用户名: 密码: 验证码:
免耕高留茬抛秧稻稳产高产的生理生态机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为明确免耕高留茬抛秧稳产高产的生理生态机理,于2005-2006年在四川郫县设置了耕作方式+秸秆处理、氮肥运筹、种植方式+品种、种植方式+施钾量等4个大田试验,系统研究了免耕高留茬抛秧稻的土壤理化性状、微生物群落、根系分布、干物质积累、氮钾吸收利用特性、中后期叶片衰老、倒伏及产量特性,主要结果如下:
     1.不同秸秆还田和耕作方式下,上层土壤中,免耕+秸秆处理的有机质含量分别比免耕、常耕+秸秆和常耕处理高5.33、2.79和5.37 g/kg;全氮、全磷、全钾、碱解氮、速效磷和速效钾含量也均以免耕+秸秆处理最高,免耕和常耕+秸秆处理次之,常耕处理最低。下层土壤中,各肥力指标以常耕+秸秆处理较高。免耕土壤浸水容重和容重高于翻耕土壤,而土壤孔隙度则低于翻耕土壤。
     秸秆还田各处理的细菌、真菌和放线菌数量较高,上层土壤以免耕+秸秆处理数量最高,成熟期其纤维分解强度分别比常耕+秸秆、免耕和常耕处理高26.44%、79.01%和98.15%;下层土壤以常耕+秸秆处理数量最高。免耕+秸秆处理的土壤养分和微生物呈表层富集特征。细菌、放线菌和纤维分解强度与土壤肥力各指标呈显著或极显著的正相关关系。
     2.不同种植方式中,单茎根重整体上表现出免耕高留茬抛秧>免耕抛秧≈翻耕抛秧>翻耕插秧;而根在纵向0-5 cm土层内的分配比例以免耕抛秧最大,免耕高留茬抛秧和翻耕抛秧次之,翻耕插秧最小;5-10 cm土层各方式间根系分配大小顺序与0-5 cm土层内刚好相反,10-20 cm深土层里翻耕插秧和翻耕抛秧要大于免耕抛秧和免耕高留茬抛秧:根在半径为5 cm横向土层内分配比例以免耕抛秧较大,翻耕抛秧和免耕高留茬抛秧接近,翻耕插秧较小,半径为5-10 cm土层内不同方式变化趋势与半径为5 cm土层相反。
     3.与翻耕插秧相比,免耕高留茬抛秧在分蘖期和拔节期的钾积累量较高,但在其它时期内较低。钾素积累总量为翻耕插秧>免耕抛秧>翻耕抛秧>免耕高留茬抛秧,但钾素稻谷生产效率、钾素收获指数和成熟期钾素干物质生产效率的变化趋势正好相反,即免耕高留茬抛秧>翻耕抛秧>免耕抛秧>翻耕插秧。
     增施氮肥,叶片和茎鞘的含氮量增加,成熟期稻草中的氮素滞留量增多。随施氮量的增加各生育期稻株氮素积累量增加,氮素的生产效率和收获指数下降;氮素积累总量在分蘖至拔节期以10:0:0和7:3:0的氮肥配比处理较大,抽穗至成熟期则是以7:0:3和4:3:3处理较大。氮肥利用率随施氮量的增加而增加,低氮水平下,以10:0:0和7:3:0的配比较大,高氮水平下以4:3:3配比最大。
     4.免耕抛秧提高了叶片的SPAD值和可溶性蛋白含量,相对于翻耕抛秧和翻耕栽秧,免耕高留茬抛秧SPAD值分别提高了3.43%、3.54%,可溶性蛋白含量分别提高了13.57%、15.26%,免耕低留茬抛秧SPAD值分别提高了2.22%,2.32%,可溶性蛋白含量分别提高了6.67%、8.26%,且下降较慢;免耕抛秧降低了抽穗后叶片的POD活性,提高了生育后期叶片的SOD和CAT活性,相对于翻耕抛秧和翻耕插秧,免耕高留茬抛秧的POD活性分别降低了21.04%、15.78%,SOD活性分别提高了16.81%和8.82%,CAT活性分别提高了43.43%和27.06%;免耕低留茬抛秧的POD活性分别降低了13.00%、9.95%,SOD活性分别提高了13.41%和5.65%,CAT活性分别提高了20.00%和6.31%。
     三种酶协同作用,降低了活性氧自由基产生速率和丙二醛含量,免耕高留茬抛秧的活性氧自由基产生速率分别降低了29.87%、18.75%,丙二醛含量分别降低了9.84%、7.08%,免耕低留茬抛秧的活性氧自由基产生速率分别降低了25.95%、15.16%,丙二醛含量分别降低了9.91%、7.14%,从而有效地缓解了叶绿素降解和膜脂过氧化作用,延缓了叶片的衰老。
     5.根倒伏系数构成因子中以单茎根重与根倒伏系数的相关最大,株高最小,茎秆机械强度和单茎鲜重在不同时期内互有大小。单茎根重同根体积、茎秆机械强度与茎壁厚、茎粗、茎鞘粗、茎秆抗折力和钾含量、单茎鲜重与穗重和叶重的相关系数均达到显著或极显著水平。不同种植方式中,常规翻耕插秧单茎鲜重大而单茎根量少,使其根倒伏系数最大,为2.72-5.82;免耕高留茬抛秧茎秆机械强度最弱,导致其根倒伏系数也较大,为2.54-5.68;免耕抛秧和常规翻耕抛秧根倒伏系数比较接近且相对较小,分别为2.32-5.39和2.42-5.15,表明常规翻耕插秧抗根倒伏能力最弱,免耕高留茬抛秧次之,常规翻耕抛秧和免耕抛秧抗根倒伏能力接近且相对较强。
     不同施钾水平下,免耕抛秧根倒伏系数随着施钾量的增加而下降,表明植株抗根倒伏能力随着施钾量的增加而增强。钾肥对免耕抛秧水稻抗根倒伏能力的调控表现为提高单茎根量和根体积,促进根系在半径为5-10 cm横向土层内的分布,提高稻株固持力;降低单茎穗重和叶重,减轻致倒伏的内力和植株加在基部节间的弯曲力矩;促进茎秆横向生长,增加茎秆充实度,增强茎秆抗折断能力,改善免耕抛秧茎秆质量,进而增强植株抗根倒伏能力。
     6.种植方式+品种以及种植方式+施钾量2个试验表明,免耕高留茬抛秧的产量均和其它种植方式差异不显著,作为一种省工省力的轻简技术,表现出了稳产高产的特点。从产量构成分析,免耕高留茬抛秧的有效穗均普遍高于其它种植方式。回归分析发现,成熟期稻株吸氮总量与产量呈抛物线关系,当吸氮量为150.5 kg/hm~2时产量最高。产量随施氮量的增加而提高,当施氮量增加到150kg/hm~2时,产量最高,再增加施氮量,产量下降;穗数和穗粒数随施氮量的增加而增大,穗粒数以施氮150 kg/hm~2最高,结实率随施氮量的增加而降低;氮肥配比以基:蘖:穗肥比为4:3:3的产量最高。
In order to understand Physiological and ecological mechanism of stable and high yield of broadcasted rice in the field with high standing-stubbles under no-tillage condition, a study was executed in Pixian county of Sichuan province in 2005 and 2006, and it included four experiments: tillage methods + straw treatment; nitrogenous fertilizer applying; planting method + varieties; planting method + potassium fertilizer (kalium, K) amount applied. It researched effects of Broadcasted Seedlings in Paddy Field with High Standing-stubbles under No-tillage Condition (BHSNT) to Physical and chemical characteristics of soil, microflora, root distribution, accumulation of dry matter, use of nitrogenous and potassium fertilizer, leaf consenescence at middle and late period, lodging characteristics, yield and its factors. The main results are as follows:
     1. Under the different returning straw to soil and tillage methods, in the upper layer of soil, the organic matter content for 'no-tillage + returning straw' treatment is 5.33, 2.79 and 5.37 g/kg higher than that for 'no-tillage', 'tillage + returning straw' and 'tillage' treatment, respectively; then its contents of total and available N, P and K are the highest too, those for 'no-tillage' treatment and 'tillage + returning straw' treatment followed, and those for 'tillage' treatment are the lowest. In the lower layer of soil, the fertile indicators for 'tillage + returning straw' treatment are higher than those for other treatments. Soil bulk density under water and bulk density for 'no-tillage' are higher than that for 'conventional tillage'; and soil porosity is lower than that for 'conventional tillage'.
     The treatment 'returning straw to soil' increases the population of soil microbes. The populations of bacteria, fungi and actinomycetes for 'no-tillage + returning straw' treatment are the highest in the upper layer of soil. Its fiber decomposition intensity is 26.44%, 79.01% and 98.15% higher than that for 'tillage + returning straw', 'no-tillage' and 'tillage' treatment at maturity period respectively. In the lower layer of soil, however, the populations of bacteria, fungi and actinomycetes for 'tillage + returning straw' treatment are higher than those for other treatments. The 'no-tillage + returning straw' treatment enriched soil fertility and microbes on surface layer of soil. The bacteria, actinomycetes and soil fiber decomposition intensity are significant positively correlated with soil fertility.
     2. In different planting methods, weight of roots per stem shows that BHSNT is heavier than no-tillage & broadcasting seedlings, and approximately equal to Conventional tillage & broadcasting seedlings (CTB), and conventional tillage & transplanting (CTT); most distribution proportion of roots within 0-5 cm under soil surface vertically is no-tillage & broadcasting seedlings, BHSNT and CTB followed, and CTT least. Proportion of root distribution within 5-10 cm under soil surface for different planting methods is just opposite to that of roots within 0-5 cm under soil. Proportion of roots distribution of CTT and CTB within 10-20 cm under soil is more than that of no-tillage & broadcasting seedlings and BHSNT; proportion of roots distribution of no-tillage & broadcasting seedling within r= 5-10 cm under soil surface horizontally is more, CTB and BHSNT are at close level; CTT is less. Proportion of root distribution within 5-10 cm under soil surface for different planting methods is just opposite to that of roots within r = 5 cm under soil.
     3. Compared with CTT, Accumulative amount of potassium (kalium, K) of BHSNT is higher at tillering stage and elongating stage, lower at other stage, however. Total accumulative amount of potassium with method CTT is more than that with method of no-tillage & broadcasting seedlings, more than that of CTB, and more than that of BHSNT. However, varying trends of rice production efficiency with potassium, harvest index with potassium are opposite to that of dry matter production efficiency with potassium at maturity stage: that of BHSNT is more than that of CTB, more than that of no-tillage & broadcasting seedlings and more than that of CTT.
     Nitrogen is the indispensable nutrient to rice production. Increasing nitrogen fertilizing amount improves N-content of leaf and stem, and increases the amount of N leaving in straw at maturing stage (MS). With the increasing of nitrogen fertilizing amount, total N accumulated (TNA) at every stage is improved notably, but N production efficiency and N harvest index (NHI) are reduced. At tillering stage (TS) and jointing stage (JS), TNA is higher when fertilizing N as 10:0:0 and 7:3:0, but at heading stage (HS) and MS, it is higher when applying N as 7:0:3 and 4:3:3. N fertilizer availability is increasing along with increasing of N fertilizer applied. Under low N level, it is higher when applying N as 10:0:0 and 7:3:0. With high N level, it would be highest when applying N as 4:3:3.
     4. BHSNT and BLSNT increase the SPAD value and SPC of leaf. Compared to CTB and CTT, the SPAD value of BHSNT is increased by 3.43%, 3.54% respectively, the SPC is increased by 13.57%, 15.26% respectively, the SPAD value of BLSNT is increased by 2.22%, 2.32% respectively, and the SPC is increased by 6.67%, 8.26% respectively, and declined slowly. BHSNT and BLSNT decreases the POD activities of leaf days after heading, increased the activities of SOD and CAT in the late growth duration. Compared to CTB and CTT, the activities of POD are decreased by 21.04%、15.78% respectively under BHSNT, the activities of SOD are increased by 16.81%, 8.82% respectively, the activities of CAT are increased by 43.43%, 27.06% respectively; under BLSNT, the activities of POD are decreased by 13.00%, 9.95% respectively, the activities of SOD are increased by 13.41%, 5.65% respectively, the activities of CAT are increased by 20.00%, 6.31% respectively.
     Three enzymes synergies reduce the rate of O_2~- production speed and MDA content. Under BHSNT, the rate of O_2~- production speed is decreased by 29.87%, 18.75% respectively, MDA content is decreased by 9.84%, 7.08% respectively. Under BLSNT, the rate of O_2~- production speed is decreased by 25.95%, 15.16% respectively. MDA content is decreased by 9.91%, 7.14% respectively, thus eased the speed of chlorophyll degradation and membrane peroxide, which effectively eases the leaf senescence.
     5. Among factors in root lodging coefficient (RLC), the correlative coefficient between dry weight of roots per stem (W) and RLC is the most, plant height (H) is least; the correlative coefficient between mechanical intensity of stem (M) and fresh weight per stem (G) is different in different period. Moreover, the correlative coefficients between W and RV, M and wall thickness of stem, M and DS, M and DSS, PBS and KC, G and FSW, G and FLW reach significant levels. The root lodging coefficient (RLC) of CTT, BHSNT, BLSNT and CTB are 2.72-5.82, 2.54-5.68, 2.32-5.39 and 2.42-5.15, respectively, which indicates the root lodging resistance of CTT is the least, the root lodging resistance of BHSNT is less than that of CTB and BLSNT, and the root lodging resistances of CTB and BLSNT are strong at close level.
     Most distribution proportion of roots within 0-5 cm under soil surface vertically is no-tillage & broadcasting seedlings, BHSNT and CTB followed, and CTT least.
     With different kalium (K) amount fertilized, the RLC of no-tillage and broadcasting seedlings is decreased along with K increased, which indicates that the root lodging resistance of plants is increased along with K increased. It can boost the development of BLSNT root (including increasing W and RV and boosting root to distribute in the soil in radii of 5-10 cm) to enhance fixing force of rice plant. And it can reduce FSW and FLW to relieve lodging power and bending moment, and increases DS, DSS, PBS and KC to improve the quality of haulm by using K.
     6. Two experiments of planting method & varieties and planting method & K amount fertilized indicate: difference between yield of BHSNT and that of other planting methods is not notable. As a technology of labor-saving, it features stable and high yield. As far as analysis from yield composition is concerned, effective seed-heads of BHSNT is higher than that of all other planting methods. According to regression analyzing, parabola relationship between yield and TNA at MS is found, from the equation it can be calculated that the yield is highest when N-uptaking amount is 150.5 kg/ha. Yield varies from different N application. When increasing fertilization of nitrogen amount, yield increases, and it is highest when amount of N fertilized is 150 kg/ha, more fertilization will reduce the yield, however. Number of seed-heads and seed-heads grain are increased along with increased N amount fertilized. Number of seed-heads grain is most when N fertilization is 150 kg/ha. Ripening rate is decreased along with increased N amount. Yield with N fertilizer proportion 4:3:3 (base: tillering: seed-heads) is highest.
引文
[1]夏敬源.水稻栽培技术的重大革命-论优质稻免耕抛秧技术的发展与对策.中国农技推广,2003,(6):9-11
    [2]杨文钰,任万军.连免高桩抛秧新技术.四川农业科技,2000,(4):13-14
    [3]刘代银.四川省示范推广水稻免耕抛秧的经验及成效.中国稻米,2006,(1):54-55
    [4]魏朝富,高明,车福才等.垄作稻田和垄作养鱼稻田土壤结构与肥力特征研究.生态学杂志,1989,8(1):22-26
    [5]严少华,黄东迈.免耕对水稻土持水特征的影响.土壤通报,1995,26(5):198-199
    [6]徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-95
    [7]邵达三,黄细喜,陶嘉玉等.南方水田少免耕法研究报告.土壤学报,1985,22(4):306-319
    [8]牛灵安,秦耀生,郝晋珉等.曲周试区秸秆还田配施氮磷肥的效应研究.土壤肥料,1998,(6):32-35
    [9]茅国芳.麦后免耕直播稻田的生态环境演变与对策.上海农业学报,1997,13(2):39-50
    [10]刘世平,庄恒扬,沈新平等.苏北轮作轮耕轮培优化模式研究.江苏农学院学报,1996,17(4):31-37
    [11]赖守悌,车福才,魏朝富等.水稻半旱免耕土壤养分消长规律的研究.西南农业大学学报,1987,(S2):82-87
    [12]施明德.免耕稻田水层肥分动态分析.土壤肥料,1994,(1):31-33
    [13]王永锐,李小林.免(少)耕水稻同化物运转碳、氮比研究.耕作与栽培,1992,(2):24-28
    [14]杜金泉,方树安.水稻少免耕技术研究Ⅰ.稻作少免耕类型,生产效应及前景的探讨.西南农业学报,1990,3(4):26-32
    [15]谢德体.水稻半早栽培增产效果及机理研究.西南农业大学学报,1985,(S2):723-28
    [16]徐阳春,沈其荣,雷宝坤等.水旱轮作下长期免耕和施用有机肥对土壤某些土壤肥力性状的影响.应用生态学报,2000,11(14):549-552
    [17]李华兴,卢维盛,刘远金等.不同耕作方式对水稻生长和土壤生态的影响.应用生态学报,2001,12(4):553-556
    [18]张振江.长期麦秆直接还田对作物产量与土壤肥力的影响.土壤通报,1998,29(4):154-155
    [19]武志杰,张海军,许广山等.玉米秸秆还田培肥土壤的效果.应用生态学报,2002,13(5):539-542
    [20]钱宏兵,韩春贵,钱存进等.稻麦秸秆直接还田技术的研究.土壤肥料,1998,(2):26-28
    [21]李酉开.土壤农业化学常规分析方法.北京:科学出版社,1982
    [22]魏朝富,高明,车福才等.浸润垄作稻田土壤生态系统的研究.生态学杂志,1993,1(3):26-30
    [23]张时龙,叶永印.氮肥施用技术对水稻产量及构成因素的影响.安徽农业科学,2002,30(3):366-368
    [24]张淑香,吕庭宏,杨建林等.旱塬农区秸秆还田对土壤理化性质的影响.土壤肥料 1999,(4):15-17
    [25]杨明均,江育璋.半旱式耕作下紫色水稻土的脲酶活性与土壤肥力.西南农业大学学报,1987,(S2):86-89
    [26]李泽生,冯克新,刘邦芳.水稻半旱式栽培条件下土壤微生物消长规律的研究.西南业大学学报,1987,(S2):82-85
    [27]赵秀兰,许大志,高云.玉米根茬还田对土壤肥力的影响研究简报.土壤通报,1998,29(1):14-16
    [28]汪寅虎等,柯福源,张明芝等.长期定位条件下秸秆还田的综合效应研究.土壤通报,1994,25(7):53-56
    [29]高云超,朱文珊等.秸秆覆盖免耕土壤微生物生物量与养分转化的研究.中国农业科学,1994,27(6):41-49
    [30]Shipitalo MJ,Protz R.Comparison of morphology and porosity of a soil under conventional and zero tillage.Can J of Soil Sci.1987,67(3):445-456
    [31]殷士学,宋明芝.免耕法对土壤微生物和生物活性的影响.土壤学报,1992,29(4):371-376
    [32]林增泉,翁文钰,蒋和等.连续十年施肥对水稻土肥力的影响.福建省农科院学报,1991,6(1):35-44
    [33]Roy KN.Nutrition and fertilizer applied of rice.IRCN,1981,30(1):1-8
    [34]张洪程,王秀芹,戴其根等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响.中国农业科学,2003,36(7):800-806
    [35]苏祖芳,周培南,许乃霞等.密肥条件对水稻氮素吸收和产量形成的影响.中国水稻科学,2001,15(4):281-286
    [36]江立庚,曹卫星,甘秀芹等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学,2004,37(4):490-496
    [37]刘立军,王志琴,桑大志等.氮肥运筹对水稻产量及稻米品质的影响.扬州大学学报(农业与生命科学版),2002,23(3):46-50
    [38]饶鸣钿,郑履端,刘珠.氮肥运筹方式对水稻产量和品质的影响.耕作与栽培,2002,(3):30+58
    [39]冯惟珠,徐茂,季春梅等.施氮肥时期对土壤供氮、稻株吸收氮及产量的影响.江苏农业研究,2000,21(3):16-20
    [40]施振云,陈志平,施红兵.前后期不同施氮比例氮钾对水稻产量的影响.土壤肥料,2000,(2):14-16
    [41]张祖建,朱庆森,王志琴等.水稻品种源库特性与胚乳细胞增殖和充实的关系.作物学报,1998,24(1):21-26
    [42]徐茂,王鹤平,殷广德等.穗肥施用时期对水稻产量及群体质量的影响.江苏农业研究,2000,21(2):36-40
    [43]杜永林,苏祖芳.氮肥运筹对水稻抽穗期群体源库质量的影响.耕作与栽培,1999,(2):20-23
    [44]景建华,蒋梅林,束国昌.秸秆还田对水稻的增产效应.江苏农机与农艺,2001,(2):16
    [45]陈年春,蒋伟梅.水稻免耕抛秧的生长发育特点及栽培技术初探.广西农学报,2003,(3):9-12
    [46]马宗国,卢绪国,万丽等.小麦秸秆还田对水稻生长及土壤肥力的影响.作物杂志,2003,(5):41-42
    [47]宋传毅,柳松梅,刘万贵等.寒地水稻田秸秆还田技术应用初报.中国稻米,2000,(4):30-31
    [48]娄运生,徐本生,杨建堂等.秸秆单施或配施氮、磷化肥对潮土供应氮磷特性的影响.河南农业大学学报,1998,32(1):97-101
    [49]曾希柏,刘更另.化肥施用和秸秆还田对红壤磷吸附性能的影响研究.土壤与环境,1999,8(1):45-49
    [50]王国忠,杨佩珍.麦秸还田及水稻氮肥配施技术研究.土壤肥料,2001,(6):34-37
    [51]蒋云芳,蒋新和,周玲.秸秆还田与化学氮肥配施技术探讨.江苏农业科学,1998,(4):43-46
    [52]劳秀荣,孙伟红,王真等.秸秆还田与化肥配合施用对土壤肥力的影响.土壤学报,2003,40(4):618-623
    [53]王旭军,徐庆国,杨知建.水稻叶片衰老生理的研究进展.中国农学通报,2005,(3):194-197+217
    [54]袁政,张大兵.植物叶片衰老的分子机制.植物生理学通讯,2002,38(4):417-422
    [55]魏道智,藏新宾,许晓明等.植物叶片衰老机理的几种假说.广西植物,1998,18(1):89-96
    [56]梁秋霞,曹刚强,苏明杰等.植物叶片衰老研究进展.中国农学通报,2006,(8):292-295
    [57]李名迪,魏冬,颜满莲等.水稻叶片的活性氧代谢及衰老调控.江西农业学报,2005,17(4):112-115
    [58]刘连涛,李存东,孙红眷等.棉花叶片衰老生理研究进展.中国农学通报,2006,(7):326-331
    [59]段俊,梁承邺,黄毓文.杂交水稻开花结实期间叶片衰老.植物生理学报,1997,23(3):139-144
    [60]张荣铣,藏新宾,许晓明等.叶片光合功能期与作物光合生产潜力.南京师范大学学报(自然科学版),1999,22(3):376-386
    [61]Fridovich I.Superoxide dismutases.Ann Rev Biochem,1975,(44):147-159
    [62]聂先舟,刘道宏,徐竹生.水稻旗叶脂质过氧化作用与叶龄及NAg关系.植物生理学通讯,1989,(2):32-34
    [63]王桔红,谢宗平,陈文.衰老机理及抗衰老研究进展.河西学院学报,2003,(2):94-98
    [64]李卫,邓四洪,刘道宏.自由基对水稻叶片衰老的影响.湖北大学学报(自然科学版),1998,20(1):86-89
    [65]Molisch H Der Lebemdawer der pfeamze.In the Longevity of Plants,Translated and published by H Fulling.New York,1978,(19):38
    [66]潘晓华,王永锐.水稻库、源比对叶片光合作用、同化物运输和分配及叶片衰老的影响.作物学报,1998,24(6):821-827
    [67]潘晓华,王永锐.二系稻N3IS/P401改变库、源比对叶片衰老及同化物分配的影响.江西农业大学学报,1994,16(3):221-226
    [68]熊振民,梁承邺.水稻育种技术基础研究论文集.北京:中国科学技术出版,1991
    [69]黄升谋.水稻源库关系与叶片衰老的研究.江西农业大学学报,2001,2(2):171-173
    [70]Crafts-Brandner S J,Egli D B.Sink removal and leaf senesence in Soybean.Plant Physiol,1987,(85):662-666
    [71]Crafts-Brandner S J,Below F E,Harper J E.Differential Senescence of maize hybrids following ear removal.Whole plant.Plant Physiol,1984,(74):360-367
    [72]Me colum J P.Vegetative and reproductive responses associated with fruit Development in cucumber.Mem Cornell Agric.Exp.sta,1934,16(3):3
    [73]Leopold A C,Niedergang-Kamien E,Janick J.Experimental modification of plant seneaeence.Plant Physiol,1961,(36):389
    [74]汤日圣,梅传生,陈以蜂等.4PU-30对水稻叶片衰老与内源激素的调控[J].植物生理学报,1997,23(2):169-174
    [75]Biswas A K,Choudhuri.Mechanism of monocarpic senecence in rice.Plant Physiol,(65):340-345
    [76]项祖芬,杨文钰,任万君等.烯效唑对水稻后期源、库调节及其产量的影响[J].西南农业学报,2004,(5):65-69
    [77]樊高琼,杨文钰,任万军等.烯效唑干拌种对小麦叶片衰老期间有关酶活性的影响[J].植物生理学通讯,2004,(5):34-38
    [78]杨文钰,樊高琼,任万军等.烯效唑干拌种对小麦根叶生理功能的影响[J].中国农业科学,2005,38(7):1339-1345
    [79]杨继芝,杨文钰,文涛等.烯效唑与稀土复配剂对黄瓜生长发育和产量的影响[J].中国农学通报,2006,22(1):218-221
    [80]刘道宏.植物叶片的衰老.植物生理学通讯,1983,(2):14-19
    [81]丁四兵,朱碧岩,吴冬云等.温光对水稻抽穗后剑叶衰老和籽粒灌浆的影响.华南师范大学学报(自然科学版),2004,(1):120-124+131
    [82]许卫锋,梁建生,陈云等.不同基因型水稻抽穗后衰老进程的比较研究.垦殖与稻作,2003,(4):15-17
    [83]华春,王仁雷,黄锦城.杂交稻及其三系叶片衰老过程中叶绿体的变化.南京师范大学学报(自然科学版),1998,21(1):71-76
    [84]吴岳轩,吴振球.杂交稻根系代谢活性与叶片衰老进程相关研究.杂交水稻,1992,(6):36-39
    [85]张志刚,熊运海,王光明等.4PU-30对水稻后期衰老和再生芽萌发的影响.贵州农业科学,2000,28(2):8-20
    [86]王任潮.水稻营养综合诊断极其应用.浙江:浙江科学技术出版社,1982
    [87]吴光南,刘宝仁,张金渝.水稻叶片蛋白水解酶的某些理化特性及其与衰老的关系.江苏农业学报,1985,1(1):1-8
    [88]宋松泉,苏卫珍,袁晓南.杂交水稻离体叶片衰老与蛋白代谢的关系.中山大学学报论丛,1995,(1):20-23
    [89]Ray S,Choudhuri M A.Flag leaf senescence in intact rice plant:effect of hormoneson The activities 'senescence-eniymes' during leaf age at the reproductive development.Biochem Physiol Pflanzen,1980,(15):346-353
    [90]陈靠山,张承烈,梁厚果.菜豆叶片衰老期间叶绿体被膜膜脂与脂肪酸组分的变化.植物生理学报,1991,17(2):139-14
    [91]Koch KE,Ying Z,Wu Y,Avigne WT.Multiple paths of sugar-sensing and a sugar/oxygen ovelap for genes of sucrose and ethanol metabolism,journal of Experimental Botany,1996,(2):417-427
    [92]Pollock C,Farrar J.Source-sink relations:the role of sucrose.In:Baker NR,ed. Environmental stress and photosyhthesis.The Ntherlands:Kluwer,1996
    [93]Jang JC,Leon P,Zhou L,et al.Hexokinasea SA sugar sensor in higher plants.Plant Cell,1997,(9):5-19
    [94]MoorB,Sheen J.Plant sugar sensing and signaling-a complex reality.Trends Plant Science,1999,(4):250
    [95]Wobus U,Weber H.Sugars as signal molecules in plant seed development.Biology Chemistry,1999,(380):937-944
    [96]Thimarm K V.Senescence in Plants.CRC Press,1982,85-115
    [97]Wingler A,Von Schaewen A,Leegood RC et al.Regulation of leaf senescence by cytokinin,sugars,and light.Planta,1998,(116):309-335
    [98]Masclaux C,Valadier MH et al.Characterization of the sink/source transition in tobacco shoots in regulation to nitrogen management and leaf senescence.Planta,2000,(211):510-518
    [99]Quirino BF,Reiter WD,Amasino RM.One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated.Plant Molecular Biology,2001,(46):447-457
    [100]Stressman D,Miller A,Spalding M,Rodermel S.Regulation of photosynthesis dutring Arabidopsis leaf development in continous light.Photosythesis Research,2002,(72):27-37
    [101]Tollenaar M,Daynard TB.Elect of source:sink ratio on dry mater accumulation and leaf Senescence of maize.Can.J.Plant Science,1982,(62):855-860
    [102]王海涛,杨祥良,徐辉碧.活性氧的信号分子作用.生命的化学,2001,21(1):39-41
    [103]Foyer C H,Lopez-Relgado H,Dat J F,et al.Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress to tolerance and signaling.Plant Physiol,1997,(100):241-254
    [104]Van camp W,Van Montagu M,Inze D.H_2O_2 and NO:redox signals in disease resistance.Trends Plant Sci,1998,(3):330-334
    [105]Halliwell B.Chlorop last Metabolism,the structure and function of chlorop tasts in green leaf cells.Oxford." Charenden Press,1981,186
    [106]段咏新,李松泉,傅家瑞.钙对延缓杂交水稻叶片衰老的作用机理.杂交水稻,1997,12(6):23-25
    [107]沈波.水稻籼粳亚种间杂交组合灌浆期叶片衰老生理研究.上海农业学报,2003,19(4):21-24
    [108]华春,王仁协.杂交稻及三系叶片衰老过程中SOD、CAT活性和MDA含量的变化.西北植物学报,2003,23(3):406-409
    [109]沈波,王熹.籼粳亚种杂交稻根系强度的变化规律及其叶片生理的相互关系.中国水稻科学,2000,14(2):2-4
    [110]Kaiser W M.The effect of hydrogen peroxidide on CO_2 fixation of isolated intact chloroplasts.Biochem Biphys Acta,1976,(400):476-482
    [111]刘宁,高玉葆,贾彩霞等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化.植物生理学通讯,2000,36(1):11-14
    [112]李振国,昊有梅,刘愚等.植物对二氧化硫的反应和抗性研究.植物生理学报,1981,7(4):363-371
    [113]Neilsen K F.Roots and root temperature.The plant root and environment.The UniversityPress of Virginia Charlottesvill,1974,293-234
    [114]张玉屏,李金才,黄义德等.水分胁迫对水稻根系生长和部分生理特性的影响.安徽农业科学,2001,29(1):58-59
    [115]许长成,邹琦,程炳高.杂交水稻开花结实期间叶片衰老.植物生理学报,1991,19(3):216-220
    [116]林植芳,林桂珠,李双顺.衰老叶片和叶绿体中超氧阴离子和有机自由基浓度的变化.植物生理学报,1988,14(3):238-243
    [117]Donald C M.The biological yield and harvest index of cereals as agronomic and plant breeding criteria.Adv.In Agronomy,1976,(28):361-405.
    [118]八木忠之.水稻茎秆强度与有关性状的品种差异.育种学杂志,1983,33(4):411-422.(凌天行译)
    [119]Takaya T.用水稻品种混种的方法防止倒伏Ⅳ混种条播对倒伏和产量的影响.1987,56(3):322-328
    [120]Closh D.C.水稻品种在不同肥力水平下单作和混作的倒伏情况.International Rice Research Newsletter,1985,10(4):4
    [121]崛内久满,古贺义昭.水稻抗倒伏性与育种.农业技术,1989,44(9):41-45
    [122]汤日圣,吴鹤鸣,张金渝等.多效唑防止水稻倒伏的原因剖析.植物生理学通讯,1989,(1):23-26
    [123]孙旭初.水稻茎秆抗倒性研究.中国农业科学,1987,(4):32-37
    [124]王熹,姚德福,高成伟等.多效唑防止水稻倒伏的效应.植株生理学通讯,1987,(5):30-32
    [125]张旭.日本防止水稻倒伏新方法研究的进展.国外科技,1989,(12):26-29
    [126]星川清亲,王善本.水稻倒伏的研究.丽水农业科技,1992,(1):8-10
    [127]Takayuki Kashiwagi,Ken Ishimaru.Identification and functional analysis of a locus for improvement of lodging resistance in rice.Plant Physiology,2004,(134):676-683
    [128]李荣田,姜廷波,秋太权等.水稻倒伏对产量影响及倒伏和株高关系的研究.黑龙江农业科学,1996,(1):13-17
    [129]袁志华,赵安庆,苏宗伟等.水稻茎秆抗倒伏的力学分析.生物数学学报,2003,18(21):234-237
    [130]北鞗良夫,星川清亲.作物的形态与机能.北京:农业出版社.1983,411-425
    [131]杨守仁.水稻理想株型育种的理论和方法初论.中国农业科学,1984,(3):6-13
    [132]杨守仁.杨守仁水稻文选.辽宁科技出版社.1998,10
    [133]张忠旭,陈温福,杨振玉等.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响.沈阳农业大学学报,1999,30(2):81-85
    [134]高福平,赵磊,吴硕林.节间长度与中粳西光的抗倒性探讨.安徽农学通报,2001,7(6):39
    [135]谭震波,沈利爽,况浩池等.水稻上部节间长度等数量性状墓因的定位及遗传效应分析.遗传学报,1996,23(6):439-446
    [136]星川清亲.倒伏水稻茎秆的观察.水稻倒伏的研究第1报日作记,1990,59(4):809-814.(徐正进译)
    [137]王勇,李晴棋.小麦品种抗倒性评价方法的研究.华北农学报,1995,10(3):84-88
    [138]郭玉华,朱四光,张龙步等.不同栽培条件对水稻茎秆材料学特性的影响.沈阳农业大学学报,2003,34(1):4-7
    [139]王勇,李晴棋,李朝恒等.小麦品种茎秆的质量及解剖学研究.作物学报,1998,24(4):452-458.
    [140]凌启鸿.稻作新理论.科学出版社,1994
    [141]郭玉华,朱四光,张龙步.不同栽培条件对水稻茎秆生化成分的影响.沈阳农业大学学报,2003,34(2):89-91
    [142]Ookawa T,Todokoro.Y,Ishihara.K.Changes in physical and chemical characteristics of culm associated with lodging resistance in paddy dee under different growth conditions and varietal diference of their changes.Japanese Journal of Crop Science,1993,62(4):525-533
    [143]孙晓辉.作物栽培学(各论).四川科学技术出版社,2002,25
    [144]王善本.折弯位置茎的形态特征:水稻倒伏的研究第2报.日本作物学会纪事,1991,60(4):566-573.(徐正进译)
    [145]星川清亲.解剖图说稻的生长.上海:上海科学技术出版社,1980,(蒋彭炎,许德海译)
    [146]甄英肖.水稻倒伏与植株体内N、K含量及淀粉运转关系的研究.河北农垦科技,1996(4):8-14
    [147]蒲定福,周俊儒,李邦发等.根倒伏小麦抗倒性评价方法研究.西北农业学报,2000,9(1):58-61
    [148]石庆华,黄英金,李木英等.水稻根系性状与地上部的相关及根系性状的遗传研究.中国农业科学,1997,30(4):61-67
    [149]Terashima,K.Akita,S.Sakai,N.Eco-physiological characteristics related with lodging tolerance of rice in direct sowing cultivation,3:Relationship between the characteristics of root distribution in the soil and lodging tolerance.Japanese Journal of Crop Science,1995,64(2):243-250
    [150]Crook M J.冬小麦的次生根性状与倒伏抗性.国外农学(麦类怍物),1995,(2):31-34.(黄炳羽译)
    [151]崔一龙,付民杰,李桂花等.不同密度下水稻自动调节能力的研究.延边大学农学学报,1997,19(2):110-113
    [152]戴其根,霍中洋,张洪程等.抛秧水稻生长发育与产量形成的生态生理机制Ⅱ.秧苗田间垂直分布格局及其生态生理效应.作物学报,2001,27(5):600-611
    [153]潘瑞炽.水稻生理.北京:科学出版社.1981
    [154]唐拴虎,陈建生,徐培智等.一次性全层施肥增强水稻抗倒伏性效应研究初报.广东农业科学,2004,(1):32-34.
    [155]杨长明,杨林章,颜廷梅等.不同养分和水分管理模式对水稻抗倒伏能力的影响.应用生态学报,2004,15(4):646-650
    [156]黄增奎.小麦施钾的抗倒伏效应.土壤通报,1989,20(3):12-123
    [157]杨祥田,罗三镯,吴晓华.水稻抛秧栽培对其抗倒伏能力的影响.浙江农业学报,1999,11(3):151-153
    [158]王爱英.钾素对水稻生理功能的影响浅析.山西化工,2005,25(1):35-36
    [159]刘立军,袁莉民,王志琴等.旱种水稻倒伏生理原因分析与对策的初步研究.中国水稻科学,2002,16(3):225-230
    [160]周青,潘国庆,施作家等.不同时期施用硅肥对水稻群体质量及产量的影响.耕作与栽培,2001,(3):25-27
    [161]张军.硅钙肥对水稻产量、抗病性和抗倒伏性的影响.土壤肥料,2003,(3):42-43
    [162]史春余,金留福,傅金民等.抗倒胺对水稻秧苗素质和与抗倒伏有关性状的影响(简报).植物生理学通讯,1997,33(5):343-344
    [163]林志强,苏连庆,陈进明等.水稻喷施立丰灵的抗倒增产效应.福建稻麦科技,2003,21(2):33-35
    [164]肖炳膦,王树勋,谷先兵.烯效唑防止水稻倒伏的实验.安徽农业科学,1999,27(6):560
    [165]李相哲.植物生长调节剂Hoe78784对水稻抗倒的影响.韩国作物学会,1990,35(3):184-194
    [166]刘军,黄庆,付华等.水稻免耕抛秧高产稳产的生理基础研究[J].中国农业科学.2002,35(2):152-156
    [167]刘敬宗,李云康.杂交水稻免耕抛秧栽培技术研究初报.杂交水稻,1999,14(3):33-34
    [168]刘怀珍,黄庆,李康活等.不同耕作方法对抛秧稻的群体结构和土壤理化性状的影响.耕作与栽培,2003,(3):7-9
    [169]韦柏林,杨为芳,黄业葵等.浦北县水稻免耕抛秧技术示范.广西农业科学,2004,35(4):290-291
    [170]陈应召.水稻免耕抛秧栽培技术在清新县的应用效果.广东农业科学,2000,(6):10-11
    [171]沈新平,黄丽芬,庄恒扬等.免耕水稻早发及产量形成特性研究.扬州大学学报(自然科学版),1998,1(4):41-44
    [172]伍菊仙,任万军,杨文钰.氮肥运筹对水稻免耕高桩抛秧生长发育和产量的影响.杂交水稻,2006,21(4):74-77
    [173]杨波,任万军,杨文钰.密度对优化定抛水稻产量和群体质量的影响.杂交水稻,2006,21(5):64-68
    [174]区伟明,陈润珍,黄庆.水稻免耕抛秧经济效益及生态效益分析.广东农业科学,2000,(6):5-6
    [175]陈冬林,屠乃美,关广晟等.水稻免耕栽培技术的研究及应用.湖南农业大学学报(自然科学版),2006,(5):567-574
    [176]黄小洋,漆映雪,黄国勤等.稻田保护性耕作研究.Ⅰ.免耕对水稻产量、生长动态及害虫数量的影响.江西农业大学学报,2005,(4):530-534
    [177]王凯学,王华生,石桥德等.早稻免耕抛秧栽培病虫发生特点及原因简析.中国植保导刊,2006,26(12):14-15
    [178]秦华东,马卓民,张国宏等.免耕抛栽水稻若干生理特性研究.广西农业科学,2006,37(4):387-389
    [179]付华,陆秀明,刘怀珍等.免耕抛秧稻籽粒灌浆结实特性研究.广东农业科学,2000,(5):11-13
    [180]王克如,李少昆,汤永禄等.成都平原免耕及不同麦秸还田量种植水稻的研究.水土保持学报,2006,(5):173-176
    [181]韦柏林,杨为芳,黄业葵等.浦北县水稻免耕抛秧技术示范.广西农业科学,2004,35(4):290-291
    [182]温玉辉,陈景勇,杨悦林等.晚稻免耕抛秧高产机理研究.佛山科学技术学院学报(自然科学版),2002,20(2):73-76
    [183]黄国勤,黄小洋,张兆飞等.免耕对水稻根系活力和产量性状的影响.中国农业科学通报,2005,21(5):170-173
    [184]秦华东,谭素宁,曾华忠等.稻田耕作方式和施氨水平对抛栽水稻群体质量及产量的影响.广西农业生物科学,2006,12,25(4):315-320
    [185]高云超,朱文珊,陈文新等.秸秆覆盖免耕对土壤细菌群落区系的影响.生态科学,2000,19(3):14-16
    [186]刘怀珍,黄庆,李康活等.水稻连续免耕抛秧对土壤理化性状的影响初报.广东农业科学,2000,(5):8-10
    [187]付玉坤,王立春,张凤英等.关于水稻抛秧栽培减少氮肥施用量对产量的影响研究,沈阳农业大学学报,1999,30(2):112-114
    [188]黄庆,李康活,刘怀珍等.免耕抛秧稻处理方法与大田免耕抛秧试验初报.广东农业科学,1997,(3):6-7
    [189]李锐,潘月波.双季稻免耕抛秧栽培技术应用效果试验初报.广东农业科学,2000,(6):7-9
    [190]冯跃华,邹应斌,敖和军.不同施氮量对免耕/翻耕移栽稻生长及产量形成的影响.作物研究,2004,(6):145-150
    [191]郎宁,徐世宏,梁人君等.不同氮肥施用量对免耕抛秧稻产量的影响,杂交水稻,2003,18(2):51-52
    [192]廖兆熊,林金元.水稻免耕栽培氮肥用量与施肥技术,上海农业学报,1993,9(2):48-52
    [193]程永盛,黄庆,刘怀珍等.不同施氮处理对免耕抛秧稻产量及其构成因素的影响.广东农业科学,2001,(5):28-30
    [194]阳美秀,王冬秀,刘春燕等.两系杂交稻不同氮肥运筹试验研究.广西农业科学,2004,(1):48-52
    [195]李康活.双季稻免耕抛秧栽培技术试验初报.广东农业科学,1997,(3):2-5
    [196]秦华东,张国宏,肖巧珍等.水稻免耕抛秧技术研究进展.广西农业科学,2006,37(3):233-237
    [197]韦柏林等.水稻免耕抛秧栽培技术初探.广西农学报,2003,(1):12-17
    [198]江立庚,李如平,韦善清等.金优253免耕抛栽秧苗的根系生长与立苗特性.广西农业生物科学,2005,24(1):30-34
    [199]韦善清,徐世宏,李如平等.免耕抛栽水稻源库特性研究.中国农学通报,2005,21(9):237-241
    [200]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系,植物生理学通讯,1990,(6):55-57
    [201]熊庆娥.植物生理学实验教程.四川:四川科学教育出版社,2003
    [202]Gisnnopolitis CN,Rice SK.Superoxide dismutases Ⅱ.Purification and quantitative relationship with water soluble protein in seedlings.Plant Physiol,1977,(59):315-318
    [203]张宪政.作物生理研究法.北京:农业出版社,1992
    [204]蒲定福,李邦发,周俊儒等.小麦抗倒性评价方法研究初报.绵阳经济技术高等专科学校学报,1999,16(2):1-4
    [205]王莹,杜建林.大麦根倒伏抗性评价方法及其倒伏系数的通径分析.作物学报,2001,27(6):941-945
    [206]李合生.植物生理生化实验原理和技术.北京:高等教育出版社.2002
    [207]张志良主编.植物生理学实验指导.北京:高等教育出版社.1990
    [208]松尾喜义.水稻抗倒性简易测定装置-制作和应用的实例.国外农学(水稻),1986,(2): 53
    [209]范君华,刘明.不同利用方式对土壤微生物区系和活性的影响.塔里木农垦大学学报,2002,4(1):15-17
    [210]高明,周保同,魏朝富等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响.应用生态学报,2004,15(7):1177-1181
    [211]任万军,刘代银,伍菊仙等.免耕高留茬抛秧稻的产量及若干生理特性研究.作物学报,2008,34(11):1994-2002
    [212]Doran J W,Parkin T B.Defining and assessing soil quality.In:Doran J W,Coleman D C,Bezdicek D F and Stewart B A ed.Defining Soil Quality for a Substainable Environment.Madison,W I,USA:SSSA Special Publication Number 35,1994,3-21
    [213]Kandeler E,Tscherko D,Bardgett R D,et al.The response of soil microorganisms and roots to elevated CO_2 and temperature in a terrestrial model ecosystem.Plant and Soil,1998,(202):251-262
    [214]Balesdent J,Mariotti A,Boisgontier D.Effect of tillage on soil organic carbon mineralization estimated from abundance in maize fields.Soil Science,1990,(41):587-896
    [215]魏朝富,高明,车福才等.垄作免耕稻田土壤团聚体和水热状况变化的研究.土壤学报,1990,27(2):172-178
    [216]罗安程,章永松.有机肥对水稻根际土壤中微生物和酶活性的影响.植物营养与肥料学报,1999,5(4):321-327
    [217]刘世平,聂新涛,张洪程等.稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析.农业工程学报,2006,22(7):48-51
    [218]卜玉山,苗果园,周乃健等.地膜和秸秆覆盖土壤肥力效应分析与比较.中国农业科学,2006,39(5):1069-1075
    [219]任万军,杨文钰,刘代银等.水稻连免高桩抛秧新技术.中国稻米,2003,(2):22-23
    [220]蔡晓布,钱成,张元等.西藏中部地区退化土壤秸秆还田的微生物特征及其影响.应用生态学报,2004,15(3):463-468
    [221]薛菁芳,高艳梅,汪景宽等.土壤微生物量碳氮作为土壤肥力指标的探讨.土壤通报,2007,38(2):247-250
    [222]肖剑英,张磊,谢德体.长期免耕稻田的土壤微生物与土壤肥力关系研究.西南农业大学学报,2002,24(1):82-85
    [223]梁康迳,王雪仁,林文雄等.水稻产量形成的生理生态研究进展.中国生态农业学报.2002,10(3):59-61
    [224]刘代银.秸秆覆盖连作免耕水稻抛秧新技术.中国稻米,2001,(5):29-30
    [225]王国忠,杨佩珍.麦秸还田及水稻氮肥配施技术研究.土壤肥料,2001,(6):34-37
    [226]顾万海,何高,唐多钧等.氮肥运筹比例对水稻群体质量影响的研究.作物杂志,1999,(1):12-14
    [227]慕永红,孙海燕,孙建勇等.不同施氮比例对水稻产量与品质的影响.黑龙江农业科学,2000,(3):18-19
    [228]张云桥,吴荣生,蒋宁等.水稻的氮素利用率与品种类型的关系.植物生理学通讯,1989,(2):45-47
    [229]Broadbent F E,De Datta S K,Laureles E V.Measurement of nitrogen utilization efficiency in rice genotypes.Agronomy Journal,1987,(79):786-791
    [230]丁艳锋,刘胜怀,王绍华等.氮素基蘖肥用量对水稻氮素吸收与利用的影响.作物学报,2004,30(8):762-767
    [231]Ladha JK,Kirk GJD,Bennett J,et al.Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm.Field Crops Res.1998,(56):41-71
    [232]Fu Q-L,Yu J-Y,Chen Y-X.Effect of nitrogen on dry matter and nitrogen partitioning in rice and nitrogen fertilizer requirement for rice production.Journal of Zhejiang University.2000,26(4):399-403
    [233]朱碧岩,曾慕衡.中后期施氮对水稻产量和品质的影响.陕西农业科学,1994,(4):20-21
    [234]任万军,胡晓玲,杨万全等.水稻优化定抛的增产机理与关键技术.中国稻米,2008,(3):54-57
    [235]Berry PM,Sterling M,Baker CJ,et al.A calibrated model of wheat lodging compared with field measurements.Agrimethodss and Forest Meteorology,2003,(119):167-180
    [236]任万军,杨文钰,樊高琼等.不同耕作方式对土壤肥力和水稻根系生长的影响.水土保持学报,2007,21(2):108-110,162
    [237]Albrecht K A,et al.Selection reversal in strains of corn previously long-term selected for chemical composition.Crop Sci,1986,26(5):1051-1055
    [238]Zuber M S.Grogan.A new technique for measuring stalk strength in corn.Crop Sci,1961,(1):378-380
    [239]王勇,李朝恒.小麦品种抗倒性的研究进展.山东农业大学学报,1996,27(4):503-508
    [240]马国辉.超级杂交稻抗倒生理与形态机能研究.湖南农业大学学报(自然科学版),2000,26(5):329-331
    [241]关玉萍,沈枫.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.吉林农业科学,2004,29(4):6-11
    [242]大川泰一郎,石原邦.水稻耐倒伏性关中秸秆物理的性质在品种间差异.日本作物学会纪事,1992,61(3):419-425
    [243]Tams,AR.,Mooney SJ.,Berry PM.The effect of lodging in cereals on morphological properties of the Root-Soil complex.SuperSoil,2004
    [244]Hossain K A,Horiuchi T,Miyagawa S.Effects of powdered rice chaff application on lodging resistance,Si and N contents and yield components of rice under shaded conditions.Acta Agron Hungarica,1998,46(3):273-281
    [245]周正义,印天寿.钾肥对水稻抗逆和增产的效果.安徽农业科学,1996,24(1):20-24.
    [246]黄违浩.不同化学调控剂对水稻的防倒效果.宁波农业科技,1998,(1):5-8
    [247]Wang,B.W,Hoshikawa,K.Studies on rice lodging.X.A comparison of morphological characteristics in different parts of the internode.Report of the Tohoku Branch,the Crop Science Society of Japan.1990,(33):13-14
    [248]Wang,S.B,Hoshikawa,K.Studies on rice lodging.6.Changes in dry weight and carbohydrate contents of various internodes and leaf sheaths during ripening.Report of the Tohoku Branch,the Crop Science Society of Japan.1989,(32):30-31
    [249]刘代银,陈洪伦,邓明富.水稻苗床本田全程免少耕无盘旱育抛秧技术研究.耕作与栽培,2007,(3):13-14+58
    [250]刘代银,邓明富,刘基敏等.不同育秧方式的秧苗素质及免耕抛栽效果比较.现代农业科技,2008,(23):175-176+179
    [251]赵言文,丁艳峰,陈留根等.水稻旱育秧苗抗旱生理特性研究.中国农业科学,2001,34(3):283-291
    [252]温怀楠,赵建平.水稻旱育秧的发根力优势及对地上部植株生育特点的影响.浙江农业科学,2000,(1):1-5
    [253]童富淡,胡家恕,陈进红等.不同育秧方式对早稻叶片SOD活性、电解质渗透率和发根力的影响.浙江农业大学学报,1997,23(6):682-686
    [254]陈德春,杨文钰,任万军.秧苗平面分布对水稻群体动态和冠层透光率及穗部性状的影响.应用生态学报,2007,18(2):359-365
    [255]潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展.植物学通报,1996,13(2):13-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700