用户名: 密码: 验证码:
螺旋藻活性肽的纯化、鉴定及降压、护肝机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题通过多种酶对钝顶螺旋藻进行酶解,采用超滤、凝胶过滤色谱、反相高效液相色谱等手段,纯化获取血管紧张素转化酶(ACE)抑制肽,经质谱分析和氨基酸测序进行鉴定,对其抑制类型和体外稳定性进行了研究,并以原发性高血压大鼠(SHR)为模型采用Real-Time PCR和酶联免疫吸附测定法进行了体内降压作用和调控机制研究。此外,本课题分别基于ICR小鼠和Wistar大鼠,研究了膳食性螺旋藻及其酶解液对D-氨基半乳糖(D-GalN)或对乙酰氨基酚(APAP)所致肝损害的保护作用和调控机制。
     结果表明:分子量范围为0到3000 D的酶解液的ACE抑制活性为最高,该部分分子量的碱性蛋白酶和木瓜蛋白酶酶解液通过纯化获得2种高活性的ACE抑制肽,经鉴定分别为异亮氨酸-谷氨酰胺-脯氨酸(Ile-Gln-Pro,IQP)和缬氨酸-谷氨酸-脯氨酸(Val-Glu-Pro,VEP),IC_(50)值分别为5.77±0.09μmol/L和27.36±0.14μmol/L。两种ACE抑制肽经测定均为非竞争性抑制剂,Ki值分别为7.61±0.16μmol/L和23.59±0.54μmol/L,在主要胃肠蛋白酶的消化下能保持良好的抑制活性。
     SHR大鼠试验表明,Ile-Gln-Pro和Val-Glu-Pro的单次口服最低有效降压剂量分别为2.5 mg/kg和5 mg/kg,降压效果与其对RAS系统主要成分的调控作用有关。与正对照Captopril相比,Ile-Gln-Pro和Val-Glu-Pro表现出比体外活性要强的体内活性,并且维持最大降压效果的时间更长。
     此外,对ICR小鼠和Wistar大鼠体内试验研究表明,膳食性螺旋藻及其酶解液能够有效地抑制D-GalN或APAP引起的急性肝损害,并且其护肝作用与之对肝脂质过氧化、致炎细胞因子IL-18和肝局部RAS系统的调控作用有关。
     本课题首次从螺旋藻中纯化获得高活性的ACE抑制肽,关于螺旋藻在动物体内降压、护肝效果以及对IL-18和肝局部RAS系统的表达调控研究填补了相关空白,成果表明螺旋藻在防治高血压和肝损害的医药和功能食品方面具有广阔的前景。
The present study was performed to isolate and purify angiotensin converting enzyme (ACE) inhibitory peptides from enzymatic digests of Spirulina platensis by ultra-filtration, gel filtration chromatography and reverse-phase high-performance liquid chromatography. The purified peptides were identified by mass spectrometry and amino acid sequencing, and were determined for the inhibition pattern and the stability in vitro. The in vivo antihypertensive effects and regulation mechanism on the renin-angiotensin system (RAS) were also investigated in spontaneous hypertensive rats (SHR) by methods of Real-Time PCR and Enzyme-linked immunosorbent assay. Furthermore, the hepatoprotective effects and the regulation mechanism of dietary Spirulina platensis and its enzymatic digests against D-galactosamine (D-GalN) or acetaminophen (APAP) induced hepatitis were investigated in ICR mice and Wistar rats.
     The results indicated that the enzymatic digests ranging in 0 - 3,000 D had the highest ACE inhibitory activity. Two potent ACE inhibitory peptides with IC_(50) values of 5.77±0.09μmol/L and 27.36±0.14μmol/L were obtained from the Alcalase and papain digests, and were identified as Ile-Gln-Pro and Val-Glu-Pro, respectively. Both of the peptides were determined as non-competitive inhibitors with K_i values of 7.61±0.16μmol/L and 23.59±0.54μmol/L respectively, and kept their inhibitory activities well after incubation with main gastrointestinal proteases.
     In vivo experiments in SHRs indicated that the least effective doses of Ile-Gln-Pro and Val-Glu-Pro were 2.5 mg/kg body weight (BW) and 5 mg/kg BW respectively, and the antihypertensive effects were accompanied with their regulation on major components in the RAS. Compared with Captopril, both of the peptides exhibited more potent activities in vivo than in vitro, and maintained the best antihypertensive effects longer.
     Furthermore, dietary Spirulina platensis and its enzymatic digests could effectively suppress the acute liver injuries induced by D-GalN or APAP in ICR mice and Wistar rats, and the hepatoprotective effects were accompanied with their regulation on lipid peroxidation in the liver as well as expressions of the proinflammatory cytokine IL-18 and the hepatic RAS components.
     The present work purified potent ACE inhibitory peptides from Spirulina platensis for the first time, and innovatively investigated the antihypertensive and hepatoprotective effects of Spirulina platensis and the regulation on expressions of IL-18 and the RAS components. The results suggested Spirulina platensis would be of great prospects as an ingredient of functional foods or medicines in treatment of hypertension and liver injuries.
引文
1.杜林,李亚娜.生物活性肽的功能与制备研究进展[J].中国食物与营养,2005,8:18-21.
    2.冯志彪,李冬梅.中性蛋白酶水解螺旋藻蛋白质的研究[J].食品研究与开发,2001,22(2):22-24.
    3.何子安,戚挺华,曾广信等.中国蝮蛇毒中舒缓激肽增强肽的研究[J].生物化学与生物物理学报,1981,13(5):451-459.
    4.胡鸿钧.螺旋藻生物学及生物技术原理[M].北京:科学出版社,2003.
    5.胡敏培.血管紧张素转化酶抑制剂国内外研究开发与应用概况(上)[J].化学医药工业信息,1995,11(12):8-10.
    6.黄家音,朱禹洁,沈金玉.降血压肽研究进展[J].食品与发酵工业,2006,32(6):81-86.
    7.黄艳春,刘张虎,熊善柏.酶解鲢肉制取ACE抑制肽工艺条件的优化[J].食品科学,2007,28(2):181-184.
    8.姜晓光,宋博,迟春萍等.生物活性肽的生理功能及研究进展[J].微生物学杂志,2006,26(5):82-85.
    9.李勇.生物活性肽研究现况和进展[J].食品与发酵工业.2007,33(1):3-9.
    10.吴建平,丁霄霖.食品蛋白质降血压肽的研究进展[J].中国粮油学报,1998,13(5):10-14.
    11.张学成,信式祥,李清华等.螺旋藻——最完美的功能性食品[M].青岛:青岛海洋大学出版社,1999.
    12.左伟勇,孟婷,陈伟华.植物蛋白源活性肽研究进展[J].饲料博览,2007,1:22-25.
    13.Acharya K R,Sturrock E D,Riordan J F,et al.ACE revisited:a new target for structurebased drug design.[J]Nat Rev Drug Discov 2003,2(11):891-902.
    14.Akira S.The role of IL-18 in innate immunity.[J]Curr Opin Immunol 000,12(1):59-63.
    15.Akpaffiong M J & Taylor A A.Antihypertensive and vasodilator actions of antioxidants in spontaneously hypertensive rats.[J]Am J Hypertens 1998,11(12):1450-1460.
    16.Anderson S,Rennke H G,Brenner B M.Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat.[J]J Clin Invest 1986,77(6):1993-2000.
    17.Araujo M C,Melo R I,Del Nery E,et al.Internally quenched fluorogenic substrates for angiotensin Ⅰ-converting enzyme.[J]J Hypertens 1999,17(5):665-672.
    18.Araujo M C,Melo R L,Cesari M H,et al.Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin Ⅰ-converting enzyme.[J]Biochemistry 2000,39(29):8519-8525.
    19.Ardaillou R.Active fragments of angiotensin Ⅱ:enzymatic pathways of synthesis and biological effects.[J] Curr Opin Nephrol Hypertens 1997, 6(1): 28-34.
    
    20. Arihara K. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins.[J] Meat Sci 2001, 57(3): 319-324.
    
    21. Asbert M, Jimenez W, Gaya J, et al. Assessment of the renin-angiotensin system in cirrhotic patients: Comparison between plasma renin activity and direct measurement of immunoreactive renin.[J] J Hepatol 1992, 15(1-2): 179-183.
    
    22. Astawan M, Wahyuni M, Yasuhara T, et al. Effects of angiotensin-I converting enzyme inhibitory substance derived from Indonesian dried-salted fish on blood pressure of rats.[J] Biosci Biotech Biochem 1995, 59(3): 425-429.
    
    23. Atkinson A B & Robertson J I. Captopril in the treatment of clinical hypertension and cardiac failure.[J] Lancet 1979, 2(8147): 836-839.
    
    24. Bakhle Y S. Conversion of angiotensin I to angiotensin II by cell free extracts of dog lung.[J] Nature 1968, 220(5170): 919-921.
    
    25. Barney C C, Katovich M J, Fregly M J. The effect of acute administration of an angiotensin converting enzyme inhibitor, captopril (SQ 14,225), on experimentally induced thirst in rats.[J] J Pharmacol Exp Ther 1980,212(1), 53- 57.
    
    26. Bataller R, Gines P, Nicolas J M, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells.[J] Gastroenterology 2000, 118(6): 1149-1156.
    
    27. Bataller R, Gabele E, Schoonhoven R, et al. Prolonged infusion of angiotensin II into normal rats induces stellate cell activation and proinflammatory events in liver.[J] Am J Physiol Gastrointest Liver Physiol 2003, 285(3): G642-G651.
    
    28. Bataller R, Sancho-Bru P, Gines P, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II.[J] Gastroenterology 2003, 125(1): 117-125.
    
    29. Bataller R, Schwabe R F, Choi Y H, et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis.[J] J Clin Invest 2003, 112(9): 1383-1394.
    
    30. Blazka M E, Wilmer J L, Holladay S D, et al. Role of proinflammatory cytokines in acetaminophen hepatotoxicity.[J] Toxicol Appl Pharmacol 1995, 133(1): 43-52.
    
    31. Boindogurong J, Higaki T, Egashira Y et al. Protective Effect of butylated hydroxyanisole and butylated hydroxytoluene against acetaminophen-induced hepatotoxicity in rats.[J] J Oleo Sci 2005,54(3): 153-159.
    
    32. Bourdi M, Masubuchi Y, Reilly T P, et al. Protection against acetaminophen induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase.[J] Hepatology, 2002, 35(2): 289-298.
    
    33. Bradford M M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding.[J] Anal Biochem 1976, 72: 248-254.
    
    34. Brent J A, Rumack B H. Role of free radicals in toxic hepatic injury. I Free radical biochemistry.[J] J Toxicol Clin Toxicol 1993,31(1):139-171.
    
    35. Brewster U C, Perazella M A. The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease.[J] Am J Med 2004, 116(4): 263-272.
    
    36. Brewster U C, Setaro J F, Perazella M A. The renin-angiotensin-aldosterone system: cardiorenal effects and implications for renal anad cardiovascular disease states.[J] Am J Med Sci 2003, 326(1): 15-24.
    
    37. Buflag R D. Validation in awake rats of a tail-cuff method for measuring systolic pressure.[J] J Appl Physiol 1973, 34(2): 279-282.
    
    38. Carmona A K, Schwager S L, Juliano M A, et al. A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay.[J] Nat Protoc 2006, 1(4): 1971-1976.
    
    39. Chang B W, Chen R L, Huang I J, et al. Assays for angiotensin converting enzyme inhibitory activity.[J] Anal Biochem 2001 291(1): 84-88.
    
    40. Cheung H S & Cushman D W. Inhibition of homogeneous angiotensin-converting enzyme of rabbit lung by synthetic venom peptides of Bothrops jararaca.[J] Biochim Biophys Acta 1973, 293(2): 451-463.
    
    41. Cheung H S, Wang F L, Ondetti M A, et al. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence.[J] J Biol Chem 1980, 255(2): 401-407.
    
    42. Chin B S, Langford Ni J, Nuttall S L, et al. Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure.[J] Eur J Heart Fail 2003 5(2): 171-174.
    
    43. Chobanian A V, Bakris G L, Black H R, et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure.[J] Hypertension 2003, 42(6): 1206-1252.
    
    44. Chun H, Sasaki M, Fujiyama Y, et al. Effect of peptide chain length on absorption and intact transport of hydrolyzed soybean peptide in rat intestinal everted sac.[J] J Clin Biochem Nutr 1996,21(2): 131-140.
    
    45. Conrad C H, Brooks W W, Hayes J A, et al. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat.[J] Circulation 1995,91(1): 161-170.
    
    46. Cooper W O, Hernandez-Diaz S, Arbogast P G, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors.[J] N Engl J Med 2006, 354(23): 2443-2451.
    
    47. Cushman D W, Cheung H S, Sabo E F, et al. Design of potent competitive inhibitors of angiotensin-converting enzyme.[J] Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 1977, 16(25): 5484-5491.
    
    48. Decker K, Keppler D, Pausch J. The regulation pyrimidine nucleotide level and its role in experimental hepatitis.[J] Adv Enzyme Regul 1973, 11: 205-230.
    
    49. Dinarello C A. Interleukin-18.[J] Methods 1999, 19(1): 121-132.
    
    50. Dzau V J, Sasamura H, Hein L. Heterogeneity of angiotensin synthetic pathways and receptor subtypes: physiological and pharmacological implications.[J] J Hypertens Suppl 1993, 11(3): S13-S18.
    
    51. Dzau V J. Evolving concepts of the renin-angiotensin system. Focus on renal and vascular mechanisms.[J] Am J Hypertens 1988, 1(4 Pt 2):334S-337S.
    
    52. Ferreira S H. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca.[J] Br J Pharmacol Chemother 1965, 24(1): 163-169.
    
    53. Fiordaliso F, Cuccovillo I, Bianchi R, et al. Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes.[J] Life Sci 2006,79(2): 121-129.
    
    54. Foster T. Intermolecular energy migration and fluorescence.[J] Ann Phys 1948,2: 55-75.
    
    55. Fujita H & Yoshikawa M. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein.[J] Immunopharmacology 1999,44(1-2): 123-127.
    5
    6. Gaillard-Sanchez I, Mattei M G, Clauser E, et al. Assignment by in situ hybridization of the angiotensinogen gene to chromosome band 1q4, the same region as the human renin gene.[J] Hum Genet 1990, 84(4): 341-343.
    
    57. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS induced IFN-gamma production.[J] Nature 1997, 386(6625): 619-623.
    
    58. Giannini E G, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians.[J] Can Med Assoc J 2005, 172(3): 367-379.
    
    59. Gill I, Lopez-Fandifio R, Jorba X, et al. Biologically active peptides and enzymatic approaches to their production.[J] Enzyme Microb Technol 1996, 18(3): 163-183.
    
    60. Griendling K K, Murphy T J, Alexander R W: Molecular biology of the renin-angiotensin system. [J]Circulation 1993, 87(6): 1816-1828.
    
    61. Hall J E. Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation.[J] Am J Physiol 1986, (6 Pt 2): R960-972.
    
    62. Halliwell B & Gutteridge J M C. Free Radicals in Biology and Medicine.[M] New York: Oxford University Press, 1999.
    
    63. Harman D. Free radical theory of aging: Consequences ofmitochondrial aging.[J] Age 1983, 6(3): 86-94.
    
    64. Hayashi O, Katoh T, Okuwaki Y. Enhancement of antibody production in mice by dietary Spirulina platensis.[J] J Nutr Sci Vitaminol 1994, 40(5): 431-441.
    65. Hayashi K, Hayashi T, Morita N, et al. An extract from Spirulina platensis is a selective inhibitor of herpes simplex virus type 1 penetration into HeLa cells.[J] Phytother Res 1993, 7(1): 76-80.
    
    66. Hayashi K, Hayashi T, Kojima I. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities.[J] AIDS Res Hum Retroviruses 1996, 12(15):1463-1471.
    
    67. He H L, Chen X L, Sun C Y, et al. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM9801 l.[J] Bioresour Technol 2006, 97(3): 385-390.
    
    68. Hirahashi T, Matsumoto M, Hazeki K, et al. Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis.[J] Int Immunopharmacol 2002,2(4): 423-434.
    
    69. Hou W C, Chen H J, Lin Y H. Antioxidant peptides with Angiotensin converting enzyme inhibitory activities and applications for Angiotensin converting enzyme purification.[J] J Agric Food Chem 2003, 51(6): 1706-1709.
    
    70. Huang X J, Choi Y K, Im H S, et al. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques.[J] Sensors 2006,6: 756-782.
    
    71. Hughes J, Smith T W, Kosterlitz H W et al. Identification of two related pentapeptides from the brain with potent opiate agonist activity.[J] Nature 1975, 258(5536): 577-580.
    
    72. Hyoung Lee D, Ho Kim J, Sik Park J, et al. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum.[J] Peptides 2004, 25(4): 621-627.
    
    73. Jamaluddin M, Meng T, Sun J, et al. Angiotensin II induces nuclear factor (NF)-κB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-κB activation.[J] Mol Endocrinol 2000, 14(1): 99-113.
    
    74. Ju C, Reilly T P, Bourdi M, et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice.[J] Chem Res Toxicol 2002, 15(12): 1504-1513.
    
    75. Kato H & Suzuki T. Bradykinin-potentiating peptides from the venom of Agkistrodon halys. Isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C.[J] Biochemistry 1971, 10 (6): 972-980.
    
    76. Kawabe K, Watanabe T X, Shiono K, et al. Influence on blood pressure of renal isografts between spontaneously hypertensive and normotensive rats, utilizing the F1 hybrids.[J] Jpn Heart J 1978, 19(6): 886-894.
    
    77. Kawasaki T, Jun C J, Fukushina Y, et al. Antihypertensive effect and safety evaluation of vegetable drink with peptides derived from sardine protein hydrolysates on mild hypertensive, high-normal and normal blood pressure subjects.[J] Fukuoka Igaku Zasshi 2002, 93(10): 208-218.
    
    78. Keppler D, Lesch R, Reutter W, et al. Experimental hepatitis induced by D-galactosamine.[J] Exp Mol Pathol 1968,9(2): 279-290.
    
    79. Kinoshita S, Inoue Y, Nakama S, et al. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin.[J] Phytomedicine 2007, 14(11): 755-762.
    
    80. Kohama Y, Oka H, Kayamori Y, et al. Potent synthetic analogues of angiotensin converting enzyme inhibitor derived from tuna muscle.[J] Agric Biol Chem 1991, 55(8): 2169-2170.
    
    81. Kohama Y, Oka H, Yamamoto K, et al. Induction of angiotensin-converting enzyme inhibitory activity by acid-limited proteolysis of glyceraldehyde 3-phosphate dehydrogenase.[J] Biochem Biophys Res Commun 1989, 161(2): 456-460.
    
    82. Komano T, Egashira Y, Sanada H. L-Gln and L-Ser suppress the D-galactosamine-induced IL-18 expression and hepatitis.[J] Biochem Biophys Res Commun 2008, 372(4): 688-690.
    
    83. Kuba M, Tanaka K, Tawata S, et al. Angiotensin I-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food.[J] Biosci Biotechnol Biochem 2003, 67(6): 1278-1283.
    
    84. Kwon T & Watts B. Malonaldehyde in aqueous solution and its role as a measure of lipid oxidation in foods.[J] J Food Sci 1964, 29(3): 294-302.
    
    85. Lee K J, You H J, Park S J, et al. Hepatoprotective effects of Platycodon grandiflorum on acetaminophen-induced liver damage in mice.[J] Cancer Lett 2001, 174(1): 73-81.
    
    86. Lee W M. Acute liver failure.[J] N Engl J Med 1993, 329: 1862-1872.
    
    87. Leung P S. The peptide hormone angiotensin II: its new functions in tissues and organs.[J] Curr Protein Pept Sci 2004, 5(4): 267-273.
    
    88. Leung P S, Chappell M C.A local pancreatic renin-angiotensin system: endocrine and exocrine roles.[J] Int J Biochem Cell Biol 2003, 35(6): 838-846.
    
    89. Licht H, Seeff L B, Zimmerman H J. Apparent potentiation of acetaminophen hepatotoxicity by alcohol.[J] Ann Intern Med 1980, 92(4): 511.
    
    90. Luster M I, Simeonova P P, Gallucci R M, et al. Immunotoxicology: role of inflammation in chemical-induced hepatotoxicity.[J] Int J Immunopharmacol 2000, 22(12): 1143-1147.
    
    91. Maeno M, Yamamoto N, Takano T. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790.[J] J Dairy Sci 1996, 79(8): 1316-1321.
    
    92. Marczak E D, Usui A, Fujita H, et al. New antihypertensive peptides isolated from rapeseed.[J] Peptides 2003, 24(6): 791-798.
    93. Maruyama S, Miyoshi S, Tanaka H. Angiotensin I-converting enzyme inhibitor derived from Ficus carica.[J] Agric Biol Chem 1989, 53(10): 2763-2769.
    
    94. Mathew B, Sankaranarayanan R, Nair P P, et al. Evaluation of chemoprevention of oral cancer with Spirulinafusiformis.[i] Nutr Cancer 1995,24(2): 197-202.
    
    95. Matthews J C. Mechanisms of Peptide and Amino Acid Transport. In: Mello J P F D (Ed.) Farm Animal Metabolism and Nutrition: Critical Reviews. Chapter 1, 3-23.[M] Wallingford: CAB International, 2000.
    
    96. Matthew R W, Victor J D. The renin-angiotensin-aldosterone system: a specific target for hypertension management.[J] Am J Hypertens 1999, 12(12 Pt 3): 205S-213S.
    
    97. Miguel M, Lopez-Fandifio R, Ramos M, et al. Short-term effect of egg-white hydrolysate products on the arterial blood pressure of hypertensive rats.[J] Br J Nutr 2005, 94(5): 731-737.
    
    98. Miguel M, Lopez-Fandifio R, Ramos M, et al. Long-term intake of egg white hydrolysate attenuates the development of hypertension in spontaneously hypertensive rats.[J] Life Sci 2006, 78(25): 2960-2966.
    
    99. Mitchell J R, Jollow D J, Potter W Z, et al. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione.[J] J Pharmacol Exp Ther 1973, 187(1): 211-217.
    
    100. Miyake S. The mechanism of release of hepatic enzymes in various liver diseases. II. Altered activity ratios of GOT to GPT in serum and liver of patients with liver diseases.[J] Acta Med Okayama. 1979, 33(5): 343-358.
    
    101. Mizushima S, Ohshige K, Watanabe J, et al. Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men.[J] Am J Hypertens 2004, 17(8): 701-706.
    
    102. Molinaro Q, Cugno M, Perez M, et al. Angiotensin-converting enzyme inhibitor-associated angioedema is characterized by a slower degradation of des-arginine(9)-bradykinin.[J] J Pharmacol Exp Ther 2002, 303(1): 232-237.
    
    103. Moron M S, Depierre J W, Mannervik B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver.[J] Biochim Biophys Acta 1979, 582(1): 67-78.
    
    104. Nagaki M, Tanaka M, Sugiyama A, et al. Interleukin-10 inhibits hepatic injury and tumor necrosis factor-a and interferon-γ mRNA expression induced by staphylococcal enterotoxin B or lipopolysaccharide in galactosamine-sensitized mice.[J] J Hepatol 1999, 31(5): 815-824.
    
    105. Nakahira M, Ahn H J, Park W R, et al. Synergy of IL-12 and IL-18 for IFN-γgene expression: IL-12-induced STAT4 contributes to IFN-γpromoter activation by up-regulating the binding activity of IL-18-induced activator protein l.[J] J Immunol 2002, 168(3): 1146-1153.
    
    106. Nakamura Y, Masuda O Y, Takano T. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats.[J] Biosci Biotechnol Biochem 1996,60(3): 488-489.
    107.Nakamura Y, Yamamoto N, Sakai K, et al. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk.[J] J Dairy Sci 1995, 78(4): 777-783.
    108.Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 regulates both Th1 and Th2 responses.[J] Annu Rev Immunol 2001, 19: 423-474.
    
    109. Obst M, Gross V, Janke J, et al. Pressure natriuresis in AT2 receptordeficient mice with L-NAME hypertension.[J] JAm Soc Nephrol 2003, 14(2): 303-310.
    
    110. Ohishi T, Saito H, Tsusaka K, et al. Anti-fibrogenic effect of an angiotensin converting enzyme inhibitor on chronic carbon tetrachloride-induced hepatic fibrosis in rats.[J] Hepatol Res 2001, 21(2): 147-158.
    
    111. Ohkawa H, Ohishi W, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.[J] Anal Biochem 1979, 95(2): 351-358.
    
    112. Okamoto A, Hanagata H, Kawamura Y, et al. Anti-hypertensive substances in fermented soybean, natto.[J] Plant Foods Hum Nutr 1995, 47(1): 39-47.
    
    113. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats.[J] Jpn Circ J 1963, 27: 282-293.
    
    114. Okumura H, Nishimura E, Kariya S, et al. No relation between angiotensin-converting enzyme (ACE) inhibitor-induced cough and ACE gene polymorphism, plasma bradykinin, substance P and ACE inhibitor concentration in Japanese patients.[J] Yakugaku Zasshi 2001, 121(3): 253-257.
    
    115. Okamura H, Tsutsui H, Komatsu T, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells.[J] Nature 1995, 378(6552): 88-91.
    
    116. Omura T, Kim S, Takeuchi K, et al. Transforming growth factor beta 1 and extracellular matrix gene expression in isoprenaline induced cardiac hypertrophy: effects of inhibition of the renin angiotensin system.[J] Cardiovasc Res 1994, 28(12): 1835-1842.
    
    117. Ondetti M A, Williams N J, Sabo E F, et al. Angiotensin-converting enzyme inhibitors from the venom of Bothrops Jararaca. Isolation, elucidation of structure, and synthesis.[J] Biochemistry 1971, 10(22): 4033-4039.
    
    118. Ondetti M A, Cushman D W. Angiotensin-converting enzyme inhibitors: Biochemical properties and biological activities.[J] CRC Crit Rev Biochem 1984, 16(4): 381-411.
    
    119. Ondetti M A, Rubin B, Cushman D W. Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents.[J] Science 1977, 196(4288): 441-444.
    
    120. Oshima G, Shinabukuro H, Nagasawa K. Peptide inhibitors of angiotensin-converting enzyme in digests of gelatin by bacterial collagenase.[J] Biochim Biophys Acta 1979, 566(1): 128-137.
    121.0sman N, Adawi D, Ahrne S, et al. Endotoxin- and d-galactosamine-induced liver injury improved by the administration of Lactobacillus, Bifidobacterium and blueberry.[J] Dig Liver Dis 2007, 39(9): 849-856.
    
    122. Otte J, Shalaby M A S, Zakora M, et al. Fractionation and identification of ACE-inhibitory peptides from a-lactalbumin and b-casein produced by thermolysin-catalysed hydrolysis.[J] Int Dairy J 2007, 17(12): 1460-1472.
    
    123. Paizis G, Cooper M E, Schembri J M, et al. Up-regulation of components of the renin-angiotensin system in the bile duct-ligated rat liver.[J] Gastroenterology 2002, 123(5): 1667-1676.
    
    124. Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR.[J] Nucleic Acids Res. 2001, 29(9): 2002-2007.
    
    125. Pihlanto-Leppa¨la¨ A, Rokka T, Korhonen H. Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. Int Dairy J 1998, 8(4): 325-331.
    
    126. Pinero Estrada J E, Bermejo Besco's P, Villar del Fresno A M. Antioxidant activity of different fractions of Spirulina platensis protean extract.[J] Farmaco 2001, 56(5-7): 497-500.
    
    127. Pinto Y M, Paul M, Ganten D. Lessons from rat models of hypertension: from Goldblatt to genetic engineering.[J] Cardiovasc Res 1998,39(1): 77-88.
    
    128. Premkumar K, Abraham S K, Santhiya S T, et al. Protective effect of Spirulina fusiformis on chemical-induced genotoxicity in mice.[J] Fitoterapia 2004, 75(1): 24-31.
    
    129. Qiao H, Sonoda K H, Ikeda Y, et al. Interleukin-18 regulates pathological intraocular neovascularization.[J] J Leukoc Biol 2007, 81(4): 1012-1021.
    
    130. Rasmussen R. Quantification on the LightCycler. In: Meure S, Witwer C and Nakagawara K, Editors, Rapid cycle real-time PCR, methods and applications. [M] Heidelberg: Spring Press,2001.
    
    131. Rettig R. Does the kidney play a role in the aetiology of primary hypertension? Evidence from renal transplantation studies in rats and humans.[J] J Hum Hypertens 1993, 7(2): 177-180.
    
    132. Rhyu M R, Nam Y J, Lee H Y. Screening of angiotensin converting enzyme inhibitors in cereals and legumes.[J] Food Biotechnol 1996, 5(4): 334-337.
    
    133. Rodriguez-Hernandez A, Ble-Castillo J L, Juarez-Oropeza M A, et al. Spirulina maxima prevents fatty liver formation in CD-1 male and female mice with experimental diabetes.[J] Life Sci 2001, 69(9): 1029-1037.
    
    134. Rodriguez-Iturbe B, Zhan C D, Quiroz Y, et al. Antioxidant-rich diet relieves hypertension and reduces renal immune infiltration in spontaneously hypertensive rats.[J] Hypertension 2003, 41(2): 341-346.
    
    135. Saito Y, Wanezaki K, Kawato A, et al. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees.fJ] Biosci Biotechnol Biochem 1994, 58(10): 1767-1771.
    
    136. Salazar M, Chamorro G A, Salazar S, et al. Effect of Spirulina maxima consumption on reproduction and peri- and postnatal development in rats.[J] Food Chem Toxicol 1996, 34(4): 353-359.
    
    137. Sapsford K E, Berti L, Medintz I L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations.[J] Angew Chem Int Ed Engl 2006, 45(28): 4562-4589.
    
    138. Sasaki K, Taniguchi M, Miyoshi M, et al. Are transcription factors NF-kB and AP-1 involved in the ANG II-stimulated production of proinflammatory cytokines induced by LPS in dehydrated rats?[J] Am J Physiol Regul Integr Comp Physiol 2005, 289(6): R1599-R1608.
    
    139. Sekiyama A, Ueda H, Kashiwamura S, et al. A stress-induced, superoxide-mediated caspase-1 activation pathway causes plasma IL-18 upregulation.[J] Immunity 2005, 22(6): 669-677.
    
    140. Seppo L, Jauhiainen T, Poussa T, et al. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects.[J] Am J Clin Nutr 2003,77(2): 326-330.
    
    141. Shiratori Y, Kawase T, Shiina S, et al. Modulation of hepatotoxicity by macrophages in the liver.[J] Hepatology 1988, 8(4): 815-821.
    
    142. Sipola M, Finckenberg P, Korpela R, et al. Effect of long-term intake of milk products on blood pressure in hypertensive rats.[J] J Dairy Res 2002, 69(1): 103-111.
    
    143. Skeggs L T Jr, Kahn J R, Shumway N P. The isolation and assay of hypertensin from blood. [J] J Exp Med 1952, 95(3): 241-246.
    
    144. Stoh S J. The role of free radicals in toxicity and disease.[J] J Basic Clin Physiol Pharmacol 1995, 6(3-4): 205-228.
    
    145. Suetsuna K. Isolation and characterization of angiotensin I Converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic).[J] J Nutr Biochem 1998, 9(7): 415-419.
    
    146. Sun F, Hamagawa E, Tsutui C, et al. Evaluation of oxidative stress during apoptosis and necrosis caused by D-galactosamine in rat Iiver.[J] Biochem Pharmacol 2003,65(1): 101-107.
    
    147. Takeda Y, Ichihara A, Tanioka H, et al. The biochemistry of animal cells. I. The effects of corticosteroids on leakage of enzymes from dispersed rat liver cells.[J] J Biol Chem 1964, 239: 3390-3396.
    
    148. Thomas M C. Diuretics, ACE inhibitors and NSAIDs - the triple whammy.[J] Med J Aust 2000, 172(4): 184-185.
    
    149. Tiegs G, Wolter M, Wendel A. Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin-induced hepatitis in mice.[J] Biochem Pharmacol 1989, 38(4): 627-631.
    150. Timmermans P B, Benfield P, Chiu A T. Angiotensin II receptors and functional correlates.[J] Am J Hypertens 1992, 5(12 Pt 2): 221S-235S.
    
    151. Timmermans P B, Wong P C, Chiu A T, et al. Angiotensin II receptors and angiotensin II receptor antagonists.[J] Pharmacol Rev 1993,45(2): 205-251.
    
    152. Tummala P E, Chen X L, Sundell C L, et al. Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: a potential link between the renin-angiotensin system and atherosclerosis.[J] Circulation 1999, 100(11): 1223-1229.
    
    153. Vercruysse L, Smagghe G, Matsui T, et al. Purification and identification of an angiotensin I converting enzyme (ACE) inhibitory peptide from the gastrointestinal hydrolysate of the cotton leafworm, Spodoptera littoralis.[J] Process Biochem 2008, 43(8): 900-904.
    
    154. Vonend O, Apel T, Amann K, et al. Modulation of gene expression by moxonidine in rats with chronic renal failure.[J] Nephrol Dial Transplant 2004, 19(9): 2217-2222.
    
    155. Vonshak A. (ed.). Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology.[M] London: Taylor & Francis, 1997.
    
    156. Wang Z Y, Sato H, Kusam S, et al. Regulation of IL-10 gene expression in Th2 cells by Jun proteins.[J] J Immunol 2005, 174(4): 2098-2105.
    
    157. Webb K E Jr, Matthews J C, DiRienzo D B. Peptide absorption: A review of current concepts and future perspectives.[J] J Anim Sci 1992, 70(10): 3248-3257.
    
    158. Wei H S, Lu H M, Li D G, et al. The regulatory role of AT 1 receptor on activated HSCs in hepatic fibrogenesis: effects of RAS inhibitors on hepatic fibrosis induced by CC1(4).[J] World J Gastroenterol 2000, 6(6): 824-828.
    
    159. Weir M R: Angiotensin-II receptor antagonists: a new class of antihypertensive agents. Am Fam Physician 1996, 53(2): 589-594.
    
    160. Wu J, Aluko R E, Muir A D. Improved. method for direct high-performance liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions.[J] J Chromatogr A 2002,950(1-2): 125-130.
    
    161. Wu J, Ding X. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides.[J] Food Res Int 2002, 35(4): 367-375.
    
    162. Wu J, Ding X. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats.[J] J Agric Food Chem 2001, 49(1): 501-506.
    
    163. Yamada Y, Matoba N, Usui H, et al. Design of a highly potent anti-hypertensive peptide based on Ovokinin(2-7).[J] Biosci Biotechnol Biochem 2002, 66(6): 1213-1217.
    
    164. Yokoyama K, Chiba H, Yoshikawa M. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito.[J] Biosci Biotechnol Biochem 1992, 56(10): 1541-1545.
    165. Yoshida T, Abe K, Ikeda T, et al. Inhibitory effect of glycyrrhizin on lipopolysaccharide and d-galactosamine-induced mouse liver injury.[J] Eur J Pharmacol 2007, 576(1-3): 136-142.
    
    166. Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats.[J] Hepatology 2001, 34(4 Pt 1): 745-750.
    
    167. Yoshiji H, Yoshii J, Ikenaka Y, et al. Suppression of the renin-angiotensin system attenuates vascular endothelial growth factor-mediated tumor development and angiogenesis in murine hepatocellular carcinoma cells.[J] Int J Oncol 2002, 20(6): 1227-1231.
    
    168. Yu Y, Hu J, Miyaguchi Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin.[J] Peptides 2006,27(11): 2950-2956.
    
    169. Zarrouk C. Contribution a l'etude d; une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. et Gardner) Geitler.[D] University of Paris, France, 1966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700