用户名: 密码: 验证码:
内蒙古典型草原植物性状对模拟降雨的响应及其对生态系统功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草原生态系统是草地畜牧业发展的主要物质支撑,也是保护自然生态系统的重要屏障,在维护国家食品安全和生态安全中具有十分重要的战略地位。然而,全球气候变化以及草原干旱化已导致草地退化或荒漠化的严重后果。应该采取怎样的对策才能遏制或减轻干旱胁迫的负面影响,是迫切需要回答的科学问题。回答这些问题,必须首先弄清楚草地生态系统对干旱胁迫的响应格局以及胁迫下系统功能维持的机理。目前,内蒙古地区植物性状对降雨量变化的响应及其对生态系统功能影响的研究相对缺乏。
     本研究以我国内蒙古典型草原为研究对象,通过人工遮雨以及增水模拟未来降雨量可能的变化趋势,以剖析典型草原植物性状对降雨量变化的响应格局以及干旱胁迫下草地系统功能的维持机制。研究地点位于内蒙古自治区锡林郭勒盟东南端的多伦县,中国科学院植物研究所内蒙古多伦十三里滩恢复生态学试验示范研究站。试验中选取了14种典型草原常见植物作为研究对象,以Cornelissen等提出的全球植物功能性状分类体系手册(Cornelissen et al.,2003)中的国际间植物性状测度的通用方法为主要依据,选择10个适用于典型草原植物的性状进行测定,模拟降雨量分别为345mm(5~8月平均降雨量增加40~50%)、115mm(5~8月平均降雨量减少40~50%)以及2004、2005年度生长季正常降雨。主要研究结果如下:
     1.通过对比分析不同降雨量情景下典型草原植物性状变化情况并根据其性状响应趋势进行聚类分析可以看出:
     (1)不同降雨量情景下典型草原植物性状变化响应趋势比较复杂,并非依据以植物生物学特征等普通植物分类学指标来刻画的功能群如:豆科、禾本科以及杂类草植物功能群进行响应变化;
     (2)在降雨量减少40~50%情景下,可以根据典型草原植物的10种性状特征划归为4个性状响应群组。
     这4个性状响应群组的植物组合分别是:①冷蒿(Artemisia frigida Willd)+马蔺(Iris lactea Pall.var.chinensis Koidzumi)+糙叶黄芪(Astragalus scaberrimus Bunge)+冰草(Agropyron cristatum(L.)Gaertner)+克氏针茅(Stipa krylovii Roshevitz)+扁蓄豆(Pocockia ruthenica(L.)P.Y.Fu)+阿尔泰狗哇花(Heteropappus altaicus(Willd.)Novopokrovsky)+小叶棘豆(Oxytropis microphylla(Pall.)DC.);②糙隐子草(Cleistogenes squarrosa(Trin.)Keng)+早熟禾(Poa annua L.)+委陵菜(Potentillachinensis B.);③二裂叶委陵菜(Potentilla bifurca L.)+星毛委陵菜(Potentilla acaulisL.);④糙苏(Phlomis umbrosa Turcz.)。
     (3)在降雨量增加40~50%情景下,可以根据典型草原植物的10种性状特征划归为4个性状响应群组。
     这4个性状响应群组的植物组合分别是:①早熟禾(Poa annua L.)+克氏针茅(Stipa krylovii Roshevitz)+马蔺(Iris lactea Pall.var.chinensis Koidz)+冷蒿(Artemisiafrigida Willd)+扁蓄豆(Pocockia ruthenica(L.)P.Y.Fu)+星毛委陵菜(Potentillaacaulis L.)+二裂叶委陵菜(Potentilla bifurca L.);②糙苏(Phlomis umbrosa Turcz.)+糙叶黄芪(Astragalus scaberrimus Bunge)+小叶棘豆(Oxytropis microphylla(Pall.)DC.)+委陵菜(Potentilla chinensis B.);③冰草(Agropyron cristatum(L.)Gaertner)+糙隐子草(Cleistogenes squarrosa(Trin.)Keng);④阿尔泰狗哇花(Heteropappus altaicus(Willd.)Novopokrovsky)。
     2.不同降雨量情景下,群落水平上典型草原繁殖体重量(PM)与叶片氮含量(LNC)为极显著的负线性相关(相关系数为-0.818):比叶面积(SLA)与叶片干物质含量(LDMC)为显著的负线性相关(相关系数为-0.640):与茎密度(SSD)为极显著的负线性相关(相关系数为-0.735):叶面积(LS)与叶片氮含量(LNC)为显著的线性相关(相关系数为0.544):与0cm~10cm根重(FLRM)为极显著的负线性相关(相关系数为-0.666):茎密度(SSD)与叶片干物质含量(LDMC)为显著的线性相关(相关系数为0.570):根重密度(RSD)与0cm~10cm根重(FLRM)为极显著的线性相关(相关系数为0.786)。
     在不同降雨量情景下,试验样地群落的最大地上生物量干重(ANPP)与群落植物性状中的比叶面积(SLA)、叶片氮含量(LNC)极显著相关,相关系数分别为0.718和0.669。群落最大地上生物量鲜重与群落植物性状中的比叶面积(SLA)、叶片氮含量(LNC)显著相关,与繁殖体重量(PM)、茎密度(SSD)显著负相关,相关系数分别为0.552、0.552以及-0.531、-0.554。
     就本研究探讨的10类植物性状看来,典型草原系统功能特征在很大程度上受制于植物比叶面积(SLA)、叶片氮含量(LNC)、茎密度(SSD)、以及繁殖体重量(PM),以上4类性状应是与典型草原系统功能紧密相关的植物功能性状。
     3.根据群落植物性状与净初级生产力相关性建立了回归模型,通过模型建立的多元线性回归方程为:y(ANPP)=-1 01.757+6.692X1(SLA)+1.549X2(LNC)+0.579X3(PH),由于在茎密度性状(SSD)、繁殖体重量性状(PM)在14种典型草原植物的测度上均出现缺失值,因此未引入模型。
     4.减少降雨可以明显降低样方的地上生物量而增加降雨与正常降雨量情景下地上生物量的变化无明显差异。
     本研究的样地尚处在群落发展的早期阶段,一些比较适应于正常降雨的物种能够占据较大比例的空间因而具有较高的地上生物量。因此,群落地上生物量不一定随降雨量增加而增加。这种在群落的初始阶段观察到的降雨量/地上生物量模式应不同于成熟群落。
     5.凋落物分解速率与地上生物量(干重/鲜重)以及降雨量水平极显著相关,相关系数分别为0.718,0.698和0.687。高的降雨量水平可以导致高的凋落物分解速率。就草原生态系统而言,降雨量增加将增加优势植物对内蒙古半干旱典型草原的碳循环和养分动态的贡献。
Grassland ecosystems are the main material support for pastoral development.They are an important barrier for protecting natural ecosystems and play a very important role in safeguarding the national food supply and ecological security.Global climate change and drought,however,have led to grassland degradation and desertification.What measures should be taken to prevent or reduce the negative impact of drought stress is an urgent issue that needs to be explored.To discuss the possible solutions and challenges,it is necessary to first clarify the response patterns and maintenance mechanisms of ecosystem functions under drought stress.At present,the study of the responses of plant traits under rainfall disturbances and the effects on ecosystem functions in Inner Mongolia typical grassland are rarely covered.
     This research was conducted in a typical grassland in Inner Mongolia,China,from 2004 through 2005.Through simulation and controlled experiments,the response patterns of ecosystem functions to maintain mechanisms of grassland ecosystems was analyzed. The study site is located at the Plant Institution of the Chinese Academy of Sciences in Duolun County,southern Inner Mongolia.Samples were obtained from 14 kinds of typical, common,grassland plants and 10 plant traits from among them were selected for observation in the experiments,mainly based on the methodology introduced in A Handbook of Protocols for Standardized and Easy Measurement of Plant Functional Traits Worldwide(Cornelissen et al.,2003).Simulated rainfall was 345 mm(May to August average rainfall increased by 40~50 percent) and 115 mm(May to August average rainfall reduced by 40~50%),the May to August average rainfall in 2004 and 2005.The main findings are as follows:
     1.By comparing and analyzing the different plant traits and ecosystem functional characteristics under three different rainfall scenarios,the results showed:
     (1) The response of Inner Mongolia grassland plant traits to the ecosystem is comparatively complex and not correlated with classical plant taxonomy naturalized as Legumes,Gramineae and non-Legume and non-Gramineae forbs;
     (2) When rainfall was reduced by 40-50%the response could be categorized into 4 plant groups according to changes in plant traits of 10 typical steppe species:
     Under a 115 mm rainfall scenario,they can be categorized into four groups:①(Artemisia frigida Willd.) +(Iris lactea Pallas var.chinensis Koidzumi) +(Astragalus scaberrimus Bunge) +(Agropyron cristatum(L.) Gaertner) +(Stipa krylovii Roshevitz) + (Pocockia ruthenica(L.) P.Y.Fu) +(Heteropappus altaicus(Willd.) Novopokrovsky) + (Oxytropis microphylla(Pallas) DC.);②(Cleistogenes squarrosa(Trin.) Keng) +(Poa annua L.) +(Potentilla chinensis Bunge);③(Potentilla bifurca L.) +(Potentilla acaulis L.);④(Phlomis umbrosa Turcz.).
     (3) Under a 345 mm rainfall scenario,they be categorized as four groups:
     ①(Poa annua L.) +(Stipa krylovii Roshevitz) +(Iris lactea Pall.var.chinensis Koidz) +(Artemisia frigida Willd) +(Pocockia ruthenica(L.) P.Y.Fu) +(Potentilla acaulis L.) +(Potentilla bifurca L.);②(Phlomis umbrosa Turcz.) +(Astragalus scaberrimus Bunge) +(Oxytropis microphylla(Pall.) DC.) +(Potentilla chinensis B.);③(Agropyron cristatum(L.) Gaertner) +(Cleistogenes squarrosa(Trin.) Keng);④(Heteropappus altaicus(Willd.) Novopokrovsky).
     2.Under different scenarios,community plant traits,such as propagule mass(PM) were significantly negatively and linearly correlated with leaf nitrogen concentration(LNC),the correlation coefficient was -0.818;The specific leaf area(SLA) was negatively correlated with leaf dry matter content(LDMC) and significantly negatively correlated with stem specific density(SSD)(the correlation coefficient was respectively -0.640 and -0.735); Leaf size(LS) was correlated with leaf nitrogen concentration(LNC) and significantly negatively correlated with the first layer root mass(FLRM)(the correlation coefficient was respectively was 0.544 and -0.666);The stem specific density(SSD) was correlated with leaf dry matter content(LDMC)(the correlation was 0.570);The root specific density was correlated with first layer root mass(FLRM)(the correlation was 0.786).
     The aboveground biomass(ANPP) was significantly correlated with specific leaf area (SLA) and leaf nitrogen concentration(LNC).The correlation was 0.718 and 0.669.The fresh-ground biomass was positively correlated with the SLA,LNC and negatively correlated with stem specific density(SSD) and propagule mass(PM).The correlation coefficient,was respectively 0.552,0.552,-0.531 and -0.554.
     In terms of the 10 types of plant traits analyzed in this research,it was found that to a large extend the systematic functional characteristics of a typical Inner Mongolia grassland are determined by SLA,LNC,SSD as well as PM.The above plant traits might be those plant functional traits of Inner Mongolia grassland plants which closely related to.
     3.The model of multiple linear regression equation was established with variables of community plant traits and ANPP.y(ANPP)=-101.757+6.692 X1(SLA) +1.549 X2 (LNC) +0.579 X3(PH).Due to missing values for stem specific density(SSD) and propagule mass(PM),these two plant traits were not included in this model.
     4.The aboveground biomass obviously decreased with a reduction in rainfall while increase in rainfall had no significant impact.
     The sampled site was a young grassland community at an early developmental stage.The observations reveal that some species which are more adapted to normal rainfall occupy more space and thus gain a higher aboveground biomass,which explains why an increase in rainfall did not directly lead to a rise in above ground biomass.This observation revealed a rainfall-aboveground biomass model difference between young and mature communities.
     5.Litter decomposition rate(LR) was significantly correlated with aboveground biomass (dry weight / fresh weight) and rainfall scenarios;the correlation respectively was as 0.718,0.698 and 0.687.A higher level of rainfall can lead to a higher litter decomposition rate.It could concluded that an increase in rainfall will increase the carbon cycle and nutrient dynamic contribution in typical Inner Mongolian grassland ecosystems.
引文
[1]白永飞,陈佐忠.2000a.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落生产力的影响[J].植物生态学报,24:641-647
    [2]白永飞,李凌浩,黄建辉,陈佐忠.2001.内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响[J].植物学报,43:280-287
    [3]白永飞,李凌浩,王启兵等.2000b.锡林河流域草原植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报,24:667-673
    [4]白永飞,张丽霞,张焱等.2002.内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究[J].植物生态学报,26:308-316
    [5]白文明,李凌浩,宋世环.2003.内蒙古多伦农牧交错区固定沙丘植被群落特征分析[J].草地学报,11(3):233-237
    [6]白由路,杨俐苹.2004.基于图像处理的植物叶面积测定方法[J].农业网络信息,1:36-38.
    [7]宝音陶格涛,刘美玲.2003.退化羊草草原在浅耕翻处理后植物群落生物量组成动态研究[J].自然资源学报,18:544-551
    [8]曹新孙,1984.蒙古东部地区风沙干旱综合治理研究[M].呼和浩特:内蒙古人民出版社
    [9]陈佐忠,汪诗平编著.2000.中国典型草原生态系统[M].北京:科学出版社
    [10]陈伟烈,周广胜,王根轩,樊自立.2002.植被/生态系统变化趋势预测[M].北京:科学出版社,151-168
    [11]丁一汇编著.2002.中国西部环境变化的预测(第二卷),中国西部环境演变评估[M].北京:科学出版社,190-231
    [12]邓红英.2002.毛乌素沙地优势植物种群对模拟降水量变化的影响[J].云南大学学报,24:75-80
    [13]董鸣.1996.异质性生境中的植物克隆生长:风险分摊[J].植物生态学报,20(6):543-548
    [14]杜国桢,覃光莲,李自珍等.2003.高寒草甸植物群落中物种丰富度和生产力的关系研究[J].植物生态学报,27(1):125-132
    [15]方精云,神崎护,王襄平等.2004.西藏珠峰.卓奥友峰普士拉地区的高山植被的群落特征及小地形的影响[J].生物多样性,12(1):190-199
    [16]符义坤,孟宪政,沈景林.1996.草地农学[M].兰州:甘肃民族出版社
    [17]高琼,李建东,郑慧莹.1995.碱化草地景观动态及其对气候变化的响应与多样性和空间格 局的关系[J].植物学报,38(1):18-30.
    [18]郭本兆.1987.中国植物志(第9卷35分册)[M].北京:科学出版社
    [19]郭正刚,梁天刚,刘兴元等.2003.新疆阿勒泰地区草地类型及植物多样性的研究[J].西北植物学报,23(10):1719-1724
    [20]韩苑鸿,汪诗平,陈佐忠.1999.放牧条件下内蒙古冷蒿草原植物生态位分化和重叠的研究[J].草地学报,7(3):204-210
    [21]韩广.1995.砂旋复花的防风固沙作用[J].中国沙漠,15:273-277
    [22]黄建辉,白永飞,韩兴国.2001.物种多样性与生态系统功能:影响机制及有关假说[J].生物多样性,9(1):1-7
    [23]黄泽豪,朱锦懋,母锡金等.2002.羊草有性繁殖能力低的成因研究进展[J].中国草地,24(6):55-60
    [24]贾宝全,闫顺,李国旗等.2002.天山乌鲁木齐河源区高山带植被及其生物多样性初步研究[J].干旱区研究,19(2):17-20.
    [25]贾慎修主编.1992.草地学[M].第二版.北京:科学出版社
    [26]贾志斌,杨持,洪洋,韩向红.2002.中温型草原和暖温型草原大针茅+羊草群落结构特征的比较[J].生态学报,22(10):1774-1780
    [27]蒋高明,董鸣.2000.沿中国东北样带(NECT)分布的若干克隆植物与非克隆植物光合速率与水分利用效率[J].植物学报,42:855-863
    [28]蒋高明.2001.当前植物生理生态学研究的几个热点问题[J].植物生态学报,25(5):514-519
    [29]焦树英,韩国栋等.2006.不同载畜率对荒漠草原群落结构和功能群生产力的影响强度[J].西北植物学报,26(3):564-571.
    [30]金洪,高润宏,庄光辉等.2003.阿拉善荒漠绵刺克隆生长格局研究[J].北京林业大学学报,25:24-27
    [31]李博.1989.普通生态学[M].呼和浩特:内蒙古大学出版社
    [32]李金花,李镇清.2002a.放牧对星毛委陵菜(Potentilla acaulis)种群生殖对策的影响[J].草业学报,11:92-96
    [33]李金花,李镇清.2002b.不同放牧强度下冷蒿、星毛委菜的形态可塑性及生物量分配格局[J].植物生态学报,26:435-440
    [34]李金花,李镇清,任继周.2002c.放牧对草原植物的影响[J].草业学报,11::4-11.
    [35]李凯辉,胡玉昆等.2005.草地植物群落多样性研究进展[J].干旱区研究,22(4):57-62
    [36]李永宏,陈佐忠,汪诗平.1999a.草原放牧系统持续管理试验研究:试验设计及放牧率对草-畜系统影响分析[J].草地学报,7(3):173-182.
    [37]李永宏,汪诗平.1999b.放牧对植物的影响[J].中国草地,22(3):11-19
    [38]李永宏.1993.放牧影响下羊草草原和大针茅草原植物多样性的变化[J].植物学报,35:877-884
    [39]李银鹏,孟君等.1997.内蒙古几种针茅特性和生态地理分布的研究[J].内蒙古农牧学院学报,18(1):40-46
    [40]李酉开,蒋柏藩,袁可能等.1983.土壤农业化学常规分析方法[M].北京:科学出版社,67-97
    [41]李子忠,黄项,王忠彦.2005.灌溉制度对老芒麦(Elymus sibiricus)生长的影响[J].中国农业科学,38(8):1621-1628
    [42]刘金环,曾德慧,Donkoole.2006.科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J].生态学杂志,25(8):921-925
    [43]刘晓强,王仁忠.2000.北京北部农牧交错区C4植物及其形态功能型和生境分析[J].生态学报,26(5):35-37
    [44]吕德滋,白素娥,李香菊等.1995.升马唐种群生态及其田间密度调控指标的研究[J].植物生态学报,19(1):55-63
    [45]廖明隽,王其兵,宋明华,董鸣.2002.内蒙古锡林河流域不同生境中羊草的克隆构型和分株种群特征[J].植物生态学报,26:33-38
    [46]马克平,黄建辉,于顺利等.1995.北京东灵山地区植物群落多样性的研究[J].生态学报,15(3):268-277
    [47]孟君.1997.克氏针茅生殖的生态生物学特性[J].内蒙古农牧学院院报,18(2):32-37
    [48]孟婷婷,倪健,王国宏.2007.植物功能性状与环境和生态系统功能[J].植物生态学报,31(1):150-165
    [49]倪健.2001.区域尺度的中国植物功能型与生物群区[J].植物学报,43:419-425
    [50]倪健.2002.BIOME系列模型:主要原理与应用[J].植物生态学报,26:481-488
    [51]牛海山,旭日,宋炳煜,,2001.羊草种群的水分利用动态[J].草地学报,8(3):327-332
    [52]钱迎倩,马克平.1994.生物多样性研究的原理与方法[M].北京:中国科学技术出版社
    [53]任继周.1995.草地农业生态学[M].北京:科学出版社.
    [54]任继周.1998.草业科学研究方法[M].北京:中国农业出版社
    [55]任继周.2003.见汪诗平,王艳芬,陈佐忠著:放牧生态系统管理[M].序言.北京:科学 出版社
    [56]尚占环,姚爱兴,龙瑞军.2005.干旱区山地植物群落物种多样性与生产力关系分析[J].干旱区研究,22(1):74-78
    [57]沈泽昊,张新时.2000.基于植物分布地形格局的植物功能型划分研究[J].植物学报,42:1090-1096
    [58]宋明华,董明.2002.群落中克隆植物的重要性[J].生态学报,22(11):1960-1967
    [59]宋明华,董鸣,蒋高明等.2001.中国东北样带克隆植物的重要性[J].生态学报,21(7):1095-1103
    [60]苏智先,钟章成.1998.四川大头茶种群生殖生态学研究.种群生物量生殖配置格局研究[J].生态学报,18(4):379-385
    [61]孙国钧,张荣,周立.2003.植物功能多样性与功能群研究进展.生态学报[J].23:1430-1435
    [62]唐海萍,蒋高明.2000.植物功能型及其生态学意义[J].应用生态学报,11:461-464
    [63]田青,曹致中,张睿.2008.基于数字相机和Auto CAD软件非破坏性测定园林植物叶面积的方法[J].草原与草坪,(3):25-28
    [64]万秀莲,张卫国,2006.划破草皮对高寒草甸植物多样性和生产力的影响[J].西北植物学报,26(2):377-383
    [65]汪诗平,,陈佐忠,王艳芬,李永宏.1999.内蒙古冷蒿草原适宜放牧率及可持续发展的研究[J].中国草地,22(4):67-75
    [66]汪诗平,李永宏,王艳芬,韩苑鸿.1998a.不同放牧率对内蒙古冷蒿草原演替规律的影响[J].草地学报,6(4):299-305
    [67]汪诗平,王艳芬,李永宏.1998b.不同放牧率对牧草再生性能与地上净初级生产力的影响[J].草地学报,6(4)::275-281
    [68]汪诗平,李永宏,王艳芬,陈佐忠.2001a.不同放牧率对内蒙古冷蒿小禾草草原植物多样性的影响及其机理的研究[J].植物学报,43(1):89-96
    [69]汪诗平.2001.不同放牧率下内蒙古细毛羊食性变化及其与草原植物多样性间的关系[J].生态学报,21(2):237-243
    [70]汪诗平,王艳芬,陈佐忠.2003.放牧生态系统管理[M].北京:科学出版社
    [71]王国宏,2002a,再论生物多样性与生态系统的稳定性[J].生物多样性,10(1):126-134
    [72]王国宏,任继周,张自和.2002b.河西山地绿洲荒漠植物群落种群多样性研究Ⅱ放牧压力下的物种多样性格局[J].草业学报,11(1):31-37.
    [73]王国宏.2002c.地带性木本植物群落功能型的水热分布格局[J].林业科学,37:15-23
    [74]王仁忠.1997.放牧影响下羊草草地主要植物种群生态位宽度与生态位重叠的研究[J].植物生态学报,21:304-311
    [75]王仁忠.1996.干扰对草地生态系统生物多样性的影响[J].东北师范大学学报(自然科学版),3:112-116
    [76]王仁忠.1997.放牧对松嫩草原碱化羊草草地植物多样性的影响[J].草业学报,6(4):17-23
    [77]王艳芬,汪诗平.1999a.不同放牧率对内蒙古典型草原牧草地上现存量和净初级生产力的影响[J].草业学报,8(1):15-20
    [78]王艳芬,汪诗平.1999a.不同放牧率对内蒙古冷蒿草原地下生物量的影响[J].草地学报,7(3):198-203
    [79]王昱生,赵妮珊,徐中儒等.1991.中国东北贝加尔针茅草原生产量与生态因素的关系及其预测模型[J].植物生态学与地植物学学报,15(3):286-295
    [80]王正文,邢福等.2002.松嫩平原羊草草地植物功能群组成及多样性特征对水淹干扰的响应[J].植物生态学报,26:708-716
    [81]夏立群,李建强,李伟.2002.论克隆植物的遗传多样性[J].植物学通报,19(4):425-431
    [82]肖春旺,董鸣,周广胜,刘喜国.2001a.鄂尔多斯高原沙柳幼苗对模拟降水量变化的响应[J].生态学报,21(1):171-176
    [83]肖春旺,张新时.2001b.模拟降水量变化对毛乌素沙地油蒿幼苗生理生态过程的影响研究[J].林业科学,37(1):15-22
    [84]肖春旺,周广胜,赵景柱.2001c.不同水分条件对毛乌素沙地油蒿幼苗生长和形态的影响[J].生态学报,21(12):2136-2140
    [85]肖春旺,周广胜.2001d.不同浇水量对毛乌素沙柳幼苗气体交换过程及其光化学效率的影响[J].植物生态学报,25(4):444-450
    [86]肖强,叶文景,朱珠等.2005.利用数码相机和Photo shop软件非破坏性测定叶面积的简便方法[J].生态学杂志,24(6):711-714
    [87]许皓,李彦.2005.3种荒漠灌木的用水策略及相关的叶片生理表现[J].西北植物学报,25(7):1309-1316
    [88]杨持,叶波,邢铁鹏.1996.草原区域气候变化对物种多样性的影响[J].植物生态学报,20(1):35-40
    [89]杨利民,韩梅,李建东.2001.中国东北样带草地群落放牧干扰植物多样性的变化[J].植 物生态字报,25:110-114
    [90]杨利民,李建东,杨允菲.1999.草地群落放牧干扰梯度β多样性研究[J].应用生态学报,10(4):442-446
    [91]杨允菲,祝玲.1993.松嫩平原天然羊草种群结实器官性状的波动与气候因子关系的研究[J].植物学报,35:472-479
    [92]杨允菲,刘庚长,张宝田.1995.羊草种群年龄结构及无性繁殖对策的分析[J].植物学报,37(2):147-153
    [93]杨允菲,李建东.1996.松嫩平原几种根茎型禾草种群的营养繁殖特性及其持续更新分析[J].草业学报,5:43-48
    [94]杨元合,饶胜,胡会峰等.2004.青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系[J].生物多样性,12(1):200-205
    [95]张林,罗天祥.2004.植物叶寿命及其相关叶性状的生态学研究进展[J].植物生态学报,28(6):844-852
    [96]张全国,张大勇.2002.生产力、可靠度与物种多样性:微宇宙试验研究[J].生物多样性,10(2):135-142
    [97]张全国,张大勇.2002.生物多样性与生态系统功能:进展与争议[J].生物多样性,10(1):49-60
    [98]张金屯.2004.数量生态学[M].北京:科学出版社
    [99]张新时.2000.草地的生态经济功能及其范式[J]_科技导报,8:3-7
    [100]张新时,高琼,杨奠安等.1997.中国东北样带的梯度分析及其预测[J].植物学报,39:785-799
    [101]赵哈林,张铜会,赵学勇等.2004.放牧对沙质草地生态系统组分的影响[J].应用生态学报,15(3):420-424.
    [102]郑慧莹,李建东.1993.松嫩平原的草地植被及其利用保护[M].北京:科学出版社
    [103]周广胜.2002.中国东北样带(NECT)与全球变化-干旱化、人类活动与生态系统[M].北京:气象出版社
    [104]周广胜,王玉辉,白莉萍.2004.陆地生态系统与全球变化相互作用的研究进展[J].气象学报,10(1):25-28
    [105]朱志红,孙尚奇.1996.高寒草甸矮嵩草种群的放牧中构件种群的反应特性[J].植物学报,,38:653-660
    [106]Ackerly DD,Knight CA,Weiss SB,Barton K,Starmer KP.2002.Leaf size,specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130:449-457
    [107] Adler PB, Milchunas DG, Lauenroth WK, Sala OE, Burke IC. 2004. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology; 41:653-663
    [108] Aerts R. 1995. The advantages of being evergreen. Trends in Ecology & Evolution. 10:402-407
    [109] Arredondo JT, Schnyder H. 2003. Components of leaf elongation rate and their relationship to specific leaf area in contrasting grasses. New Phytologist, 158:305-314
    [110] Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S. 2004. Responses of spring phenology to climate change. New Phytologist, 162:295-309
    [111] Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goni MF, Spessa A, Davis B, Stevenson AC. 2004. Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. Journal of Vegetation Science, 15:635-646
    [112] Belsky, A.J. 1992. Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. Journal of Vegetation Science, 3:187-200
    [113] Boer M, Stafford Smith M. 2003. A plant functional approach to the prediction of changes in Australian rangeland vegetation under grazing and fire. Journal of Vegetation Science, 14:333-344
    [114] Boutin, C., Keddy, P.A. 1993. A functional classification of wetland plants. Journal of Vegetation Science, 4:591-600
    [115] Brzeziecki, B. and Kienast, F. 1994. Classifying the life-history strategies of trees on the basis of the Grimian model. Forest Ecology and Management, 69:167-187
    [116] Casper BB, Foreth IN, Kempenich H, Seltzer S, Xavier K. 2001. Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava. Functional Ecology, 15:740-747
    [117] Chapin, F. S. III, Bret-Harte, M.S., Hobbie S.E., Zhong, Hailin. 1996. Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science, 7:347-358
    [118] Cornelissen, J.H.C., Aerts, R., Cerabolini, B., Werger, M.J.A., van der Herjden, M.G.A. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129:611-691
    [119] Cornelissen, J.H.C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A. 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51:335-380
    
    [120] Costanza, R. 2000. Social goals and the valuation of ecosystem services. Ecosystems, 3:4-10
    [121] Craine, J.M., Froehle, J., Tilman, D.G., Wedin, D.A., Chapin III, F.S. 2001. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos, 93:274-285
    [122] Cunningham, S.A., Summerhayes, B. & Westoby, M. 1999. Evolutionary divergences of leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecological Monographs, 69:569-588
    [123] Diaz Barradas, M.C., Zunzunegui, M., Tirado,R., Ain-Lhout, F., & Garcia Novo, F. 1999. Plant functional types and ecosystem function in Mediterranean shrubland. Journal of Vegetation Science, 10:709-716
    [124] Diaz, S., Mclntyre, S., Lzvorel, S., Pausas, J.G. 2002. Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytologist, 154:7-9
    [125] Diaz, S. & Cabido, M. 1997. Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 8:463-473
    [126] Diaz, S. & Cabido, M. 2001.Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16:646-655
    [127] Diaz, S., Noy-Meir, I. & Cabido, M. 2001. Can grazing response of herbaceous plants be predicted from simple vegetative traits? Journal of Applied Ecology, 38:497-508
    [128] Dormann CF, Woodin SJ. 2002. Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments. Functional Ecology, 16:4-17
    [129] Duckworth, J. C., Kent, M. & Ramsay, P. M. (2000). Plant functional types: an alternative to taxonomic plant community description in biogeography? Progress in Physical Geography, 24:515-542
    
    [130] Ehrlich, P.R. &Wilson, E. O.1991.Biodiversity Studies: Science and Policy. Science,253:758-762
    [131] Fonseca, C.R., Overton, J., McCollins, B., Westoby, M. 2000. Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88:964-977
    [132] Grime, J. P. 1998. Benefits of plant diversity to ecosytems: immediate, filter and founder effects. Journal of Ecology, 86:902-910
    [133] Grime, J.P. 2001. Plant strategies, vegetation processes, and ecosystem properties, 2nd ed. Jonh Wilesy & Sons, LTD, England
    [134] Grime, J.P., Hodgson, J.G., Hunt, R. 1988. Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London
    [135] Heal, G. 2000.Valuing ecosystems services. Ecosystems, 3:24-30
    [136] Hooper, D.U., Vitousek, P.M. 1997.The effect of plant competition and diversity on ecosystem processes. Science, 277:1302-1305
    [137] Hooper, D.U. 1998. The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology, 79:704-719
    [138] Hooper, D.U., Solan, M., Symstad, A., Diaz, S. Gessner, M.O. 2002. Species diversity, functional diversity, and ecosystem functioning. In Biodiversity and Ecosystem Functioning. Synthesis and Perspectives (Loreau, M. et al., eds), pp. 195-208, Oxford University Press
    [139] Jiang, G.M., Dong, M. 2000. A comparative studies on photosynthesis and water use efficiency between cloanl and non-clonal plant species along the Northeast China Transect (NECT). Acta Botanica Sinica, 42:855-863
    [140] Jiang, G.M., Tang, H.P., Yu, M. 1999. Response of photosynthesis of different plant functional types to environmental changes along Northeast China Transect. Trees, 14:72-82
    [141] Kaiser, J. 2000.Rift over biodiversity divides ecologists. Science, 289:1282-1283
    [142] Keddy, P.A. 1992. A pragmatic approach to functional ecology. Functional Ecology, 6:621-626
    [143] Korner, C. 1993. Scaling from species to vegetation: the usefulness of functional groups. In "Biodiversity and ecosystem function, Ecological studies ". (Eds ED Schulze, HA Mooney) 116-140. Springer-Verlag,Berlin
    [144] Landsberg, J., Lavorel, S., Stol, J. 1999. Grazing response groups among understorey plants in arid rangelands. Journal of Vegetation Science, 10:683-696
    [145] Landsberg, J., James, C.D., Maconochie, J., Nicholls, A.O.,Stol, J. & Tynan, R. 2002. Scale-related effects of grazing on native plant communities in an arid rangeland region of South Australia. Journal of Applied Ecology, 39:427-444
    [146] Lavorel, S., McIntyre, S. & Grigulis, K.1999.Plant response to disturbance in a Mediterranean grassland:How many functional groups? Journal of Vegetation Science, 10:661-672
    [147] Lavorel, S. and Garnier, E.2001. Aardvarck to Zyzyxia-functional groups across kingdoms. New Phytologist, 149:360-364
    [148] Lavorel, S. & Garnier, E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16:545-556
    [149] Lavorel, S., McIntyre, S., Landsberg, J. and Forbes, T.D.A. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology and Evolution, 12:474-478
    [150] Leishman, M.R. & Westoby, M. 1994. The role of large seed size in shaded conditions - experimental evidence. Functional Ecology, 8:205-214
    [151] Leishman, M.R., Westoby, M. 1992. Classifying plants into groups on the basis of associations of individual traits-evidence from Australian semi-arid woodlands. Journal of Ecology, 80:417-424
    [152] Loreau, M., Hector, A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature, 412:72-76
    [153] Loreau, M., Naeem, S., Inchausti, P., et al. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294:804-808
    [154] Loreau, M. 2000. Biodiversity and ecosystem functioning: recent theoretical advance. Oikos, 91:3-17
    [155] Mabry, C., Ackerly, D., Gerhardt, F. 2000. Landscape and species-level distribution of morphological and life history traits in a temperate woodland flora. Journal of Vegetation Science, 11:213-224
    [156] Mclntyre, S. & Lavorel, S. 2001. Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types. Journal of Ecology, 89:209-226
    [157] Mclntyre, S., Diaz, S., Lavorel, S. and Cramer, W. 1999.Plant functional types and disturbance dynamics - introduction. Journal of Vegetation Science, 10:604-608
    [158] Mclntyre, S., Lavorel, S. and Tremont, R.M. 1995. Plant life history attributes: their relationship to disturbance response in herbaceous vegetation. Journal of Ecology, 83:31-44
    [159] Naeem, S., Thompson, L. J. & Lawler, S.P. 1994. Declining biodiversity can alter the performance of ecosystems. Nature, 368:734-736
    [160] Ni, J. 2003. Plant functional types and climate along a precipitation gradient in temperate grasslands, north-east China and south-east Mongolia. Journal of Arid Environment, 53:501-516
    [161] Noble, I.R. & Gitay, H.1996. A functional classification for predicting the dynamics of landscapes. Journal of Vegetation Science, 7:329 -336
    [162] Noy-Meir, I., Gutman, M. & Kaplan, Y. 1989. Responses of mediterranean grassland plants to grazing and protection. Journal of Ecology, 77:290 -310
    [163] Pausas, J.G., Lavorel, S. 2003. A hierarchical deductive approach for functional types in disturbed ecosystems. Journal of Vegetation Science, 14:409 -416
    [164] Pitman, N.C., Jorgensen, P.M. 2002.Estimating the size of the world's threatened flora. Science, 29:84-89
    [165] Rapport, D. J. & Whitford, W. G. 1999. How ecosystems respond to stress. BioScience, 49:193-203
    [166] Skarpe, C. 1996. Plant functional types and climate in a southern African savanna. Journal of Vegetation Science, 7:397 -404
    [167] Smith, T.M., Shugart, H.H., Woodward, F.I. 1997. Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press,Cambridge [168] Thompson, K., Band, S.R., Hodgson, J.G. 1993. Seed size and shape predict seed persistence in the soil. Functional Ecology, 7:236-241
    [169] Thompson, K., Hillier, S.H., Grime, J.P., Bossard, C.C., Band, S.R. 1996. A functional analysis of a limestone grassland community. Journal of Vegetation Science, 7:371-380
    [170] Tilman, D., Downing, J. A. 1994. Biodiversity and Stability in grasslands. Nature, 367:363-365
    [171] Tilman, D. 1996. Biodiversity: population versus ecosystem stability. Ecology, 77:350-363
    [172] Tilman, D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80:1445-1474
    [173] Tilman, D., Wedin, D., Knops, J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379:718-720
    [174] Vesk, P.A., Leishman, M.R. and Westoby, M. 2004.Simple traits do not predict grazing response in Australian dry shrublands and woodlands. Journal of Applied Ecology, 41:22-31
    [175] Vesk, P.A. & Westoby, M. 2001. Predicting plant species' responses to grazing. Journal of Applied Ecology, 38:897-909
    [176] Vitousek, P.M. 1994. Beyond global warming: Ecology and global change. Ecology, 75:1861-1876
    [177] Waide, R.B., Willig, M.R., Steiner, C.F. et al. 1999. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30:257-300
    [178] Wang, G.H. 2002a. Plant traits and soil nutrients variations during secondary succession in abandoned fields on the Loess Plateau. Acta Sinica, 44:990-998
    [179] Wang, G.H. 2003. Differences in leaf δ13C among four dominant species in a secondary succession sere on the Loess Plateau of China. Photosynthetica, 41:512-518
    [180] Wang, R. and Gao, Q. 2003.Climate-driven changes in shoot density and shoot biomass in Leymus chinensis (Poaceae) on the Northeast China Transect (NECT). Global Ecology and Biogeography, 12:249-259
    [181] Wang, R., Gao, Q. and Chen, Q. 2003. Effects of climate on biomass and biomass allocation of Leymus chinensis (Poaceae) along the Northeast China Transect. Journal of Arid Environments, 54:653-665
    [182] Wang, R. Z. 2003. Photosynthetic pathway and morphological functional types in the steppe vegetation from Inner Mongolia, North China. Photosynthetica, 41:143-150
    [183] Wardle, D.A., Bonner, K.I., Barker, G.M. et al. 1999. Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity and ecosystem properties. Ecological Monographs, 69:535-568
    [184] Weiher, E., van der Werf, A., Thompson, K., Roderick, M., Garnier, E. & Eriksson, O. 1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science, 10:609-620
    
    [185] West, N. E. 1993. Biodiversity of rangelands. Journal of Range management, 46:2-13
    
    [186] Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 32:213-227
    [187] Wilson, E.O. 1988. The current state of biological diversity. In: Wilson EO, Peter FM (eds) Biodiversity, National Academy Press. Washington:3-18
    [188] Woodward, F.I., Diament, A.D. 1991. Functional approaches to predicting the ecological effects of global change. Functional Ecology, 5:202-212
    [189] Zhou, G, Wang, Y. and Wang, S. 2002. Responses of grassland ecosystems to precipitation and land use along the Northeast China Transect. Journal of Vegetation Science, 13: 361-368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700