用户名: 密码: 验证码:
液压系统方案设计的特征状态方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在国家自然科学基金项目(No.50775016)与国家高技术研究发展计划项目(863计划)(No.2006AA042101)的资助下,结合工程设计背景,对液压系统创新方案设计理论与方法进行了深入研究。将液压系统方案设计问题转化为特征状态空间的路径规划问题,并由此建立了液压系统方案设计的能量特征状态空间模型。
     本文首先建立液压系统的能量特征状态表述。提取液压能与机械能的若干属性特征以能量特征状态矢量的形式对系统内的能量信息进行定性表述。依据系统主机所需完成的机械动作将总系统分解为若干个实现单一动作的子系统,并将每个单动作子系统的工作过程简化表述为一系列输入输出能量特征状态矢量的线性变换过程。
     将泵、缸/马达、压力、流量控制阀等能量调控元件的物理结构与使用方式相结合,定义两类基本变换单元作为单动作子系统方案设计阶段的最小功能选择单元。并以功能分析为基础构建基本变换单元的能量特征状态变换方程,由此获得能量特征状态变换矩阵作为基本变换单元的定性功能表达。归纳总结常用基本变换单元并分别给出其各自对应的能量特征状态变换矩阵,为单动作子系统方案设计提供单元库。
     由所有能量特征状态矢量的全体构建能量特征状态空间,通过建立基本变换单元、子系统与空间元素的映射关系获得单动作子系统方案设计的空间求解模式。并据此构建单动作子系统方案设计模型,利用初始与需求的液压能特征状态矢量建立单动作子系统的能量特征状态变换方程,获取该方程的系数矩阵来描述子系统的功能特征。进而通过子系统级矩阵的分解及其与基本变换单元矩阵的匹配实现单动作子系统方案的自动综合求解。
     对换向阀的通断逻辑控制功能作进一步的抽象与提取,定义基本组合单元为子回路组合方案设计阶段的最小功能选择单元。并以连通状态图、连通状态矩阵的形式对基本组合单元的功能知识进行定性表达。归纳整理2至5通基本组合单元的全部独立结构形式,并分别给出其各自对应的连通状态图与连通状态矩阵表达,为子回路组合方案设计提供单元库。
     建立基于图匹配的子回路组合方案设计模型。将各单动作子系统方案抽象为表述其内部元件连通关系的子系统有向连通状态图,并由整个工作周期内所有子系统有向连通状态图的叠加组合形成系统有向连通状态图。经由一系列化简、分解操作后,将系统连通状态图(或其分解子图)按工况时序依次展开,使每一时序展开图唯一描述该时序下系统内一组元件间的通断关系。最终通过时序展开图与基本组合单元连通状态图的匹配来获得相应基本组合单元并由此构成换向阀,完成子回路组合方案设计。
     最后将本文所构建的能量特征状态空间模型应用到实际液压系统方案设计过程中,通过具体设计实例验证了本文所建模型的可行性与有效性,为液压系统创新方案设计探寻了一种新方法、开辟了一条新途径。
A new methodology for the conceptual design of hydraulic system based on the energy characteristic state space approach is developed. The goal is to solve the problem of hydraulic system conceptual design by establishing a mathematical model. This research is supported by the National Natural Science Foundation of China under Grant No. 50775016 and the National High Technology Research and Development Program of China (863 program) under Grant No. 2006AA04Z101.
     The energy characteristic state description for hydraulic system is established first. The energy characteristics of hydraulic system are represented by energy characteristic state vectors which are formed by abstracting the quantitative and qualitative characteristics of energy parameters such as pressure, flow, force, and velocity. The hydraulic system is regarded as a set of subsystems with single action, and the working process for each single-action subsystem is simplified as a linear transformation of the energy characteristic state vectors.
     Two categories of basic transformation units are defined by combining the energy adjustment components, such as pump, cylinder, pressure control valves, and flow control valves, with their usage patterns in the circuits. The energy characteristic state transformation equations for the basic transformation units are then established according to the function analysis. The coefficient matrices of the equations are obtained as the representation of the basic transformation units. By surveying all commonly used energy adjustment components and the patterns of their usage, a library of basic transformation units are defined and their matrix representations are also compiled. Thus, the database of physical units for the conceptual design of single-action subsystem is established.
     The conceptual design model for single-action subsystems based on the energy characteristic state space is established. By establishing the energy characteristic state space, the design process is transformed into the model space. According to the input and output energy characteristic states of a subsystem, the energy characteristic state transformation equation of subsystem is established, and the coefficient matrix of the equation can be obtained to describe the subsystem. The subsystem matrix is the product of the characteristic matrices of the basic transformation units. Thus, the characteristic matrix of a subsystem can be successively decomposed into various sets of characteristic state matrices of basic transformation units. Each set of such basic transformation units is the topological representation of a hydraulic system. By successive decomposition of a system matrix, a thorough conceptual design process for single-action subsystems is established.
     Basic combination units are defined to describe the connectional functions of the directional control valves. The connection state graphs and the connection state matrices are established to represent the functional knowledge of basic combination units. By surveying all independent structures of 2-5 ports basic combination units, a library of physical units for the combination design of multiple sub-circuits is established.
     A synthesis model for multiple sub-circuits based on graph mapping is established. The circuit diagram for each subsystem is abstracted to a directed connection state graph that describes the connectional relationships of the components contained in it. The directed connection state graph of system is then formed by merging the ones of the subsystems. After a series of simplification operations, the simplified connection state graph of system is expanded by subsystem sequences. For each expanding sub-graph, the connection state graphs of basic combination units which have the same structures are identified. The directional control valves can then be formed by the obtained basic combination units, and the mapping relationships between the system components and the valve ports on the directional control valve are also established. Thus, the entire circuit of the system is formed. The associated matrix operations are also proposed.
     The proposed method is illustrated by a design instance. With the model, large numbers of feasible schemes can be generated automatically by matrix and graph operations. Although practical schemes are normally limited, plentiful suggestive schemes can widen the designer's mind and provide a foundation of innovative design. It offers the first mathematic tool for the qualitative description of a hydraulic circuit and thus paves the way for the automated conceptual design of hydraulic systems.
引文
[1]Pahl G,Beitz W.Engineering Design[M].London:The Design Council,1984/1996.
    [2]邹慧君.机械系统设计原理[M].北京:科学出版社,2003.
    [3]N P Suh.The Principle of Design[M].New York:Oxford University Press.1990.
    [4]N P Suh.Axiomatic Design:Advanced and Application[M].New York:Oxford University Press,2001.
    [5]宋慧军,林志航.基于多色集合的概念设计产品模型形式化描述[J].系统仿真学报,2001,13(S):298-300转306.
    [6]张瑞红,孙力峰.基于工程模型的现代稳健优化设计[J].河北工业大学学报,1999,28(1):80-83.
    [7]张翰,周雄辉,张永清.基于并行工程的计算机辅助注塑模概念设计系统研究[J],中国塑料,1999,13(3):87-91.
    [8]吴斌,乌兰木其等.产品需求敏捷获取与处理系统[J].计算机辅助工程,2000,1:1-7.
    [9]杨培林,朱均.机械产品并行设计的实施策略[J].机械科学与技术,2000,19(3):479-481.
    [10]朱龙英,朱如鹏,刘正埙.公理化设计与DFA集成的产品信息模型[J].计算机辅助设计与图形学学报,2004,16(2):216-221.
    [11]王平.基于公理化的产品设计理论及应用研究[D].南京:南京航空航天大学,2006.
    [12]Dunbing Tang,Kwai-Sang Chin.Improving Axiomatic Design Using design Structure Matrix [C].Proceedings of the 8th International Conference on Frontiers of Design and Manufacturing,September 23-26,2008,Tianjin,China.
    [13]Renbin Xiao,Chilan Cai,Ping Yang.A New Approach to Analysis and Disposal of Functional Interaction in Axiomatic Design[C].Proceedings of the 8th International Conference on Frontiers of Design and Manufacturing,September 23-26,2008,Tianjin,China.
    [14]Altshuller G.The Innovation Algorithm,TRIZ,Systematic Innovation and Technical Creavity[M].Worcester:Technical Innovation Center,INC,1999.
    [15]KarenT,Ellen Domb.40 Inventive Principles with Examples[EB/OL][J].TRIZ Journal,July,1997.(http://www.TRIZ.journal.com)
    [16]檀润华,张瑞红,汪屏等.产品设计过程中的冲突确定方法及解决过程[J],机械设计,2003,20(10):4-7.
    [17]檀润华,张国红,焦建新等.产品设计中的冲突及解决原理[J],河北工业大学学报,2001,(7):7-11.
    [18]黄旗明,潘云鹤.基于Agent的协同TRIZ研究[J].中国图像图形学报,2001,5:507-509.
    [19]李彦,王杰,李翔龙等.创造性思维及计算机辅助产品创新设计[J].计算机集成制造系统,2003,9(12):1092-1096(转1104).
    [20]占向辉,李彦,贾爱军等.面向创新设计的科学效应库研究[J].工程设计学报,2005,12(1):1-6.
    [21]林岳.基于CAI的机械产品创设计关键技术及使能工具研究[D].天津:天津大学,2006.
    [22]高常青,黄克正,王国峰等.由TRIZ理论的通用求解问题的特殊解[J].中国机械工程,2006,17(1):84-88.
    [23]徐起贺,吴昌林.基于TRIZ理论的机械产品创新设计研究[J].机床与液压,2004,7:32-33(转54).
    [24]赵新军.技术创新理论(TRIZ)及应用[M].北京:化学工业出版社,2004.
    [25]郑称德.TRIZ理论及其设计模型[J].管理工程学报,2003,17(1):84-87.
    [26]K Hain.Applled Kinematics[M],2nd ed.McGraw-Hill,1967.
    [27]F R E Crossley.The permutations of kinematic chains of the eight members or less from graph-the-oretic viewpoint:In Developments in Theoretical and Applied Mechanics[M].Oxford:Pergamon Press,1965.
    [28]Artobolevsky Ⅱ.Past,Present and Future of the Theory of Machines and Mechanisms[J].Mechanism and Machine Theory,1976,11:353-361.
    [29]Artobolevsky Ⅱ.Mechanisms in Modern Engineering Design[M].Moscow:MIR Publishers,1986.
    [30]F.Freudenstein,L.Dobrjanskyj.On a theory for the type synthesis of mechanisms [C].Proc.11th Int.Conf.Applied Mechanics,420,1964.
    [31]Al-Hakim L.A Graph-theoretic Approach to Conceptual Design with Functional Perspectives[J].Computer-Aided Design,2000,32(14):867-975.
    [32]Yan H S.A Methodology for Creative Mechanism Design[J].Mechanism and Machine Theory,1992,27(8):235-242.
    [33]Yan H S,Hwang W M.A Method for the Identification of Planar Chain[J].ASME Journal of Mechanisms,Transmissions,and Automation in Design,1983,10(5).
    [34]Yan H S.Creative Design of Mechanical Devices[M].Singapore:Springer-Verlag Pte.Ltd,1998.
    [35]Wang Y X,Yan H S.Computerized Rules-Based Regeneration Method for Conceptual Design of Mechanism[J].Mechanism and Machine Theory,2002,37(9):833-849.
    [36]王玉新.机械系统概念设计自动化方法[J].机械工程学报,2002,10:148-153.
    [37]褚金奎,曹惟庆.识别运动链拓扑结构的邻接链表法[J].西北工业大学学报,1992,8(1):1-7.
    [38]褚金奎.平面连杆机构结构特征及尺度特征的研究[D].北京:北京航空航天大学,1992.
    [39]杨廷力,冯志友,张策.基于序单开链法的空间4自由度并联机构位置正解[J].机械工程学报,2006,42(7):35-38转45.
    [40]杨廷力.机械系统基本理论 结构学·运动学·动力学[M].北京:机械工业出版社,1996.
    [41]杨廷力.机器人机构拓扑结构学[M].北京:机械工业出版社,2003.
    [42]Issa G,Shen S,Meng Sang Chew.Using Analogical Reasoning for Mechanism Design[J].IEEE Expert,1994,9(3):60-69.
    [43]宋玉银,蔡复之等.基于实例推理的产品概念设计系统[J].清华大学学报,1998,38(8):5-8.
    [44]邹慧君,王石刚等.基于多层推理机制的机械产品概念设计[J].计算机辅助设计与图形学学报,1997,9(6):548-553.
    [45]蔡逆水,邹慧君等.类比推理在智能化概念设计中的应用[J].上海交通大学学报,1997,31(3):70-73.
    [46]齐润东,舒宜强,周济等.基于知识的设计支持系统用于雷达系统方案设计[J].系统工程与电子技术,1993,15(6):76-81.
    [47]Li C L,et al.A Qualitative and Heuristic Approach to the Conceptual Design of Mechanisms[J].Engineering Application of Artificial Intelligence,1996,9(1):17-31.
    [48]Shu Huang,Sun Jahau,Lewis Chen.A Fixture Design System Using Case-based Reasoning[J].Engineering Applications of Artificial Intelligence,1996,9(5):533-540.
    [49]Qian L,Gero J S.Function-behavior-structure Paths and Their Role in Analogy-based Design[J].Artificial Intelligence for Engineering Design,Analysis and Nanufacturing,1996,10(4):289-312.
    [50]Goel A.Design,analogy and creativity[J].IEEE Expert,1997,.12(2):62-70.
    [51]Bhatta S,Goel A.Model-based Design Indexing and Index Learning in Engineering Design[J].Computer-Aided Design,1996,9(6):601-609.
    [52]王知行,钟诗胜,吴群波等.面向实例的机构运动方案设计支持系统[J].机械设计,1999,2:13-16.
    [53]孙正兴,张福炎.特征设计在方案设计中的初探[J].机械设计与研究,1999,1:21-24.
    [54]Zwicky F.Entdecken,Erfinden,Forschen im Morphologischen Weltbild[M].Munchen:Droemer -Knaur,1971.
    [55]Roth,Koller.机械设计方法学[M].北京:科学出版社,1990.
    [56]冯培恩,徐国荣.基于设计目录的原理方案及其求解过程的特征建模[J].机械工程学报,1998,34(2):79-86.
    [57]姚致扬,黄纯颖,沈钢等.机械传动原理方案设计目录结构模式的研究[J].中国机械工程,1998,9(6):53-56.
    [58]Paynter H M.Analysis and design of engineering systems[M].Cambridge:MIT press,1961.
    [59]Ermer G.Step toward integrating Function-based models and bond graphs for conceptual design in engineering[J],DSC-Vol47,Automated modeling for design,ASME,1993:47-62.
    [60]Sharp J E E.Application of Bond Graph Methodology to Concurrent Conceptual Design of Interdisciplinary Systems[C].Proc.of IEEE International Conference on System,Man and Cybernetics,1993,
    [61]Sharp J E E.Integrated computer support for interdisciplinary system design[J],PD-Vol,64-5,ASME,1994:107-114.
    [62]Bradley D A,Bracewell R H."Computer Support for Engineering Design - The Schemebuilder Project[C].SERC/IMechE Expert Meeting on Information Technology and Product Design,St Albans,UK,pp69-73,1992.
    [63]Bracewell R H,Sharpe J E E.Functional descriptions used in computer support for qualitative scheme genrarion- 'Schemebuilder'[J].Artificial Intelligence in Engineering Design,Analysis and manufacturing,1996,10(4):333-346.
    [64]曹东兴,范顺成,刘力松等.功率键合图在机械产品概念设计中应用[J].机械设计,2002,(10):44,54,64,74.
    [65]曹东兴,檀润华,姚广法等.概念设计中行为矩阵模型的公理化验证[J].中国机械工程,2005,(4):337-340.
    [66]范文慧.面向产品信息建模的图形结构单元及其自组织理论、方法和应用研究[D].浙江:浙江大学,1998.
    [67]伊国栋.产品信息符号建模理论方法及其应用研究[D].浙江:浙江大学,2003.
    [68]王中双,陆念力,徐长顺.平面柔性多体系统完全动力学问题的回转键合图法[J].中国机械工程,2005,16(23):2093-2097.
    [69]Shean-Juinn Chiou,Sridhar Kota.Automated Conceptual Design of Mechanisms[J].Mechanism and Machine Theory.1999,34(3):467-495.
    [70]Kota S.A Qualitative Matrix Representation Scheme for the Conceptual Design of Mechanisms[C].The ASME Design Automation Conference,Chicago,1990.
    [71]纪杨健,谭建荣等.基于语义元设计方案形式化与重用方法研究[J].机械工程学报,2004(2):30-34.
    [72]万昌江,谭建荣,刘振宇.基于语义的组件化样机建模技术研究[J].中国机械工程,2005,16(16):1142-1146.
    [73]冯毅雄,谭建荣.基于联结语义的概念结构建模方法研究[J].浙江大学学报,2006,40(2):221-225.
    [74]王德伦,张德珍,马雅丽.机械运动方案设计的状态空间法[J].机械工程学报,2003,39(3):22-27.
    [75]张利萍,王德伦.混联机械系统方案设计特征状态空间理论与方法[J].机械工程学报,2006,42(12):26-35.
    [76]张利平.液压气动系统原理图CAD软件HP-CAD的开发研究[J].河北科技大学学报,2001,1:27.
    [77]张孟福,韩学军.组合机床叠加式液压系统设计专家系统(下篇)--液压传动装置之智能化绘图部分[J].液压与气动,1991,4:9-12.
    [78]柯尊钟,陶泽柳,孙勇.液压系统原理图自动绘制软件设计[J].机床与液压,2006,3:233-236.
    [79]王勇,李从心,黄树槐.液压系统原理图的自动布线算法[J].机床与液压,1996,6:32-33.
    [80]王勇,李从心,黄树槐.CHIS软件中的液压系统原理图智能理解技术[J].计算机应用,1996,4:32-33.
    [81]王勇,刘斌,盛自强.面向原理图的液压系统自动建模技术[J].计算机辅助设计与制造,1996,11:20-21.
    [82]刘文龙,姜秀萍,曹学云.基于面向对象技术构建的并行液压CAD绘图平台[J].机床与液压,2005,10:177-178.
    [83]刘文龙.液压系统CAD环境开发与设计方法研究[D].大连:大连理工大学,1995.
    [84]华徐勇,姜秀萍,曹学云.AutoCAD环境下面向HCAD图形信息系统的设计与实现[J].机床与液压,2003,5:190-191.
    [85]谢琳,刘能宏,董华.液压系统CAD原理图智能化绘图软件系统[J].机床与液压,1996,6:9-13.
    [86]陈兴和.CAD二次开发在快速绘制液压原理图中的应用[J].液压气动与密封,2001,3:36-37.
    [87]王潍.基于基本回路的液压系统原理图CAD系统[J].计算机辅助设计与制造,1998,9:58-59.
    [88]神会存.液压系统原理图CAD[J].机床与液压,1999,1:56.
    [89]曹坚,冯晓宁,许锦泓.基于原理图自动识别的液压CAD系统的研究[J].机床与液压,2004,9:158-160.
    [90]董洪全,张敬芳,郝尚清.液压系统原理图CAD模块的开发[J].机械工程与自动化,2006,6:132-132.
    [91]高佩川,沈飞.液压系统原理图CAD系统研究与开发[J].机床与液压,1999,6:58,54.
    [92]黄刚,汤漾平,李小平.面向对象的液压系统CAD实现方法[J].机械工程师,2000,3:27-29.
    [93]Pessen D W.Industrial automation:Circuit Design and Components[M].NewYork:John Wiley & Sons,1990.
    [94]Siang-Kok Sim,Patrick SK Chua.Symbolic pattern manipulation of Karnaugh-Veitch maps for pneumatic circuits[J].Artifcial Intelligence in Engineering,1996,10:71-83.
    [95]E C Fitch,J B Surjaatmadja.Introduction to fluid logic[M].Washington:Hemisphere Pub.Corp.,1978.
    [96]张钰成,党竹梅.液压系统CAD软件研制的几个问题[J].宁夏工学院学报,1995,7(12):78-83.
    [97]刘彩琴.液压回路的逻辑设计[J].机床与液压,1998,5:46转03.
    [98]唐俊英,刘彩琴.液压回路的逻辑设计[J].河北煤炭,2000,1:62-64.
    [99]王东.双锥头开卷机对中装置液压逻辑回的设计与分析[J].机械科学与技术,1995,1:8-10.
    [100]董继先,彭国勋.液压气动通用逻辑回路的计算机辅助设计[J].西北轻工业学院学报,1996,3:1-5.
    [101]董继先,彭国勋.汽车液力机械变速器动力换档液压控制逻辑回路计算机辅助逻辑综合[J].西北轻工业学院学报,1994,12:7-13.
    [102]S Kota,C-L Lee.General Framework for Configuration Design:Part1-Methodology[J].Journal of Engineering Design,1993,4(4):277-289.
    [103]S Kota,C-L Lee.General Framework for Configuration Design:Part2-Applation to Hydraulic Systems Configuration[J].Journal of Engineering Design,1993,4(4):291-303.
    [104]Lee Chun Liang.A functional approach to systems configuration design with application to hydraulic system[D].USA:University of Michigan,1992.
    [105]Westman R M,Sargement C,Burton R.A knowledge-based modular approach to hydraulic circuit design[J].Computers in Engineering,1987,1:37-41.
    [106]Westman R M.A knowledge-based system for hydraulic circuit design[D].Canada:University of Saskatchewan,1987.
    [107]POTTER S,CHAWDHURY P,CULLEY S etc.Goal-based configuration design of fluid power systems using neural network[C].Proceeding of ASME design engineering technical and computers in engineering conferences,New York,USA,1997.
    [108]POTTER S E.Artificial intelligence and conceptual design synthesis[D].Bath:University of Bath,2000.
    [109]Zone-Ching Lin,Chi-Chih Shen.An inyestigation of an expert system for hydraulic circuit design with leaning[J].Artificial Intelligence in Engineering,1995,9:153-165.
    [110]Fujita,K.,Akagi,S.,and Sasaki,M.Adaptive synthesis of hydraulic circuits from design cases based on functional structure[C].Proceedings of the 1995 ASME Design Engineering Technical Conferences,Boston,MA,USA,1995,pp.875-882.
    [111]Yong C M,Leung T P,Wong P K.Case-based reasoning and adaptation in hydraulic production machine design[J].Engineering Applications of Artificial Intelligence,2002,15:567-585.
    [112]罗胜.液压设计及仿真系统智能化的研究[J].机床与液压,2007,8:212-214转242.
    [113]罗胜.基于案例结构检索的液压CAD系统设计与开发[J].石油矿场机械,2007,36(4):34-40.
    [114]P K Wong,T P Leung,C W Chuen.Object-oriented CAD for practical hydraulic system design[J].Engineering Applications of Artificial Intelligence,1996,9(5):499-514.
    [115]J C F Chan,AJAY Jonega,R Linn.A methodology to automate the design of fluid power systems[J].Internatial Journal of Computer Integrated Manufacturing,1998,11(2):118-129.
    [116]Li C,Huang S,Wang Y.An expert system for designing hydraulic schemes.Artificial Intelligence in Design[M],Pham,D.T.(ed),Chapter 16,Springer-Verlag,1991,DD.391-413.
    [117]陈乃超,黄建龙.液压回路模型及生成算法[J].甘肃科学学报,2005,17(4):87-90.
    [118]J.C.Silva,Nelson Back.Shaping the Process of Fluid Power System Design Applying an Expert System[J].Research in Engineering Design,2000,12:8-17.
    [119]Richard T G,Hughes E J,Tilley D G.A multimedia approach to fluid power system design[J].Proceedings IEEE International Conference on Multimedia Computing and Systems,1999,1:792-796.
    [120]Richard T G.,Hughes E J,Tilley D G.An open framework for enabling lifelong learning of fluid power systems design via the internet[J].The Fluid Power and Systems Technology Division(ASME),2000,7:61-69.
    [121]李卫民,胡伟.基于Web的液压系统协同设计系统的研究[J].机械设计与制造,2007,5:209-211.
    [122]Wei Xiang,Sai Cheong Fokb,Georg Thimm.Agent-based composable simulation for virtual prototyping of fluid power system[J].Computers in Industry,2004,54:237-251.
    [123]S C Fok,W Xiang,F F Yap.Feature-based component models for virtual prototyping of hydraulic systems[J].International Journal of Advanced Manufacturing Technology,2001,18(9):665-672.
    [124]Feldmann D G.Computer supported application engineering and design of hydrostatic systems[J].Mechanika,2006,62(6):54-63.
    [125]Feldmann D G,Nissen K P.System design with intelligent computer support [J].Oelhydraulik und Pneumatik Oelhydraulik und Pneumatik,1992,36(31):69-75.
    [126]Nakajima Y,Baba T.Oil hydraulic circuit design expert system as an integrated intelligent CAD[J].Journal of the Society of Instrument and Control Engineers,1988,7,No.10909-10.
    [127]Donne M S,Tilley D G,Richards W.The use of multi-object parallel general algorithm to aid fluid power system design[J].Proceedings of the Institution of Mechanical Engineers,Part Ⅰ(Journal of Systems and Control Engineering),1995,209(I1):53-61.
    [128]吴晓兰,张亮,焦宗夏.液压系统计算机辅助设计系统的研究与开发[J].机床与液压,1998,5:19-22.
    [129]吴林峰,肖乾.面向对象的液压系统CAD实现方法[J].液压与气动,2004,4:51-53.
    [130]王军,胡英.机床液压系统智能CAD系统的研究与开发[J].机床与液压,1997,1:5-6.
    [131]张金,钱祥生.液压系统方案的特征状态模型设计法[J].机床与液压,1995,3:152-156.
    [132]张丽珍,陈鹰,路甬祥.液压电梯计算机辅助设计软件的研制[J].机电工程,1995,1:4-6.
    [133]潘双夏,冯培恩等.液压挖掘机智能CAD策略研究[J].工程机械,1991,10:19-22.
    [134]Yeaple F.Fluid power design handbook[M].New York:Marcel Dekker,1986.
    [135]Mcnickle L S.Simplified hydraulics[M].New York:McGraw-Hill Book Company,1966.
    [136]Anthony Esposito.Fluid power with applications[M].Upper Saddle River,N J:Prentice Hall,1997.
    [137]成大先.机械设计手册单行本-液压传动[M].北京:化学工业出版社,2004.
    [138]张利平.液压传动系统设计[M].北京:化学工业出版社,2005.
    [139]张利平.现代液压技术应用220例[M].北京:化学工业出版社,2004.
    [140]张利平.液压阀原理使用与维护[M].北京:化学工业出版社,2005.
    [141]李壮云.液压元件与系统[M].北京:机械工业出版社,2005.
    [142]雷秀.液压与气压传动[M].北京:机械工业出版社,2005.
    [143]彭熙伟.流体传动与控制基础[M].北京:机械工业出版社,2005.
    [144]周世昌.液压气动系统设计运行禁忌470例[M].北京:机械工业出版社,2002.
    [145]Douglas B West.Introduction of graph theory[M].BeiJing:China Machine Press,2004.
    [146]Pippenger,Jhon J.Industrial Hydraulic[M].New York:Gregg Division,McGraw-Hill,1979.
    [147]David C Lay.Linear algebra and its application[M].Beijing:Publishing House of Electronics Industry,2004.
    [148]颜鸿森.机械装置的创造性设计[M].北京:机械工业出版社,2002.
    [149]刘洪涛,黄海.PLC应用开发-从基础到实践[M].北京:电子工业出版社,2007.
    [150]白中英.数字逻辑与数字系统[M].北京:科学出版社,2001.
    [151]邢传鼎.人工智能原理及应用[M].上海:东华大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700