定性差以及放电机制不明确等诸多问题进行了系统的研究。
     本论文采用次氯酸盐氧化法和利用置换反应分别制备了纯度大于97%的K_2FeO_4和纯度大于95%的BaFeO_4固体粉末。使用XRD、SEM、FTIR、TG和XPS多种测试技术表征了其结构特征。结果表明,K_2FeO_4和BaFeO_4同属于正交结构,空间群为D_n(Pnma)。晶胞参数分别为a=7.690(3)(?),b=5.850(2)(?),c=10.329(4)(?)和a=9.12175(?),b=5.46235(?),c=7.32645(?)。Fe_(2p)电子结合能分别为712.10 eV和712.4 eV。干燥的K_2FeO_4和BaFeO_4粉末分别在130℃和160℃以上发生热分解反应,产物均为Fe(Ⅲ)氧化物。这些热力学数据为高铁酸盐的合成、储存和表征提供了依据。
     采用溶剂挥发法培养了K_2FeO_4单晶并利用CCD技术研究了K_2FeO_4单晶的通道结构,并探索了以K_2FeO_4为正极材料的锂离子二次电池的电化学性能。CCD结果表明,FeO_4~(2-)离子具有正四面体结构,对称性为T_d点群。Fe-O共价键键长为1.647(4)(?),O-Fe-O键角为109.15°。分子晶胞图显示了在K_2FeO_4晶胞的a和b方向上存在着半径为0.93(?)的一维通道结构,这些通道有利于锂离子(半径为0.76(?))在K_2FeO_4中的脱嵌。电化学测试结果表明,K_2FeO_4阴极的首次放电过程可以描述为两个不同的过程,首先是当放电到1.0V时,一个锂离子的各向异性的嵌入过程;另一个是放电到0.5V时,两个锂离子各向同性的嵌入过程。K_2FeO_4阴极展示了高的放电比容量大约为400 mAh/g,以及前20周良好的循环性能(380 mAh/g)。循环过程中对K_2FeO_4的结构变化的研究验证了K_2FeO_4阴极的结晶度的持续降低是高铁锂离子二次电池循环性能衰减的主要原因。
     论文研究了以K_2FeO_4和BaFeO_4为正极材料,以Zn、MH和TiB_2为负极材料的高铁一次性碱性电池的电化学性能。K_2FeO_4/Zn碱性电池展示了K_2FeO_4阴极优越的容量优势,尤其是以9 M KOH为电解液,在0.4 C的电流密度下,1.0 V以上比容量达到了521.3 mAh/g。研究表明,Zn和MH负极材料在放电过程中产生的H_2严重影响了高铁阴极的稳定性。K_2FeO_4在电解液的溶解和分解反应是K_2FeO_4碱性电池容量损失和自放电性能差的主要原因。K_2FeO_4/TiB_2碱性电池表现了良好的容量优势,1.0 V以上放电比容量达到了220 mAh/g(以正负极活性物质总质量计算)。实际放电容量已接近MnO_2/Zn碱性电池的理论比容量223.9mAh/g(以正负极活性物质总质量计算)。相比较于K_2FeO_4阴极,BaFeO_4碱性电池的放电比容量较小,放电电压平台低。研究结果表明,BaFeO_4较大的内阻和放电过程中产生的不溶钡盐是造成这一现象的主要原因。
     采用溶液铸膜法制备了PVA/PAA-KOH-H_2O复合碱性固态电解质膜,并以K_2FeO_4为正极材料,Zn为负极材料,组成高铁碱性固态电池。研究结果表明,PVA/PAA-KOH-H_2O碱性固态电解质膜电导率为3.5×10~(-2)S/cm,电化学窗口为3.4 V。电化学性能研究表明K_2FeO_4-Zn碱性固态电池以0.4 C倍率放电1.0 V以上放电比容量达到220 mAh/g。使用多种添加剂改性碱性固态高铁电池的研究结果表明,5%KMnO_4改变了K_2FeO_4正极的放电过程,在放电过程中起电催化作用。5%NaBiO_3改善了K_2FeO_4正极的放电效率(92.9%),比未添加时提高34%左右。5%SrTiO_3提高了K_2FeO_4正极的放电效率(84.7%),比未添加改性时提高26%,放电容量为344.0 mAh/g。NaBiO_3和碱土金属钛酸盐一方面有效抑制K_2FeO_4因溶解造成的容量损失,另一方面减小了放电过程中的电化学极化,有效改善了传质传荷过程,从而提高了K_2FeO_4正极的放电效率。
     论文研究了高铁酸根在碱性溶液中的电化学还原机理。使用线性扫描法和取样电流伏安法测试并计算了总电子数为3的高铁酸根的电化学还原反应。结果表明,FeO_4~(2-)离子的电化学还原反应为完全不可逆反应,该反应包含两个分步反应,分别发生在电位范围0.55-0.48 V和0.45-0.28 V。第一步还原反应是单电子的速控步反应,第二个还原反应为两个电子的扩散控制步反应。因此,高铁酸根在9 M KOH中的电化学还原机理可以表述为FeO_4~(2-)→FeO_3~-→FeO_2~-,其中Fe(Ⅴ)过渡态由Fe(Ⅵ)单电子还原产生。
Ferrate(Ⅵ) has high redox potential, three-electron transfer capacity, and innocuous products. Therefore, the batteries using ferrate(Ⅵ) as cathode exhibit corresponding advantages, such as high voltage, high capacity, and environment friendly feature. The studies on ferrate(Ⅵ) electrode materials are of great theoretical significance and practical value, which have attracted extensive attention of many researchers. In this thesis, we systematically investigate the synthesis, structure, and electrochemical properties of ferrate(Ⅵ), aimed on the current difficulties such as difficult preparation of high purity ferrate(Ⅵ), low stability in aqueous even alkali solution, ambiguous discharge mechanism.
     In this thesis, K_2FeO_4 (>97%) and BaFeO_4 (>95%) powder were prepared by using a hypochlorite oxidation and a replacement reaction, respectively. The structural properties were characterized by XRD, SEM, FTIR, TG, and XPS techniques. The results indicate that both K_2FeO_4 and BaFeO_4 have a orthorhombic structure (D_n, Pnma) with lattice parameters a = 7.690(3) (?), b = 5.850(2)(?), c = 10.329(4)(?),and a = 9.12175 (?), b = 5.46235 (?), c = 7.32645 (?), respectively. Their electron binding energies of Fe_(2p) are 712.10 and 712.4 eV. The thermal decomposition of the dry K_2FeO_4 and BaFeO_4 powder takes place at above 130 and 160℃with the same Fe(Ⅲ) oxide products. These thermodynamic data provide the basis for synthesis, storage, and characterization of ferrate(Ⅵ).
     A single crystal K_2FeO_4 was grown by the solvent evaporation method at 25℃, and the crystal structure of the K_2FeO_4 was characterized by the charge-coupled device (CCD) technique. The electrochemical performance of ferrate(Ⅵ) Li-ion secondary battery with K_2FeO_4 cathode was investigated. It is demonstrated from CCD data that the FeO_4~(2-) has a regular tetrahedron structure with T_d point-group symmetry. The average tetrahedral [Fe - O] bond length, corrected for libration effects, is 1.647(4)(?) and the bond angle of [O-Fe-O] is 109.15°. The molecular packing in the unit cell of single crystalline K_2FeO_4 indicates that one-dimensional channels exist in the direction of a and b axes of the cell, where the radius of channels is about 0.93(?). These wide channels are beneficial for Li ion (radius = 0.76 (?)) intercalation and deintercalation in the K_2FeO_4 cathode. The results demonstrate that the initial discharge process of the K_2FeO_4 cathode can be described as two different processes: an anisotropic one-Li ion intercalation process after discharge to 1.0 V, followed by an isotropic two-Li ion intercalation process after further deep discharge to 0.5 V. The K_2FeO_4 cathode exhibits a higher discharge capacity of about 400 mAh/g and relative good electrochemical cycle ability during the initial 20 cycles. The crystallinity of the K_2FeO_4 cathode decreases significantly during 50 cycles, indicating that the decay of the cycle performance of the ferrate(Ⅵ) Li-ion secondary battery is mainly caused by the decrease of crystallinity of the K_2FeO_4 cathode.
     The electrochemical performance of the ferrate(Ⅵ) primary alkaline battery was investigated. The test batteries included: K_2FeO_4 and BaFeO_4 as cathode; Zn, MH and TiB_2 as anode; KOH solution as electrolyte. The K_2FeO_4/Zn primary alkaline batteries exhibit the advantage in discharge specific capacity, which reached 521.3 mAh/g (cut-off voltage 1.0 V) in 9 M KOH at a rate of 0.4 C. The results show that the stability of the ferrate(Ⅵ) cathode was seriously affected by the hydrogen, generated by the reaction between the Zn and MH anode and KOH electrolyte during the discharge process. The capacity loss and the significant self-discharge are mainly caused by the dissolution and decomposition of K_2FeO_4 cathode in KOH electrolyte. The K_2FeO_4/TiB_2 primary alkaline batteries indicate the advantage of high capacity battery, which can reach 223.9 mAh/g above 1.0 V, as calculated with the weight of both cathode and anode. The actual discharge specific capacity is close to the theoretical specific capacity of the primary alkaline MnO_2/Zn battery (223.9 mAh/g). Comparing to the K_2FeO_4 cathode, the alkaline BaFeO_4 batteries indicate a less discharge specific capacity and a lower discharge voltage. The results show that it can be attributed to the large internal resistance of BaFeO_4 cathode and the insoluble barium salt, generated during the discharge process on the surface cathode.
     The PVA/PAA-KOH-H_2O composite alkaline solid polymer electrolyte was prepared by the solution casting technology and was used as both separator and electrolyte in the solid alkaline ferrate(Ⅵ) battery, which included K_2FeO_4 cathode and Zn anode. The ionic conductivity and the electrochemical window of the PVA/PAA-KOH-H_2O membrane is about 3.5×10~(-2) S/cm and 3.4 V at room temperature, indicating that it could be used as a separator and electrolyte for the solid alkaline K_2FeO_4-Zn battery. The electrochemical analyses show that the discharge specific capacity above 1.0 V of the solid alkaline K_2FeO_4-Zn batteries reaches 220 mAh/g at a rate of 0.4 C. Many additives were used to enhance the electrochemical performance of the solid alkaline K_2FeO_4-Zn battery. The discharge process of K_2FeO_4 cathode was changed by 5% KMnO_4 additive, indicating good electrocatalysis characteristics for K_2FeO_4 cathode. The discharge efficiency of the solid alkaline K_2FeO_4-Zn battery increased by 34% (to 92.9%) and by 26% (to 84.7%), with 5% NaBiO_3 and 5% SrTiO_3 additive, respectively. The two additives effectively inhibit the capacity loss caused by the dissolution of K_2FeO_4 cathode, and decrease the electrochemical polarization of K_2FeO_4 cathode during the discharge process, due to the decrease of the internal resistance and enhancement of the mass-transfer and electron-transfer process.
     The electrochemical reduction mechanism of FeO_4~(2-) ion was investigated in alkali solution. Linear sweep voltammetry and sampled-current voltammetry were carried out to calculate the electrochemical reduction with total three-electron reaction of FeO_4~(2-) ion. The results demonstrate that the total irreversible cathodic reactions of FeO_4~(2-) include two step reactions at potential region of 0.55 - 0.48 V and 0.45 - 0.28 V, respectively. The first one is the rate-controlling step with single electron transfer, and the other one is a two-electron reduction. Therefore, the electrochemical reduction mechanism of FeO_4~(2-) in 9 M KOH can be described as FeO_4~(2-)→FeO_3~-→FeO_2~-, in which the intermediate state of Fe (Ⅴ) is generated from ferrate (Ⅵ).
引文
[1] IEA. World energy outlook 2008. Paris: OECD/IEA, 2008:
    [2] Wood R H. The Heat, Free Energy and Entropy of the Ferrate(VI) Ion. J. Am. Chem. Soc., 1958,80 (9): 2038-2041
    [3] Stahl G E. Opusculum chimico-Physico-Medicum. Halae-Magdeburgiae: 1702:742
    [4] Fretny E C R. Preparation of potassuim ferrate(VI) in alkaline solutions. Acad. Sci. Paris, 1841,12 23
    [5] Gyory S, Zusammenfassung O. Neue volumetrische Methode zur Gehaltsbestimmung der Fowler'schen Losung und des Brechweinsteins. Fresenius' Journal of Analytical Chemistry, 1893,32 415-421
    [6] Thompson G W, Ockerman L T, Schreyer J M. Preparation and Purification of Potassium Ferrate. VI. J. Am. Chem. Soc, 1951, 73 (3): 1379-1381
    [7] Hrostowski H J, Scott A B. The Magnetic Susceptibility of Potassium Ferrate. J. Chem. Phys., 1950,18(1): 105-107
    [8] Crawford R L, Paszczynski A, Allenbach L. Potassium ferrate [Fe(VI)] does not mediate self-sterilization of a surrogate mars soil. BMC Microbiol., 2003,3 (1): 4-14
    [9] Tsapin A I, Goldfeld M G, McDonald G D et al. Iron(VI): Hypothetical Candidate for the Martian Oxidant. Icarus, 2000,147 (1): 68-78
    [10] Audette R J, Quail J W, Smith P J. Ferrate (VI) ion, a novel oxidizing agent. Tetrahedron Lett., 1971,12 (3): 279-282
    [11] Que L, Ho R Y N. Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chem. Rev., 1996,96 (7): 2607-2624
    [12] Jiang J Q, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res., 2002,36 (6): 1397-1408
    [13] Ma J, Liu W. Effectiveness of ferrate (VI) prooxidation in enhancing the coagulation of surface waters. Water Res., 2002,36 (20): 4959-4962
    [14] Ma J, Liu W. Effectiveness and mechanism of potassium ferrate(VI) preoxidation for algae removal by coagulation. Water Res., 2002,36 (4): 871-878
    [15] Read J F, John J, MacPherson J et al. The kinetics and mechanism of the oxidation of inorganic oxysulfur compounds by potassium ferrate.: Part I. Sulfite, thiosulfate and dithionite ions. Inorg. Chim. Acta, 2001,315 (1): 96-106
    [16] Fan M H, Brown R C, Huang C P. Preliminary studies of the oxidation of arsenic(III) by potassium ferrate. Int. J. Environ. Pollut., 2002,18 (1): 91-96
    [17] Johnson M D, Hornstein B J. The kinetics and mechanism of the ferrate(VI) oxidation of hydroxylamines. Inorg. Chem., 2003, 42 (21): 6923-6928
    [18] Nicol M J, Guresin N. Anodic behaviour of arsenopyrite and cathodic reduction of ferrate(VI) and oxygen in alkaline solutions. J. Appl. Electrochem., 2003, 33 (11): 1017-1024
    [19] Graham N, Jiang C C, Li X Z et al. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere, 2004,56 (10): 949-956
    [20] Read J F, Griffiths B H B, Lynch L L et al. The kinetics and mechanism of the oxidation of phenylthioacetic acid and thiodiglycolic acid by potassium ferrate. Inorg. React. Mech., 2004,5(2): 135-150
    [21] Read J F, MacCormick K J, McBain A M. The kinetics and mechanism of the oxidation of DL ethionine and thiourea by potassium ferrate. Transition Met. Chem., 2004, 29 (2): 149-158
    [22] Sharma V K, Noorhasan N. Oxidation of aminopolycarboxylate chelating agents by ferrate(VI). Abstr. Pap. Am. Chem. Soc., 2004, 228 U611-U611
    [23] Eng Y Y, Sharma V K, Ray A K. Ferrate(VI): Green chemistry oxidant for degradation of cationic surfactant. Chemosphere, 2006,63 (10): 1785-1790
    [24] Sharma V K, Mishra S K, Ray A K. Kinetic assessment of the potassium ferrate(VI) oxidation of antibacterial drug sulfamethoxazole. Chemosphere, 2006, 62 (1): 128-134
    [25] Zhu J, XiLuan Y, Ye L et al. Improving alachlor biodegradability by ferrate oxidation. J. Hazard. Mater., 2006,135 (1-3): 94-99
    [26] Liu S Z, Wang B H, Cui B C et al. Deep desulfurization of diesel oil oxidized by Fe(Vl) systems. Fuel, 2008, 87 422-428
    [27] Noorhasan N N, Sharma V K. Kinetics of the reaction of aqueous iron(VI) (Fe~(VI)O_4~(2-)) with ethylenediaminetetraacetic acid. Dalton Transactions, 2008, (14): 1883-1887
    [28] Sharma V K, Yngard R A, Cabelli D E et al. Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide. Radiat. Phys. Chem., 2008, 77 (6): 761-767
    
    [29] 于海莲, 胡震. 绿色功能材料高铁酸盐的制备及其应用研究进展. 化工科技, 2008,16 (3): 70-74
    [30] Delaude L, Laszlo P. A Novel Oxidizing Reagent Based on Potassium Ferrate(VI). J. Org. Chem., 1996, 61 (18): 6360-6370
    [31] Kamachi T, Kouno T, Yoshizawa K. Participation of multioxidants in the pH dependence of the reactivity of ferrate(VI). J. Org. Chem., 2005, 70 (11): 4380-4388
    [32] Shiota Y, Kihara N, Kamachi T et al. A theoretical study of reactivity and regioselectivity in the hydroxylation of adamantane by ferrate(VI). J. Org. Chem., 2003, 68 (10): 3958-3965
    [33] Johnson M D, Hornstein B J. Oxidation of aniline by ferrate(VI): Formation of an iron-imido species. Abstr. Pap. Am. Chem. Soc, 2000, 219 U843-U843
    [34] Heravi M M, Tajbakhsh M, Habibzadeh S et al. Potassium ferrate supported on montmorillonite K-10: A mild and efficient reagent for oxidative deprotection of acetals and ketals. Monatsh. Chem., 2001,132 (8): 985-988
    [35] Ghazanfari D, Hashemi M M. Microwave assisted regeneration of carbonyl compounds from 2,4-dinitrophenylhydrazones with potassium ferrate(VI) supported on montmorillonite K-10. Acta Chim. Slov., 2004, 51 (2): 337-342
    [36] Sharma V K, Rivera W, Smith J O et al. Ferrate(VI) oxidation of aqueous cyanide. Environ. Sci. Technol., 1998,32 (17): 2608-2613
    [37] Kazama F. Viral inactivation by potassium ferrate. Water Sci. Technol., 1995, 31 (5-6): 165-168
    [38] Sharma V K. Disinfection performance of Fe(VI) in water and wastewater: a review. Water Sci. Technol., 2007, 55 (1-2): 225-232
    [39] de Luca S J, Idle C N, Chao A C. Quality improvement of biosolids by ferrate(VI) oxidation of offensive odour compounds. Water Sci. Technol., 1996,33 (3): 119-130
    [40] Lee Y, Yoon J, von Gunten U. Spectrophotometry determination of ferrate (Fe(VI)) in water by ABTS. Water Res., 2005,39 (10): 1946-1953
    [41] Cho M, Lee Y, Choi W et al. Study on Fe(VI) species as a disinfectant: Quantitative evaluation and modeling for inactivating Escherichia coli. Water Res., 2006, 40 (19): 3580-3586
    [42] Jiang J Q, Wang S, Panagoulopoulos A. The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere, 2006, 63 (2): 212-219
    [43] Sharma V K, Smith J O, Millero F J. Ferrate(VI) Oxidation of Hydrogen Sulfide. Environ. Sci. Technol., 1997,31 (9): 2486-2491
    [44] Sharma V K, Mishra S K. Ferrate(VI) oxidation of ibuprofen: A kinetic study. Environ. Chem. Lett., 2006,3 (4): 182-185
    [45] Jiang J Q, Wang S. Enhanced coagulation with potassium ferrate(VI) for removing humic substances. Environ. Eng. Sci., 2003, 20 (6): 627-633
    [46] Murshed M, Rockstraw D A, Hanson A T et al. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate. Environ. Pollut, 2003,125 (2): 245-253
    [47] Van der Bruggen B, Vandecasteele C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ. Pollut., 2003,122 (3): 435-445
    [48] Lee Y, Um I H, Yoon J. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ. Sci. Technol., 2003,37 (24): 5750-5756
    [49] Costarramone N, Kneip A, Castetbon A. Ferrate(VI) oxidation of cyanide in water. Environ. Technol., 2004, 25 (8): 945-955
    [50] Sharma V K, Burnett C R, Yngard R A et al. lron(VI) and lron(V) oxidation of copper(I) cyanide. Environ. Sci. Technol., 2005,39 (10): 3849-3854
    [51] Yngard R A, Sharma V K, Filip J et al. Ferrate(VI) oxidation of weak-acid dissociable cyanides. Environ. Sci. Technol., 2008,42 (8): 3005-3010
    [52] Carr J D, Kelter P B, Ericson A T. Ferrate(VI) oxidation of nitrilotriacetic acid. Environ. Sci. Technol., 1981,15(2): 184-187
    [53] Fagan J, Waite T D. Notes. Biofouling control with ferrate(VI). Environ. Sci. Technol., 1983,17(2): 123-125
    [54] Lee Y, Yoon J, Von Gunten U. Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(Ⅵ)). Environ. Sci. Technol., 2005, 39(22): 8978-8984
    [55] Sharma V K, Mishra S K, Nesnas N. Oxidation of sulfonamide antimicrobials by ferrate(Ⅵ)[(FeO_42-)-O-Ⅵ]. Environ. Sci. Technol., 2006,40 (23): 7222-7227
    [56] Sharma V K, Rivera W, Joshi V N et al. Ferrate(Ⅵ) oxidation of thiourea. Environ. Sci.Technol., 1999,33(15): 2645-2650
    [57] Sylvester P, Rutherford L A, Gonzalez-Martin A et al. Ferrate treatment for removingchromium from high-level radioactive tank waste. Environ. Sci. Technol., 2001, 35 (1):216-221
    [58] Sharma V K, Winkelmann K, Krasnova Y et al. Heterogeneous photocatalytic reduction of ferrate(Ⅵ) in UV-irradiated titania suspensions: Role in enhancing destruction of nitrogen-containing pollutants. Int. J. Photoenergy, 2003, 5 (3): 183-190
    [59] Jiang J Q, Panagoulopoulos A, Bauer M et al. The application of potassium ferrate for sewage treatment. Journal of environmental management, 2006, 79 (2): 215-220
    [60] Tiwari D, Kim H U, Choi B J et al. Ferrate(Ⅵ): A green chemical for the oxidation of cyanide in aqueous/waste solutions. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst.Environ. Eng., 2007,42 (6): 803-810
    [61] Winkelmann K, Sharma V K, Lin Y et al. Reduction of ferrate(Ⅵ) and oxidation of cyanate in a Fe(Ⅵ)-TiO_2-UV-NCO~- system. Chemosphere, 2008, 72 (11): 1694-1699
    [62] Cici M, Cuci Y. Production of some coagulant materials from galvanizing workshop waste.Waste Manage. (Oxford), 1998,17 (7): 407-410
    [63] Karnik B S, Davies S H R, Chen K C et al. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Res., 2005,39 (4): 728-734
    [64] Lee C, Lee Y, Schmidt C et al. Oxidation of suspected N-nitrosodimethylamine (NDMA)precursors by ferrate (Ⅵ): Kinetics and effect on the NDMA formation potential of natural waters. Water Res., 2008, 42 (1-2): 433-441
    [65] Li C, Li X Z, Graham N et al. The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Res., 2008, 42 109-120
    [66] Murmann R K, Robinson P R. Experiments utilizing FeO_42- for purifying water. Water Res.,1974,8 (8): 543-547
    [67] Yuan B L, Li X Z, Graham N. Aqueous oxidation of dimethyl phthalate in a Fe(Ⅵ)-TiO_2-UV reaction system. Water Res., 2008,42 (6-7): 1413-1420
    [68] Li C, Li X Z. Degradation of endocrine disrupting chemicals in aqueous solution by interaction of photocatalytic oxidation and ferrate (Ⅵ) oxidation. Water Sci. Technol., 2007,55 (1-2): 217-223
    [69]陈永红,刘勇,沈建中.饮用水处理剂-高铁酸钾.中国消毒学杂志,2003,20(3):234-235
    [70]郭士成,林秋华.高铁酸钾与饮用水处理.化学教育,2005,26(01):2-3
    [71] 王靖宇,陈国平.双效水处理剂高铁酸盐的研究进展.化工时刊,2005,19(12):67-69
    [72] 樊杰.高铁酸盐预处理湖泊水库水的研究进展.工业安全与环保2005,31(10):25-27
    [73] 姜洪泉,金世洲,王鹏.多功能水处理剂高铁酸钾的制备与应用.工业水处理,2001,21(2):4-6
    [74] 秦玉楠.新型高效水处理剂-高铁酸钾生产工艺简介.工业水处理1994,14(04):29-30
    [75] 邓正栋,谢思桃,吴克宏等.高铁酸钾在饮用水消毒及野营给水水质保障上的应用探讨.环境与健康杂志,2001,18(03):190-192
    [76] 刘永春.新型高效水处理剂——Na_2FeO_4的电合成及应用研究[硕士学位论文].成都:四川大学,2002
    [77] 刘伟,马军.高铁酸盐预氧化对藻类细胞的破坏作用及其助凝机理.环境科学学报,2002,22(1):24-28
    [78] 冀亚飞,丁毅,张雁秋.高铁酸钾的制备及在水处理中的应用.现代化工,1998,(3):17-19
    [79] 覃长森,刘玉莲.非氯型消毒剂高铁酸钾的合成.精细化工,1997,14(05):1-3
    [80] Lee Y, Cho M, Kim J Y et al. Chemistry of ferrate (Fe(Ⅵ)) in aqueous solution and its applications as a green chemical. J. Ind. Eng. Chem., 2004,10 (1): 161-171
    [81] Licht S, Yu X W. Electrochemical Alkaline Fe(Ⅵ) Water Purification and Remediation.Environ. Sci. Technol., 2005,39 (20): 8071-8076
    [82] Yuan B L, Li X Z, Graham N. Reaction pathways of dimethyl phthalate degradation in TiO_2-UV-O_2 and TiO_2-UV-Fe(Ⅵ) systems. Chemosphere, 2008, 72 (2): 197-204
    [83] Jacobo S E, Civale L, Blesa M A. Evolution of the magnetic properties during the thermal treatment of barium hexaferrite precursors obtained by coprecipitation from barium ferrate (Ⅵ) solutions. J. Magn. Magn. Mater., 2003,260 (1-2): 37-41
    [84] Goff H, Murmann R K. Studies on the Mechanism of Isotopic Oxygen Exchange and Reduction of Ferrate(Ⅵ) Ion (FeO_4~(2-)). J. Am. Chem. Soc, 1971,93 (23): 6058-6065
    [85] Herber R H, Johnson D. Lattice dynamics and hyperfine interactions in M_2FeO_4 (M =potassium~+, rubidium~+, cesium~+) and M'FeO_4 (M' = strontium~(2+), barium~(2+)). Inorg. Chem.,1979,18 (10): 2786-2790
    [86] 冯长春,周志浩,蒋凤生等.高铁酸钾的结构研究.化学世界,1991,(3):102-108
    [87] 谭继承,何中华,平梅等.高价态铁酸盐的合成、结构与性质研究进展.临沂师范学院学报,2003,25(03):48-50
    [88] Dedushenko S K, Perfiliev Y D, Goldfeld M G et al. Mdssbauer study of hexavalent iron compounds. Hyperfine Interact., 2001,136 373-377
    [89] Kemner K, Kelly S, Orlandini K et al. XAS investigations of Fe (Ⅵ). Synchrotron Radiation, 2001,8 949-951
    [90] Kulikov L A, Perfil'ev Y D, Kopelev N S. The iron charge state in solid cesium ferrate (Ⅵ)deduced from Mdssbauer absorption and emission spectroscopy. J. Phys. Chem. Solids,1995,56(8): 1089-1094
    [91] Bouzek K, Nejezchleba M. In situ Mdssbauer study of the passive layer formed on the iron anode in alkaline electrolyte. Collect. Czech. Chem. Commun., 1999, 64 (12): 2044-2060
    [92] Jeannot C, Malaman B, Gerardin R et al. Synthesis, Crystal and Magnetic Structures of the Sodium Ferrate (Ⅳ) Na_4FeO_4 Studied by Neutron Diffraction and Mrissbauer Techniques. J.Solid State Chem., 2002,165 (2): 266-277
    [93] Ghosh S, Wen W, Urian R C et al. Reversible behavior of K_2Fe(Ⅵ)O_4 in aqueous media -In situ Fe-57 M(?)sbauer and synchrotron X-ray spectroscopy studies. Electrochemical and Solid State Letters, 2003, 6 (12): A260-A264
    [94] Nowik I, Herber R H, Koltypin M et al. M(?)sbauer spectroscopic studies of the disintegration of hexavalent iron compounds (BaFeO_4 and K_2FeO_4). J. Phys. Chem. Solids,2005,66(7): 1307-1313
    [95] Dedushenko S K, Zhizhin M G, Perfiliev Y D. X-ray and M(?)sbauer study of structural changes in K_3Na(FeO_4)_2. Hyperfine Interact., 2006,166 (1-4): 367-371
    [96] Machala L, Zboril R, Sharma V K et al. M(?)sbauer characterization and in situ monitoring of thermal decomposition of potassium ferrate(Ⅵ), K_2FeO_4 in static air conditions. J. Phys.Chem. B, 2007, 111 (16): 4280-4286
    [97] Yang W H, Wang J M, Cao J L et al. Stability of K2FeO_4 in dilute KOH solution. Acta Chim. Sinica, 2004,62 (19): 1951-1955
    [98] Ayers K E, White N C. Characterization of iron(Ⅵ) compounds and their discharge products in strongly alkaline electrolyte. J. Electrochem. Soc, 2005,152 (2): A467-A473
    [99] Walz K A, Szczech J R, Suyama A N et al. Stabilization of iron(Ⅵ) ferrate cathode materials using nanoporous silica coatings. J. Electrochem. Soc, 2006, 153 (6):A1102-A1107
    [100] Walz K A, Handrick A, Szczech J R et al. Evaluation of SiO_2 and TiO_2 coated BaFeO_4 cathode materials for zinc alkaline and lithium non-aqueous primary batteries. J. Power Sources, 2007,167 (2): 545-549
    [101] 张彦平,许国仁,李圭白.K~+对Fe(Ⅵ)生成的稳定促进作用和机理研究.环境科学,2008,29(3):677-682
    [102] Li C, Li X Z, Graham N. A study of the preparation and reactivity of potassium ferrate. Chemosphere, 2005,61 (4): 537-543
    [103] Sharma V K, Burnett C R, Millero F J. Dissociation constants of the monoprotic ferrate(Ⅵ)ion in NaCl media. PCCP, 2001,3 (11): 2059-2062
    [104] Read J F, Bewick S A, Graves C R et al. The kinetics and mechanism of the oxidation of s-methyl-L-cysteine, L-cystine and L-cysteine by potassium ferrate. Inorg. Chim. Acta,2000,303 (2): 244-255
    [105] Sharma V K, Burnett C R, O'Connor D B. Ferrate(Ⅵ) and ferrate(Ⅴ) oxidation of thiocyanate. Abstr. Pap. Am. Chem. Soc, 2000, 220 U359-U359
    [106] Sharma V K, O'Connor D B. Ferrate(Ⅴ) oxidation of thiourea: a premix pulse radiolysis study. Inorg. Chim. Acta, 2000,311 (1-2): 40-44
    [107] Huang H, Sommerfeld D, Dunn B C et al. Ferrate(Ⅵ) oxidation of aqueous phenol: Kinetics and mechanism. J. Phys. Chem. A, 2001,105 (14): 3536-3541
    [108] Sharma V K, Burnett C R, Rivera W et al. Heterogeneous photocatalytic reduction of ferrate(VI) in UV-irradiated titania suspensions. Langmuir, 2001,17 (15): 4598-4601
    [109] Sharma V K, O'Connor D B, Cabelli D E. Sequential one-electron reduction of Fe(V) to Fe(III) by cyanide in alkaline medium. J. Phys. Chem. B, 2001,105 (46): 11529-11532
    [110] Stoupine D Y, Gusev Y K, Lachkova D V. Generation of an oscillating chemical reaction in a heterogeneous system by the oxidation of an alkaline solution of luminol with sodium(VI) ferrate in the presence of copper ions. Russ. Chem. Bull., 2001,50 (1): 159-160
    [111] Rush J D, Bielski B H J. Pulse radiolysis studies of alkaline iron(III) and iron(VI) solutions. Observation of transient iron complexes with intermediate oxidation states. J. Am. Chem. Soc, 1986,108 (3): 523-525
    [112] Rush J D, Bielski B H J. Kinetics of ferrate(V) decay in aqueous solution. A pulse-radiolysis study. Inorg. Chem., 1989, 28 (21): 3947-3951
    [113] Bouzek K, RouSar I, Bergmann H et al. The cyclic voltammetric study of ferrate(VI) production. J. Electroanal. Chem., 1997, 425 (1-2): 125-137
    [114] Zhang H, Park S-M. Rotating Ring-Disk Electrode and Spectroelectrochemical Studies on the Oxidation of Iron in Alkaline Solutions. J. Electrochem. Soc, 1994,141 (3): 718-724
    [115] Sharma V K. Ferrate(V) oxidation of pollutants: a premix pulse radiolysis study. Radiat. Phys. Chem., 2002,65 (4-5): 349-355
    [116] Sharma V K. Potassium ferrate(VI): an environmentally friendly oxidant. Advances in Environmental Research, 2002,6 (2): 143-156
    [117] Read J F, Graves C R, Jackson E. The kinetics and mechanism of the oxidation of the thiols 3-mercapto-1-propane sulfonic acid and 2-mercaptonicotinic acid by potassium ferrate. Inorg. Chim. Acta, 2003,348 41-49
    [118] Read J F, Bewick S A. The kinetics and mechanism of the oxidation of inorganic oxysulfur compounds by potassium ferrate part IV - A theoretical analysis of four models proposed to explain some of the unusual results for trithionate, tetrathionate and pentathionate ions. Inorg. React. Mech., 2005, 5 (4): 305-330
    [119] Read J F, Bewick S A, Donaher S C et al. The kinetics and mechanism of the oxidation of inorganic oxysulfur compounds by potassium ferrate part III - Trithionate and pentathionate ions. Inorg. React. Mech., 2005,5 (4): 281-304
    [120] Read J F, Bewick S A, Oikle S E et al. The kinetics and mechanism of the oxidation of inorganic oxysulfur compounds by potassium ferrate part II - Tetrathionate ions. Inorg. React. Mech., 2005, 5 (4): 265-280
    [121] Shao H B, Wang J M, He W C et al. EIS analysis on the anodic dissolution kinetics of pure iron in a highly alkaline solution. Electrochem. Commun., 2005, 7(12): 1429-1433
    [122] Hives J, Benova M, Bouzek K et al. Electrochemical formation of ferrate(VI) in a molten NaOH-KOH system. Electrochem. Commun., 2006,8 (11): 1737-1740
    [123] Noorhasan N N, Sharma V K, Cabelli D. Reactivity of ferrate(V) (Fe~VO_4~(3-)) with aminopolycarboxylates in alkaline medium: A premix pulse radiolysis. Inorg. Chim. Acta, 2008,361 (4): 1041-1046
    [124] Licht S, Wang B H, Ghosh S. Energetic Iron(VI) Chemistry: The Super-Iron Battery. Science, 1999,285(5430): 1039-1042
    [125] Licht S, De Alwis C. Conductive-Matrix-Mediated Alkaline Fe(III/VI) Charge Transfer: Three-Electron Storage, Reversible Super-Iron Thin Film Cathodes. J. Phys. Chem. B, 2006, 110(25): 12394-12403
    [126] Licht S, Ghosh S. High power BaFe(VI)O_4/MnO_2 composite cathode alkaline super-iron batteries. J. Power Sources, 2002,109 (2): 465-468
    [127] Licht S, Ghosh S, Dong Q F. Charge storage effects in alkaline cathodes containing fluorinated graphite. J. Electrochem. Soc, 2001,148 (10): A1072-A1077
    [128] Licht S, Ghosh S, Naschitz V. Hydroxide Activated AgMnO_4 Alkaline Cathodes, Alone and in Combination with Fe(VI) Super-Iron, BaFeO_4. Electrochem. Solid-State Lett., 2001, 4 (12):A209-A212
    [129] Licht S, Ghosh S, Naschitz V et al. Fe(VI) Catalyzed Manganese Redox Chemistry: Permanganate and Super-Iron Alkaline Batteries. J. Phys. Chem. B, 2001, 105 (48): 11933-11936
    [130] Licht S, Naschitz V, Ghosh S. Silver mediation of Fe(VI) charge transfer: Activation of the K_2FeO_4 super-iron cathode. J. Phys. Chem. B, 2002,106 (23): 5947-5955
    [131] Licht S, Naschitz V, Ghosh S et al. SrFeO_4: Synthesis, Fe(VI) characterization and the strontium super-iron battery. Electrochem. Commun., 2001,3 (7): 340-345
    [132] Licht S, Naschitz V, Halperin L et al. Analysis of ferrate(VI) compounds and super-iron Fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization. J. Power Sources, 2001,101 (2): 167-176
    [133] Licht S, Naschitz V, Liu B et al. Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds. J. Power Sources, 2001,99 (1-2): 7-14
    [134] Licht S, Naschitz V, Rozen D et al. Cathodic charge transfer and analysis of Cs_2FeO_4, K_2FeO_4, and mixed alkali Fe(VI) ferrate super-irons. J. Electrochem. Soc, 2004, 151 (8): A1147-A1151
    [135] Licht S, Naschitz V, Wang B H. Rapid chemical synthesis of the barium ferrate super-iron Fe (VI) compound, BaFeO_4. J. Power Sources, 2002, 109 (1): 67-70
    [136] Licht S, Tel-Vered R. Rechargeable Fe(III/VI) super-iron cathodes. Chem. Commun., 2004, (6): 628-629
    [137] Licht S, Tel-Vered R, Halperin L. Direct electrochemical preparation of solid Fe(VI) ferrate, and super-iron battery compounds. Electrochem. Commun., 2002,4 (11): 933-937
    [138] Licht S, Tel-Vered R, Halperin L. Toward efficient electrochemical synthesis of Fe(VI) ferrate and super-iron battery compounds. J. Electrochem. Soc., 2004,151 (1): A31-A39
    [139] Licht S, Wang B H. Nonaqueous phase Fe(VI) electrochemical storage and discharge of super-iron/lithium primary batteries. Electrochemical and Solid State Letters, 2000, 3 (5): 209-212
    [140]Licht S, Wang B H, Ghosh S et al. Enhanced Fe(Ⅵ) cathode conductance and charge transfer: effects on the super-iron battery. Electrochem. Commun., 2000, 2 (7): 535-540
    [141]Licht S, Wang B H, Gosh S et al. Insoluble Fe(Ⅵ) compounds: effects on the super-iron battery. Electrochem. Commun., 1999,1 (11): 522-526
    [142]Licht S, Wang B H, Xu G et al. Solid phase modifiers of the Fe(Ⅵ) cathode: effects on the super-iron battery. Electrochem. Commun., 1999,1 (11): 527-531
    [143]Licht S, Yang L, Wang B H. Synthesis and analysis of Ag_2FeO_4 Fe(Ⅵ) ferrate super-iron cathodes. Electrochem. Commun., 2005, 7 (9): 931-936
    [144]Licht S, Yu X, Qu D. A novel alkaline redox couple: chemistry of the Fe~(3+)/B~(2-) super-iron boride battery. Chem. Commun., 2007, (26): 2753-2755
    [145]Licht S, Yu X W, Wang Y F. Stabilized alkaline Fe(Ⅵ) charge transfer - The zirconia coating stabilized superiron alkaline cathode. J. Electrochem. Soc, 2008,155 A1-A7
    [146]Licht S, Yu X W, Wang Y F et al. The super-iron boride battery. J. Electrochem. Soc, 2008, 155 (4): A297-A303
    [147]Licht S, Yu X W, Zheng D. Cathodic chemistry of high performance Zr coated alkaline materials. Chem. Commun., 2006, (41): 4341-4343
    [148]刘明义,吴伯荣,陈晖等.高铁酸盐电池材料研究进展.材料导报,2004,18(2):83-85
    [149]王永龙,吴玉菊,薄晋科等.K_2FeO_4-Zn碱性固态电解质电池电化学性能研究.化学学报,2008,66(17):1955-1960
    [150]周宁,叶世海,王永龙等.高铁酸钾电化学性能研究.电化学,2003,9(3):253-258
    [151]周宁,叶世海,高学平等.高铁酸钡的制备及电化学性能研究.南开大学学报(自然科学版),2003,36(4):55-58
    [152]周震涛,廖宗友.非水性锂-高铁酸盐电池的制备及其电化学性能.电源技术2003,27(6):497-499
    [153]张俊喜,徐娜,葛红花等.高铁电池用负极材料的可行性分析.化学通报,2006,(9):644-650
    [154]易清风.高铁酸盐的电合成及其作为电极材料的电化学性质研究进展.合成化学,2003,11(6):479-485
    [155]杨长春,石秋芝,侯宏英.碱性高铁电池的初步研究.电源技术,2002,26(04):293-297
    [156]苏秀丽,刘洪涛,张校刚等.KMnO_4改性K_2FeO_4电极的电化学性能研究.电源技术2004,28(10):640-643
    [157]Huet F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries. J. Power Sources, 1998, 70 (1): 59-69
    [158]Miles M H. Exploration of molten hydroxide electrochemistry for thermal battery applications. J. Appl. Electrochem., 2003,33(11): 1011-1016
    [159]Zhang C Z, Liu Z, Wu F et al. Electrochemical generation of ferrate on SnO_2-Sb_2O_3/Ti electrodes in strong concentration basic condition. Electrochem. Commun., 2004, 6 (11):1104-1109
    [160] Koltypin M, Licht S, Vered R T et al. The study of K_2FeO_4 (Fe~(6+)-super iron compound) as a cathode material for rechargeable lithium batteries. J. Power Sources, 2005, 146 (1-2):723-726
    [161] Koltypin M, Licht S, Nowik I et al. Study of various ("super iron") MFeO_4 compounds in Li salt solutions as potential cathode materials for Li batteries. J. Electrochem. Soc, 2006,153(1):A32-A41
    [162] Yu X W, Licht S. Advances in Fe(Ⅵ) charge storage part Ⅰ. primary alkaline super-iron batteries. J. Power Sources, 2007,171 (2): 966-980
    [163] Yu X W, Licht S. Advances in Fe(VI) charge storage Part Ⅱ. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources, 2007,171 (2): 1010-1022
    [164] Yu X W, Licht S. Zirconia coating stabilized super-iron alkaline cathodes. J. Power Sources,2007,173 1012-1016
    [165] Yu X W, Licht S. Advances in electrochemical Fe(VI) synthesis and analysis. J. Appl.Electrochem., 2008,38 (6): 731-742
    [166] Yang W H, Wang J M, Bin Zhang Z et al. Studies on the electrochemical characteristics of K_2FeO_4 electrode. Chin. Chem. Lett., 2002,13 (8): 761-764
    [167] Yang W H, Wang J M, Pan T et al. Studies on the electrochemical characteristics of K_2Sr(FeO_4)_2 electrode. Electrochem. Commun., 2002,4 (9): 710-715
    [168] Xu Z, Wang J, Shao H et al. Physical Properties and Electrochemical Performance of Solid K_2FeO_4 Samples Prepared by Ex-situ and in-situ Electrochemical Methods. Chin. J. Chem.Eng., 2007,15(1):39-43
    [169] Yang W, Wang J. Charge-discharge behavior of K_2FeO_4 electrodes in concentrated KOH solutions. Russ. J. Electrochem., 2006,42 (4): 306-310
    [170] 王永龙,吴玉菊,吴锋等.纳米SrTiO_3改性碱性固态K_2FeO_4-Zn电池的电化学性能研究.南开大学学报(自然科学版),2008,41(05):62-66
    [171] 王永龙,周宁,叶世海等.高铁酸钾的合成与电化学性能研究.电化学,2003,9(01):15-18
    [172] 李小兵,李向东,徐玉文.高铁酸钾合成及处理焦化废水的研究.矿业快报,2002,390(12):8-9
    [173] Berry J F, Bill E, Bothe E et al. An Octahedral Coordination Complex of Iron(Ⅵ). Science.2006: 1937-1941
    [174] 张雪盈,杨长春,石秋芝等.高铁酸盐研究进展.合成化学,2006,14(2):113-117
    [175] Caddick S, Murtagh L, Weaving R. Potassium Ferrate on Wet Alumina: Preparation and Reactivity. Tetrahedron, 2000, 56 (47): 9365-9373
    [176] 朱伟,潘复生,张胜涛.高铁酸盐的研究现状.材料导报,2002,16(8):51-52
    [177] 李志远,赵建国.高铁酸盐制备、性质及应用.化学通报1993,(07):19-23
    [178] 张彦平,许国仁,程恒卫等.掺杂对复合高铁酸盐溶液稳定性的影响.哈尔滨工业大学学报,2008,40(2):217-219
    [179] He W C, Wang J M, Shao H B et al. Novel KOH electrolyte for one-step electrochemical synthesis of high purity solid K_2FeO_4: Comparison with NaOH. Electrochem. Commun., 2005,7 (6): 607-611
    [180] Bouzek K, Bergmann H. Comparison of pure and white cast iron dissolution kinetics in highly alkaline electrolyte. Corros. Sci., 1999,41 (11): 2113-2128
    [181] Bouzek K, Flower L, Rousar I et al. Electrochemical production of ferrate(VI) using sinusoidal alternating current superimposed on direct current. Pure iron electrode. J. Appl. Electrochem., 1999,29 (5): 569-576
    [182] Bouzek K, Lipovska M, Schmidt M et al. Electrochemical production of ferrate(VI) using sinusoidal alternating current superimposed on direct current: grey and white cast iron electrodesThis paper is dedicated to the memory of Professor Ivo Rousar. Electrochim. Acta, 1998,44 (4): 547-557
    [183] Bouzek K, Rousar I. Ferrate electrochemical prodn. -by anodic oxidation of iron in alkaline medium. Czech Republic, C01G-049/00; C25B-001/00, CZ9203481-A3; CZ278744-B6, 1994-05-18
    [184] Bouzek K, Rousar I. The study of electrochemical preparation of ferrate(VI) using alternating current superimposed on the direct current. Frequency dependence of current yields. Electrochim. Acta, 1993,38(13): 1717-1720
    [185] Bouzek K, Rousar I. Current efficiency during anodic dissolution of iron to ferrate(vi) in concentrated alkali hydroxide solutions. J. Appl. Electrochem., 1993, 23 (12): 1317-1322
    [186] Bouzek K, Schmidt M J, Wragg A A. Influence of electrolyte composition on current yield during ferrate(VI) production by anodic iron dissolution. Electrochem. Commun., 1999, 1 (9): 370-374
    [187] Bouzek K, Schmidt M J, Wragg A A. Influence of anode material composition on the stability of electrochemically-prepared ferrate(VI) solutions. J. Chem. Technol. Biotechnol., 1999,74(12): 1188-1194
    [188] Bouzek K, Schmidt M J, Wragg A A. Influence of electrolyte hydrodynamics on current yield in ferrate(VI) production by anodic iron dissolution. Collect. Czech. Chem. Commun., 2000,65(1): 133-140
    [189] Bouzek K, Schmidt M J, Wragg A A et al. Electrochemical ferrate(VI) production - Anode material aspects. 5th European Symposium on Electrochemical Engineering, 1999, (145): 153-160
    [190] Lapicque F, Valentin G. Direct electrochemical preparation of solid potassium ferrate. Electrochem. Commun., 2002,4(10): 764-766
    [191] Lee J, Tryk D A, Fujishima A et al. Electrochemical generation of ferrate in acidic media at boron-doped diamond electrodes. Chem. Commun., 2002, (5): 486-487
    [192] De Koninck M, Belanger D. The electrochemical generation of ferrate at pressed iron powder electrode: Comparison with a foil electrode. Electrochim. Acta, 2003, 48 (10): 1435-1442
    [193] De Koninck M, Brousse T, Belanger D. The electrochemical generation of ferrate at pressed iron powder electrodes: Effect of various operating parameters. Electrochim. Acta, 2003,48(10): 1425-1433
    [194] De Luca M A, De Luca S J, Santana M A. Eletrochemical synthesis of iron(Ⅵ) ferrate.Quim. Nova, 2003, 26 (3): 420-424
    [195] Ding Z, Yang C, Wu Q. The electrochemical generation of ferrate at porous magnetite electrode. Electrochim. Acta, 2004,49 (19): 3155-3159
    [196] He W, Wang J, Yang C et al. The rapid electrochemical preparation of dissolved ferrate(Ⅵ):Effects of various operating parameters. Electrochim. Acta, 2006,51 (10): 1967-1973
    [197] He W C, Shao H B, Chen Q Q et al. Polarization Characteristic of Iron Anode in Concentrated NaOH Solution. Acta Phys.-Chim. Sin., 2007, 23 (10): 1525-1530
    [198] He W C, Wang J M, Fan Y K et al. Electrochemical preparation, characterization and discharge performance of solid K_3Na(FeO_4)_2. Electrochem. Commun., 2007, 9 (2): 275-278
    [199] 何伟春,赵红雨,左宏森等.铁阳极钝化对高铁酸盐电化合成工艺的影响.无机盐工业,2008,40(3):26-29
    [200] Xu Z H, Wang J M, Mao W Q et al. The effects of ultrasound on the direct electrosynthesis of solid K_2FeO_4 and the anodic behaviors of Fe in 14 M KOH solution. J. Solid State Electrochem., 2007,11 (3): 413-420
    [201] HiveS J, Macova Z, Benova M et al. Comparison of ferrate(Ⅵ) synthesis in eutectic NaOH-KOH melts and in aqueous solutions. J. Electrochem. Soc, 2008, 155 (9):E113-E119
    [202] Saez C, Rodrigo M A, Canizares P. Etectrosynthesis of ferrates with diamond anodes.AlChE J., 2008, 54 (6): 1600-1607
    [203] 李志远,赵建国,韦丽红.过氧化钠法高铁酸盐转化的实验研究.无机盐工业,1995,(05):10-12
    [204] E. Martinez-Tamayo, Beltran-Porter A, Beltran-Porter D. Iron compounds in high oxidation states : Ⅰ. The reaction between BaO_2 and FeSO_4. Thermochim. Acta, 1985, 91 249-263
    [205] E. Martinez-Tamayo, Beltran-Porter A, Beltran-Porter D. Iron compounds in high oxidation states : Ⅱ. Reaction between Na_2O_2 and FeSO_4. Thermochim. Acta, 1986,97 243-255
    [206] Gump J R, Wagner W F, schreyer J M. Preparation and Analysis of Barium Ferrate(Ⅵ).Anal. Chem., 1954, 26 (12): 1957-1957
    [207] Ni X M, Ji M R, Yang Z P et al. Preparation and structure characterization of nanocrystalline BaFeO_4. J. Cryst. Growth, 2004, 261 (1): 82-86
    [208] Xu Z H, Wang J M, Shao H B et al. Preliminary investigation on the physicochemical properties of calcium ferrate(VI). Electrochem. Commun., 2007, 9 (3): 371-377
    [209] Schreyer J M, Thompson G W, Ockerman L T. Oxidation of Chromium(Ⅲ) with Potassium Ferrate(Ⅵ). Anal. Chem., 1950, 22 (11): 1426-1427
    [210] Johnson M D, Sharma K D. Kinetics and mechanism of the reduction of ferrate by one-electron reductants. Inorg. Chim. Acta, 1999,293 (2): 229-233
    [211] Bielski B H J, Thomas M J. Studies of hypervalent iron in aqueous solutions. 1. Radiation-induced reduction of iron(Ⅵ) to iron(Ⅴ) by CO_2. J. Am. Chem. Soc, 1987,109(25): 7761-7764
    [212]贾汉东,鲍改玲.过渡金属离子对高铁酸盐溶液稳定性的影响.电池,2004,34(06):430-431
    [213]裴慧霞,李福祥,吕志平等.高铁酸钾稳定性研究进展.山西化工2007,27(04):21-23
    [214]鲍改玲,贾汉东.高铁酸盐体系的掺杂效应.郑州大学学报(理学版),2005,37(01):72-74
    [215]Yang W H, Wang J M, Pan T et al. Physical characteristics, electrochemical behavior, and stability of BaFeO_4. Electrochim. Acta, 2004,49 (21): 3455-3461
    [216]Ettl V, Veprek-Siska J. Reactions of very pure substances (Ⅴ)-ferrate decomposition in alkaline solution. Collect. Czech. Chem. Commun., 1969,34 2182-2188
    [217]Schroyer J M, Ockerman L T. Stability of Ferrate(VI) Ion in Aqueous Solution. Anal.Chem., 1951,23(9): 1312-1314
    [218]Wagner W F, Gump J R, Hart E N. Factors Affecting Stability of Aqueous Potassium Ferrate(Ⅵ) Solutions. Anal. Chem., 1952,24(9): 1497-1498
    [219]庄玉贵,颜文强,许冬梅等.高铁酸盐稳定剂的筛选.福建师大福清分校学报,2006,73(2):40-43
    [220]许文林,孟蒹蒹,王雅琼.超声作用下FeO_4~(2-)在不同浓度NaOH溶液中的分解动力学.化工学报,2007,58(06):1461-1465
    [221]高玉梅,贾汉东.光照对高铁酸盐溶液稳定性的影响.应用化学,2004,21(04):425-427
    [222]Madarasz J, Zboril R, Homonnay Z et al. Thermal decomposition of iron(Ⅵ) oxides,K_2FeO_4 and BaFeO_4, in an inert atmosphere. J. Solid State Chem., 2006, 179 (5):1426-1433
    [223]杨红平,王先友,汪形艳等.新型超铁(ⅵ)电池正极材料的制备及性能研究.物理化学学报,2003,19(12):1150-1153
    [224]贾汉东,马宁,孙红宾等.FeO_4~(2-)离子在水溶液中稳定性的研究.郑州大学学报(自然科学版),1999,31(01):68-71
    [225]张雪盈,杨长春,高杰.高铁酸钾晶体结构的研究.合成化学2005,13(4):391-393
    [226]Audette R J, Quail J W, Black W H et al. Crystal structures of M_2FeO_4 (M = K, Rb, Cs). J.Solid State Chem., 1973,8 (1): 43-49
    [227]Audette R J, Quail J W. Potassium, rubidium, cesium, and barium ferrates(Ⅵ). Preparations,infrared spectra, and magnetic susceptibilities. Inorg. Chem., 1972,11 (8): 1904-1908
    [228]Calabrese A, Hayes R G Studies of the valence electron levels of chromate~(2-), dichromate~(2-),permanganate~-, vanadat~(3-), and ferrate~(2-) by x-ray photoelectron spectroscopy. J. Am. Chem.Soc, 1973, 95 (9): 2819-2822
    [229]刘芬,陈萦.含铁化合物的Fe_(2p)和Fe_(3s)电子能谱研究.分析测试技术及仪器2001,7(3):166-169
    [230]Mao W Q, Wang J M, Xu Z H et al. Effects of the oxidation treatment with K_2FeO_4 on the physical properties and electrochemical performance of a natural graphite as electrode material for lithium ion batteries. Electrochem. Commun., 2006, 8 (8): 1326-1330
    [231] Walz K A, Suyama A N, Suyama W E et al. Characterization and performance of high power iron(Ⅵ) ferrate batteries. J. Power Sources, 2004,134 (2): 318-323
    [232] 苏秀丽,刘洪涛,张校刚.CoTiO_3改性K_2FeO_4电极的电化学行为.应用化学,2004,21(12):1249-1252
    [233] Yu X W, Licht S. High capacity alkaline super-iron boride battery. Electrochim. Acta, 2007,52 (28): 8138-8143
    [234] Tel-Vered R, Rozen D, Licht S. Enhancement of nonaqueous Fe(Ⅵ) super-iron primary cathodic charge transfer. J. Electrochem. Soc, 2003,150 (12): A1671-A 1675
    [235] Lin D F, Ye S H, Song D Y et al. preparation and electrochemical properties of Li-doped BaFeO_4 as electrode material for lithium-ion batteries. In: Chowdari B V R, Wang W J,Solid State Ionics: Materials and Devices, Fuzhou, China, 2000: 331-334
    [236] 林东风,叶世海,高学平等.锂离子电池材料BaFeO_4的制备及性能.电池,2003,33(05):288-290
    [237] Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973,14 (11): 589-589
    [238] Armand M B, Chavagno J B, Duclor M J. Poly-ethers as solid electrolytes. In: Duclot M J,Vashishta P, Mundy J N, Shenoy G K, Fast ion Transport in Solids: Electrodes and Electrolytes, New Yourk: North Holland Publishers, 1979: 131-134
    [239] Angell C A, Liu C, Sanchez E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature, 1993,362(6416): 137-139
    [240] Mohri M, Tajima Y, Tanaka H et al. Rechargeble batteries with hydrogen storage alloys.Sharp Technol J., 1986, (34): 97-102
    [241] Yoneda T, Satoh S, Mohri M. Development of rechargeable batteries with hydrogen storage alloys. Sharp Technol J., 1987, (38): 55-60
    [242] Sun J, MacFarlane D R, Forsyth M. Novel alkaline polymer electrolytes based on tetramethyl ammonium hydroxide. Electrochim. Acta, 2003,48 (14-16): 1971-1976
    [243] Kuriyama N, Sakai T, Miyamura H et al. Proton conduction of tetramethylammonium hydroxide pentahydrate, (CH_3)_4NOH ? 5H_2O, and its application to nickelmetal hydride battery. J. Electrochem. Soc, 1990,137 (1): 355-356
    [244] Fauvarque J F, Guinot S, Bouzir N et al. Alkaline poly(ethylene oxide) solid polymer electrolytes. Application to nickel secondary batteries. Electrochim. Acta, 1995, 40 (13-14):2449-2453
    [245] Mohamad A A, Mohamed N S, Yahya M Z A et al. Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells. Solid State Ionics,2003,156(1-2): 171-177
    [246] Lewandowski A, Skorupska K, Malinska J. Novel poly(vinyl alcohol)-KOH-H_2O alkaline polymer electrolyte. Solid State Ionics, 2000,133 (3-4): 265-271
    [247] Wu G M, Lin S J, Yang C C. Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes. Journal of Membrane Science, 2006, 280 (1-2): 802-808
    [248] Palacios I, Castillo R, Vargas R A. Thermal and transport properties of the polymer electrolyte based on poly(vinyl alcohol)-KOH-H_2O. Electrochim. Acta, 2003, 48 (14-16):2195-2199
    [249] Zhang G Q, Zhang X G A novel alkaline Zn/MnO_2 cell with alkaline solid polymer electrolyte. Solid State Ionics, 2003,160 (1-2): 155-159
    [250] 雷永泉,万群,石永康.质子交换膜型燃料电池材料.见:衣宝廉,邵志刚,编.新能源材料.天津:天津大学出版社,2000.174-191
    [251] Kim H T, Kim K B, Kim S W et al. Li-ion polymer battery based on phase-separated gel polymer electrolyte. Electrochim. Acta, 2000,45 (24): 4001-4007
    [1] Stahl G E. Opusculum chimico-Physico-Medicum. Halae-Magdeburgiae: 1702:742
    [2] Fremy E C R. Preparation of potassuim ferrate(Ⅵ) in alkaline solutions. Acad. Sci. Paris,1841,12 23
    [3] Thompson G W, Ockerman L T, Schreyer J M. Preparation and Purification of Potassium Ferrate. Ⅵ. J. Am. Chem. Soc, 1951, 73 (3): 1379-1381
    [4] Hrostowski H J, Scott A B. The Magnetic Susceptibility of Potassium Ferrate. J. Chem.Phys., 1950,18(1): 105-107
    [5] Licht S, Wang B H, Ghosh S. Energetic Iron(Ⅵ) Chemistry: The Super-Iron Battery.Science, 1999,285(5430): 1039-1042
    [6] Caddick S, Murtagh L, Weaving R. Potassium Ferrate on Wet Alumina: Preparation and Reactivity. Tetrahedron, 2000,56 (47): 9365-9373
    [7] 朱伟,潘复生,张胜涛.高铁酸盐的研究现状.材料导报2002,16(8):51-52
    [8] Licht S, Tel-Vered R, Halperin L. Direct electrochemical preparation of solid Fe(Ⅵ) ferrate,and super-iron battery compounds. Electrochem. Commun., 2002,4(11): 933-937
    [9] He W C, Wang J M, Shao H B et al. Novel KOH electrolyte for one-step electrochemical synthesis of high purity solid K_2FeO_4: Comparison with NaOH. Electrochem. Commun., 2005, 7 (6): 607-611
    [10] Bouzek K, Nejezchleba M. In situ Mossbauer study of the passive layer formed on the iron anode in alkaline electrolyte. Collect. Czech. Chem. Commun., 1999, 64 (12): 2044-2060
    [11] E. Martinez-Tamayo, Beltran-Porter A, Beltran-Porter D. Iron compounds in high oxidation states : I. The reaction between BaO_2 and FeSO_4. Thermochim. Acta, 1985,91 249-263
    [12] 李志远,赵建国.高铁酸盐制备、性质及应用.化学通报1993,(07):19-23
    [13] Schroyer J M, Ockerman L T. Stability of Ferrate(Ⅵ) Ion in Aqueous Solution. Anal.Chem., 1951,23(9): 1312-1314
    [14] Licht S, Wang B H, Gosh S et al. Insoluble Fe(Ⅵ) compounds: effects on the super-iron battery. Electrochem. Commun., 1999,1(11): 522-526
    [15] Zhu J, XiLuan Y, Ye L et al. Improving alachlor biodegradability by ferrate oxidation. J.Hazard. Mater., 2006,135(1-3): 94-99
    [16] Graham N, Jiang C C, Li X Z et al. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere, 2004,56 (10): 949-956
    [17] Johnson M D, Hornstein B J. The kinetics and mechanism of the ferrate(Ⅵ) oxidation of hydroxylamines. Inorg. Chem., 2003,42 (21): 6923-6928
    [18] Woods R. Specific activity of platinum for the electrocatalytic oxidation of acetate.Electrochim. Acta, 1968,13(10): 1967-1972
    [19] Costarramone N, Kneip A, Castetbon A. Ferrate(Ⅵ) oxidation of cyanide in water. Environ.Technol., 2004, 25 (8): 945-955
    [20] Licht S, Naschitz V, Liu B et al. Chemical synthesis of battery grade super-iron barium and potassium Fe(Ⅵ) ferrate compounds. J. Power Sources, 2001, 99 (1-2): 7-14
    [21] Goff H, Murmann R K. Studies on the Mechanism of Isotopic Oxygen Exchange and Reduction of Ferrate(Ⅵ) Ion (FeO_4~(2-)). J. Am. Chem. Soc, 1971, 93 (23): 6058-6065
    [22] 冯长春,周志浩,蒋凤生等.高铁酸钾的结构研究.化学世界,1991,(3):102-108
    [23] 杨长春,石秋芝,侯宏英.碱性高铁电池的初步研究.电源技术,2002,26(04):293-297
    [24] Licht S, Naschitz V, Halperin L et al. Analysis of ferrate(Ⅵ) compounds and super-iron Fe(Ⅵ) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization. J. Power Sources, 2001,101 (2): 167-176
    [25] Audette R J, Quail J W, Black W H et al. Crystal structures of M_2FeO_4 (M = K, Rb, Cs). J. Solid State Chem., 1973, 8 (1): 43-49
    [26] Audette R J, Quail J W, Smith P J. Ferrate (Ⅵ) ion, a novel oxidizing agent. Tetrahedron Lett., 1971,12 (3): 279-282
    [27] Licht S, Naschitz V, Rozen D et al. Cathodic charge transfer and analysis of Cs_2FeO_4, K_2FeO_4, and mixed alkali Fe(Ⅵ) ferrate super-irons. J. Electrochem. Soc, 2004, 151 (8):A1147-A1151
    [28] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1988:360
    [29] Schreyer J M, Thompson G W, Ockerman L T. Oxidation of Chromium(Ⅲ) with Potassium Ferrate(Ⅵ). Anal. Chem., 1950,22(11): 1426-1427
    [1] Koltypin M, Licht S, Vered R T et al. The study of K_2FeO_4 (Fe~(6+)-super iron compound) as a cathode material for rechargeable lithium batteries. J. Power Sources, 2005, 146 (1-2): 723-726
    [2] Koltypin M, Licht S, Nowik I et al. Study of various ("super iron") MFeO_4 compounds in Li salt solutions as potential cathode materials for Li batteries. J. Electrochem. Soc., 2006, 153(1):A32-A41
    [3] Yu X W, Licht S. Advances in Fe(VI) charge storage Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources, 2007,171 (2): 1010-1022
    [4] Schreyer J M, Thompson G W, Ockerman L T. Oxidation of Chromium(III) with Potassium Ferrate(VI). Anal. Chem., 1950,22(11): 1426-1427
    [5] crystall. SMART 5.0 and SAINT 4.0 for Windows NT: Area Detector Control and Integration Software, Bruker Analytical X-ray Systems. WI: Inc., Madison, 1998:
    [6] Sheldrick G M. SHELXTL: Structure Determination Software Progarams. WI: Inc., Madison, 1997:
    [7] Audette R J, Quail J W, Black W H et al. Crystal structures of M_2FeO_4 (M = K, Rb, Cs). J. Solid State Chem., 1973,8(1): 43-49
    [8] Herber R H, Johnson D. Lattice dynamics and hyperfine interactions in M_2FeO_4 (M = potassium~+, rubidium~+, cesium~+) and M'FeO_4 (M' = strontium~(2+), barium~(2+)). Inorg. Chem., 1979,18 (10): 2786-2790
    [9] Licht S, Wang B H, Gosh S et al. Insoluble Fe(VI) compounds: effects on the super-iron battery. Electrochem. Commun., 1999,1 (11): 522-526
    [10] Rush J D, Bielski B H J. Kinetics of ferrate(V) decay in aqueous solution. A pulse-radiolysis study. Inorg. Chem., 1989, 28 (21): 3947-3951
    [1] Licht S, Wang B H, Ghosh S. Energetic Iron(VI) Chemistry: The Super-Iron Battery. Science, 1999,285(5430): 1039-1042
    [2] Wood R H. The Heat, Free Energy and Entropy of the Ferrate(VI) Ion. J. Am. Chem. Soc., 1958, 80 (9): 2038-2041
    [3] Licht S, Wang B H, Xu G et al. Solid phase modifiers of the Fe(VI) cathode: effects on the super-iron battery. Electrochem. Commun., 1999,1 (11): 527-531
    [4] Licht S, Wang B H, Ghosh S et al. Enhanced Fe(VI) cathode conductance and charge transfer: effects on the super-iron battery. Electrochem. Commun., 2000, 2 (7): 535-540
    [5] Kemner K, Kelly S, Orlandini K et al. XAS investigations of Fe (VI). Synchrotron Radiation, 2001, 8 949-951
    [6] Licht S, Ghosh S, Dong Q F. Charge storage effects in alkaline cathodes containing fluorinated graphite. J. Electrochem. Soc, 2001,148 (10): A1072-A1077
    [7] Licht S, Naschitz V, Ghosh S et al. SrFeO_4: Synthesis, Fe(VI) characterization and the strontium super-iron battery. Electrochem. Commun., 2001,3 (7): 340-345
    [8] Licht S, Naschitz V, Liu B et al. Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds. J. Power Sources, 2001, 99 (1-2): 7-14
    [9] Sharma V K, O'Connor D B, Cabelli D E. Sequential one-electron reduction of Fe(V) to Fe(III) by cyanide in alkaline medium. J. Phys. Chem. B, 2001,105 (46): 11529-11532
    [10] Jiang J Q, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res., 2002, 36 (6): 1397-1408
    
    [11] Licht S, Tel-Vered R. Rechargeable Fe(III/VI) super-iron cathodes. Chem. Commun., 2004, (6): 628-629
    
    [12] He W C, Wang J M, Shao H B et al. Novel KOH electrolyte for one-step electrochemical synthesis of high purity solid K_2FeO_4: Comparison with NaOH. Electrochem. Commun., 2005, 7 (6): 607-611
    [13] Koltypin M, Licht S, Vered R T et al. The study of K_2FeO_4 (Fe~(6+)-super iron compound) as a cathode material for rechargeable lithium batteries. J. Power Sources, 2005, 146 (1-2): 723-726
    [14] Hives J, Benova M, Bouzek K et al. Electrochemical formation of ferrate(VI) in a molten NaOH-KOH system. Electrochem. Commun., 2006, 8(11): 1737-1740
    [15] Koltypin M, Licht S, Nowik I et al. Study of various ("super iron") MFeO_4 compounds in Li salt solutions as potential cathode materials for Li batteries. J. Electrochem. Soc, 2006, 153(1):A32-A41
    [16] He W C, Hu X R, Shen B C et al. Electrosynthesis and crystal structure of K3Na(FeO_4)(2). Chin. J. Inorg. Chem., 2007, 23 (4): 655-658
    [17] Sharma V K. Disinfection performance of Fe(VI) in water and wastewater: a review. Water Sci. Technol, 2007, 55 (1-2): 225-232
    [18]Licht S, Wang B H, Gosh S et al. Insoluble Fe(Ⅵ) compounds: effects on the super-iron battery. Electrochem. Commun., 1999,1 (11): 522-526
    [19]Yu X W, Licht S. Advances in Fe(Ⅵ) charge storage part Ⅰ. primary alkaline super-iron batteries. J. Power Sources, 2007,171 (2): 966-980
    [20]Yu X W, Licht S. Advances in Fe(Ⅵ) charge storage Part Ⅱ. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources, 2007,171 (2): 1010-1022
    [21]兰华春.包覆型高铁酸钾的制备及其应用研究:[硕士学位论文].福州:福州大学,2006
    [22]刘明义,吴伯荣,陈晖等.高铁酸盐电池材料研究进展.材料导报,2004,18(2):83-85
    [23]贾汉东,马宁,孙红宾等.FeO_4~(2-)离子在水溶液中稳定性的研究.郑州大学学报(自然科学版),1999,31(01):68-71
    [24]郭士成,林秋华.高铁酸钾与饮用水处理.化学教育,2005,26(01):2-3
    [25]周宁,叶世海,王永龙等.高铁酸钾电化学性能研究.电化学2003,9(3):253-258
    [26]周宁,叶世海,高学平等.高铁酸钡的制备及电化学性能研究.南开大学学报(自然科学版),2003,36(4):55-58
    [27]王永龙,吴玉菊,吴锋等.纳米SrTiO_3改性碱性固态K_2FeO_4-Zn电池的电化学性能研究.南开大学学报(自然科学版),2008,41(05):62-66
    [28]王永龙,吴玉菊,薄晋科等.K_2FeO_4-Zn碱性固态电解质电池电化学性能研究.化学学报,2008,66(17):1955-1960
    [29]王永龙,周宁,叶世海等.高铁酸钾的合成与电化学性能研究.电化学,2003,9(01):15-18
    [30]Schreyer J M, Thompson G W, Ockerman L T. Oxidation of Chromium(Ⅲ) with Potassium Ferrate(VI). Anal. Chem., 1950,22(11): 1426-1427
    [31]Licht S, Naschitz V, Halperin L et al. Analysis of ferrate(Ⅵ) compounds and super-iron Fe(Ⅵ) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization. J. Power Sources, 2001,101 (2): 167-176
    [32]杨长春,石秋芝,侯宏英.碱性高铁电池的初步研究.电源技术2002,26(04):293-297
    [33]Yang H X, Wang Y D, Ai X P et al. Metal borides: Competitive high capacity anode materials for aqueous primary batteries. Electrochemical and Solid State Letters, 2004, 7 (7):A212-A215
    [34]Zhang C Z, Liu Z, Wu F et al. Electrochemical generation of ferrate on SnO_2-Sb_2O_3/Ti electrodes in strong concentration basic condition. Electrochem. Commun., 2004, 6 (11):1104-1109
    [35]Johnson M D, Sharma K D. Kinetics and mechanism of the reduction of ferrate by one-electron reductants. Inorg. Chim. Acta, 1999,293 (2): 229-233
    [1] Mohri M, Tajima Y, Tanaka H et al. Rechargeble batteries with hydrogen storage alloys.Sharp Technol J., 1986, (34): 97-102
    [2] Yoneda T, Satoh S, Mohri M. Development of rechargeable batteries with hydrogen storage alloys. Sharp Technol J., 1987, (38): 55-60
    [3] Sun J, MacFarlane D R, Forsyth M. Novel alkaline polymer electrolytes based on tetramethyl ammonium hydroxide. Electrochim. Acta, 2003,48 (14-16): 1971-1976
    [4] Kuriyama N, Sakai T, Miyamura H et al. Proton conduction of tetramethylammonium hydroxide pentahydrate, (CH_3)_4NOH ? 5H_2O, and its application to nickelmetal hydride battery. J. Electrochem. Soc., 1990,137 (1): 355-356
    [5] Lewandowski A, Skorupska K, Malinska J. Novel poly(vinyl alcohoO-KOH-/H_2O alkaline polymer electrolyte. Solid State Ionics, 2000,133 (3-4): 265-271
    [6] Palacios I, Castillo R, Vargas R A. Thermal and transport properties of the polymer electrolyte based on poly(vinyl alcohol)-KOH-H_2O. Electrochim. Acta, 2003, 48 (14-16):2195-2199
    [7] Wu G M, Lin S J, Yang C C. Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes. Journal of Membrane Science, 2006,280 (1-2): 802-808
    [8] Yu X W, Licht S. Advances in Fe(Ⅵ) charge storage part Ⅰ. primary alkaline super-iron batteries. J. Power Sources, 2007,171 (2): 966-980
    [9] Yu X W, Licht S. Advances in Fe(Ⅵ) charge storage Part Ⅱ. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources, 2007,171 (2): 1010-1022
    [10] Licht S, Yu X W, Wang Y F. Stabilized alkaline Fe(Ⅵ) charge transfer - The zirconia coating stabilized superiron alkaline cathode. J. Electrochem. Soc, 2008,155 A1-A7
    [11] Licht S, Yu X W, Wang Y F et al. The super-iron boride battery. J. Electrochem. Soc, 2008,155 (4): A297-A303
    [12] Xu C X, Chen R Y, Zheng X et al. Preparation of a sodium alginate-poly(vinyl alcohol)-chitosan bipolar membrane and its application in the electrogeneration of Ferrate(Ⅵ). J. Appl. Polym. Sci., 2008,107 3076-3082
    [13] Yu X W, Licht S. Advances in electrochemical Fe(Ⅵ) synthesis and analysis. J. Appl.Electrochem., 2008,38 (6): 731-742
    [14] Licht S, Wang B H, Ghosh S. Energetic Iron(Ⅵ) Chemistry: The Super-Iron Battery.Science, 1999,285(5430): 1039-1042
    [15] Licht S, Wang B H, Gosh S et al. Insoluble Fe(Ⅵ) compounds: effects on the super-iron battery. Electrochem. Commun., 1999,1 (11): 522-526
    [16] Walz K A, Suyama A N, Suyama W E et al. Characterization and performance of high power iron(Ⅵ) ferrate batteries. J. Power Sources, 2004,134 (2): 318-323
    [17]Tel-Vered R, Rozen D, Licht S. Enhancement of nonaqueous Fe(Ⅵ) super-iron primary cathodic charge transfer. J. Electrochem. Soc, 2003,150 (12): A1671-A 1675
    [18]Licht S, Wang B H, Ghosh S et al. Enhanced Fe(Ⅵ) cathode conductance and charge transfer: effects on the super-iron battery. Electrochem. Commun., 2000,2 (7): 535-540
    [19]Licht S, Wang B H, Xu G et al. Solid phase modifiers of the Fe(Ⅵ) cathode: effects on the super-iron battery. Electrochem. Commun., 1999,1 (11): 527-531
    [20]Licht S, Naschitz V, Ghosh S. Silver mediation of Fe(Ⅵ) charge transfer: Activation of the K_2FeO_4 super-iron cathode. J. Phys. Chem. B, 2002,106 (23): 5947-5955
    [21]杜新瑜,邢欣,傅圣利等.钛酸盐研究进展.材料导报,2003,17(S1):177-179
    [22]张启龙,王焕平,杨辉.CaTiO_3纳米粉体溶胶-凝胶法合成、表征及介电特性.无机化学学报,2006,22(9):1657-1662
    [23]王宏丽,赖琼钰,郝艳静等.纳米SrTiO_3对高铁酸盐电化学性能影响研究.无机化学学报,2006,22(06):1108-1112
    [24]Mohamad A A, Mohamed N S, Yahya M Z A et al. Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells. Solid State Ionics,2003,156(1-2): 171-177
    [25]Zhang G Q, Zhang X G A novel alkaline Zn/MnO_2 cell with alkaline solid polymer electrolyte. Solid State Ionics, 2003,160 (1-2): 155-159
    [26]Yang C C. Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte. Mater. Lett., 2003, 58 (1-2): 33-38
    [27]Yang C C, Lin S J. Preparation of composite alkaline polymer electrolyte. Mater. Lett.,2002,57 (4): 873-881
    [28]陈国平,陈宝激,桑商斌等.全固态碱性Cd/Ni二次电池的制备及其性能.中南大学学报(自然科学版),2004,35(04):604-608
    [29]王军红,刘建敏,杨化滨等.PVA碱性凝胶聚合物电解质薄膜电化学稳定性研究.电化学,2005,(02):
    [30]Vassal N, Salmon E, Fauvarque J F. Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO). Electrochim. Acta, 2000,45 (8-9): 1527-1532
    [31]Yang C C, Lin S J. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery. J. Power Sources, 2002,112 (2): 497-503
    [32]Yang C C, Lin S J, Hsu S T. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells. J. Power Sources, 2003,122 (2): 210-218
    [33]王占良,唐致远.一种复合聚合物电解质的性质表征.电源技术,2003,27(S1):169-171
    [34]周宁,叶世海,王永龙等.高铁酸钾电化学性能研究.电化学,2003,9(3):253-258
    [35]Bailie A G, Bouzek K, Lukasek P et al. Solubility of potassium ferrate in 12 M alkaline solutions between 20℃ and 60℃. J. Chem. Technol. Biotechnol., 1996,66 (1): 35-40
    [36]Yang W H, Wang J M, Cao J L et al. Stability of K2FeO_4 in dilute KOH solution. Acta Chim. Sinica, 2004,62 (19): 1951-1955
    [37]贾汉东,马宁,孙红宾等.FeO_4~(2-)离子在水溶液中稳定性的研究.郑州大学学报(自然科学版),1999,31(01):68-71
    [38]Licht S, Wang B H. Nonaqueous phase Fe(Ⅵ) electrochemical storage and discharge of super-iron/lithium primary batteries. Electrochemical and Solid State Letters, 2000, 3 (5):209-212
    [39]苏秀丽,刘洪涛,张校刚等.KMnO_4改性K_2FeO_4电极的电化学性能研究.电源技术,2004,28(10):640-643
    [40]Im D, Manthiram A. Role of Bismuth and Factors Influencing the Formation of Mn_3O_4 in Rechargeable Alkaline Batteries Based on Bismuth-Containing Manganese Oxides. J.Electrochem. Soc, 2003,150(1): A68-A73
    [41]万平玉,潘军青,孙艳芝等.NaBiO_3的固相合成及其对二氧化锰电化学性质的影响.电源技术,2005,29(01):38-40
    [42]Rush J D, Bielski B H J. Kinetics of ferrate(Ⅴ) decay in aqueous solution. A pulse-radiolysis study. Inorg. Chem., 1989, 28 (21): 3947-3951
    [43]苏秀丽,刘洪涛,张校刚.CoTiO_3改性K_2FeO_4电极的电化学行为.应用化学2004,21(12):1249-1252
    [1] Sharma V K. Disinfection performance of Fe(Ⅵ) in water and wastewater: a review. Water Sci. Technol., 2007, 55 (1-2): 225-232
    [2] Jiang J Q, Wang S, Panagoulopoulos A. The exploration of potassium ferrate(Ⅵ) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere, 2006, 63 (2): 212-219
    [3] Yuan B L, Li X Z, Graham N. Aqueous oxidation of dimethyl phthalate in a Fe(Ⅵ)-TiO_2-UV reaction system. Water Res., 2008,42 (6-7): 1413-1420
    [4] Yngard R A, Sharma V K, Filip J et al. Ferrate(Ⅵ) oxidation of weak-acid dissociable cyanides. Environ. Sci. Technol., 2008,42 (8): 3005-3010
    [5] Licht S, Yu X W. Electrochemical Alkaline Fe(Ⅵ) Water Purification and Remediation.Environ. Sci. Technol., 2005,39 (20): 8071-8076
    [6] Licht S, Yu X W, Wang Y F et al. The super-iron boride battery. J. Electrochem. Soc., 2008,155 (4): A297-A303
    [7] Licht S, Yu X W, Wang Y F. Stabilized alkaline Fe(Ⅵ) charge transfer - The zirconia coating stabilized superiron alkaline cathode. J. Electrochem. Soc, 2008,155 A1-A7
    [8] Xu Z H, Wang J M, Shao H B et al. Preliminary investigation on the physicochemical properties of calcium ferrate(Ⅵ). Electrochem. Commun., 2007,9 (3): 371-377
    [9] Hives J, Benova M, Bouzek K et al. Electrochemical formation of ferrate(Ⅵ) in a molten NaOH-KOH system. Electrochem. Commun., 2006, 8 (11): 1737-1740
    [10] Walz K A, Handrick A, Szczech J R et al. Evaluation of SiO_2 and TiO_2 coated BaFeO_4 cathode materials for zinc alkaline and lithium non-aqueous primary batteries. J. Power Sources, 2007,167 (2): 545-549
    [11] He W C, Wang J M, Fan Y K et al. Electrochemical preparation, characterization and discharge performance of solid K_3Na(FeO_4)_2. Electrochem. Commun., 2007, 9 (2): 275-278
    [12] Yu X W, Licht S. Advances in electrochemical Fe(Ⅵ) synthesis and analysis. J. Appl.Electrochem., 2008,38 (6): 731-742
    [13] HiveS J, Macova Z, Benova M et al. Comparison of ferrate(Ⅵ) synthesis in eutectic NaOH-KOH melts and in aqueous solutions. J. Electrochem. Soc., 2008, 155 (9):E113-E119
    [14] Bouzek K, Rousar I, Bergmann H et al. The cyclic voltammetric study of ferrate(Ⅵ) production. J. Electroanal. Chem., 1997,425 (1-2): 125-137
    [15] Zhang C Z, Liu Z, Wu F et al. Electrochemical generation of ferrate on SnO_2-Sb_2O/Ti electrodes in strong concentration basic condition. Electrochem. Commun., 2004, 6 (11):1104-1109
    [16] Xu Z H, Wang J M, Mao W Q et al. The effects of ultrasound on the direct electrosynthesis of solid K_2FeO_4 and the anodic behaviors of Fe in 14 M KOH solution. J. Solid State Electrochem., 2007, 11 (3): 413-420
    [17] Yang W, Wang J. Charge-discharge behavior of K_2FeO_4 electrodes in concentrated KOH solutions. Russ. J. Electrochem., 2006, 42 (4): 306-310
    [18] Shao H B, Wang J M, He W C et al. EIS analysis on the anodic dissolution kinetics of pure iron in a highly alkaline solution. Electrochem. Commun., 2005, 7(12): 1429-1433
    [19] Johnson M D, Sharma K D. Kinetics and mechanism of the reduction of ferrate by one-electron reductants. Inorg. Chim. Acta, 1999, 293 (2): 229-233
    [20] Sharma V K, O'Connor D B, Cabelli D E. Sequential one-electron reduction of Fe(V) to Fe(III) by cyanide in alkaline medium. J. Phys. Chem. B, 2001, 105 (46): 11529-11532
    [21] Sharma V K, Yngard R A, Cabelli D E et al. Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide. Radiat. Phys. Chem., 2008,77 (6): 761-767
    [22] Lee C, Lee Y, Schmidt C et al. Oxidation of suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (VI): Kinetics and effect on the NDMA formation potential of natural waters. Water Res., 2008, 42 (1-2): 433-441
    [23] Galindo M C, Martins M E, Vilche J R et al. Redox processes at iron hydroxide layers formed on platinum substrates in alkaline solutions. J. Appl. Electrochem., 1990, 20 (1): 102-109
    [24] Rush J D, Bielski B H J. Kinetics of ferrate(V) decay in aqueous solution. A pulse-radiolysis study. Inorg. Chem., 1989, 28 (21): 3947-3951
    [25] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 1980:
    [26] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 2001: 235-236
    [27] Licht S, Naschitz V, Liu B et al. Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds. J. Power Sources, 2001, 99 (1-2): 7-14
    [28] Licht S, Naschitz V, Halperin L et al. Analysis of ferrate(VI) compounds and super-iron Fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization. J. Power Sources, 2001,101 (2): 167-176
    [29] Licht S, Wang B H, Ghosh S. Energetic Iron(VI) Chemistry: The Super-Iron Battery. Science, 1999, 285(5430): 1039-1042
    [30] Bielski B H J, Thomas M J. Studies of hypervalent iron in aqueous solutions. 1. Radiation-induced reduction of iron(VI) to iron(V) by CO_2. J. Am. Chem. Soc., 1987,109 (25): 7761-7764
    [31] Licht S, De Alwis C. Conductive-Matrix-Mediated Alkaline Fe(III/VI) Charge Transfer: Three-Electron Storage, Reversible Super-Iron Thin Film Cathodes. J. Phys. Chem. B, 2006, 110(25): 12394-12403
    [32] Biegler T. Search for surface structural effects in electrocatalysis. II. Platinized platinum electrodes. Aust. J. Chem., 1973, 26 (12): 2587-2592
    [33] Robinson D, Anderson J E, Lin J L. Measurement of diffusion coefficients of some indoles and ascorbic acid by flow injection analysis. J. Phys. Chem., 1990,94 (2): 1003-1005
    [34] Yu X W, Licht S. Advances in Fe(Ⅵ) charge storage part I. primary alkaline super-iron batteries. J. Power Sources, 2007,171 (2): 966-980
    [35] Licht S, Wang B H, Ghosh S et al. Enhanced Fe(Ⅵ) cathode conductance and charge transfer: effects on the super-iron battery. Electrochem. Commun., 2000,2 (7): 535-540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700