用户名: 密码: 验证码:
小麦族广义披碱草属物种(Elymus L. sensu lato)的分子系统学及细胞学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族(Triticeae Dumortier)是禾本科(Poaceae)植物中非常重要的一个类群,不仅包括小麦、大麦、黑麦等麦类作物,而且还有大量具有经济价值的多年生优质牧草。按照L(o|¨)ve(1984)的分类定义,广义披碱草属(Elymus L.sensu lato)是小麦族中最大的多年生属,全世界约有150多个种,广布于全球的温带和暖温带地区。该属包括了传统定义上的披碱草属、鹅观草属、猬草属、裂颖草属和仲彬草属。这些植物包含了优异的牧草种类,许多种类是草原的重要组成部分,并且拥有抗病、抗虫和抗环境胁迫的重要特性,已作为丰富麦类作物和牧草遗传多样性的重要基因资源库。然而,由于这些属中物种种类繁多,分布十分广泛,且物种的染色体组组成各异,倍性从四倍体到六倍体、十倍体不等,遗传多样性相当丰富。因此,对于这五个属的系统地位、属内等级划分、物种界限上还存在较大的分歧,分类上至今很混乱。特别是在鹅观草属中还存在无芒类群的物种,其染色体组组成未知,它们的系统分类地位还有待进一步研究。广义披碱草属是由St染色体组与H、P、Y、W基本染色体组组合而成的异源多倍体属,其St染色体组被认为是所有广义披碱草属物种的母本染色体组供体,然而,这个结论还有待进一步的证实。Y染色体组仍然是广义披碱草属中重要的基本染色体组,由于缺乏其二倍体供体,它的来源和与其它基本染色体组的关系等,仍然是目前研究的热点与挑战性的问题。本研究通过分子系统学和细胞遗传学的方法,对广义披碱草属物种的系统与演化等问题进行了研究,得到的主要研究结果如下:
     1.利用核基因组rDNA的ITS序列对75份广义披碱草属及其近缘属物种进行了最大简约法和贝叶斯推断的分析。结果表明:(1)大部分披碱草属、鹅观草属和裂颖草属的物种都与二倍体拟鹅观草属物种聚类在一起,披碱草属和鹅观草属之间没有明显的属间界限;(2)异源多倍体物种中,St-染色体组类型的ITS拷贝序列在St支中被划到不同的亚支中,表明St染色体组在异源多倍体物种中存在一定的分化;(3)大部分仲彬草属物种具有P-染色体组类型的ITS拷贝序列,不同于披碱草属和鹅观草属,表明仲彬草属应该是一个独立的属;(4)猬草属的模式种Hy.patula与披碱草属物种聚类在一起,而Hy.duthiei ssp.duthiei、Hy.duthiei ssp.longearistata、Hy.coreana和Hy.komarovii聚类在Ns支中,表明Hy.patula的染色体组组成与其它猬草属物种存在差异。结合细胞学研究结果,应当把Hy.patula放到披碱草属中作为Elymus hystrix处理,而其余具NsXm染色体组成的物种则放到赖草中处理;(5)在广义披碱草属物种中,核基因组rDNA的ITS序列存在偏向性的协同进化现象。
     2.对48份广义披碱草属及其近缘属物种的叶绿体DNA的trnL-F序列构建了系统树和网状结构图。结果表明:(1)广义披碱草属中物种的母本不完全来源于拟鹅观草属。其中K.melanthera和K.thoroldiana的母本染色体组为P染色体组,Hy.duthieissp.duthiei及Hy.duthiei ssp.longearistata的母本染色体组为Ns染色体组;(2)系统进化树中反映了P、W、St染色体组之间具有较近的亲缘关系,它们与H和Ns染色体组的关系较远;(3)仲彬草属中,K.melanthera和K.thoroldiana与冰草的二倍体物种聚类在一起,表明K.melanthera和K.thoroldiana与冰草属的关系较近。猬草属中,Hy.patula聚在St支中,而Hy.duthiei ssp.duthiei和Hy.duthiei ssp.longearistata在Ns支中,表明他们具有不同的染色体组成。因此,支持ITS序列结果中对它们的处理;(4) 5个地理分布不同的拟鹅观草属二倍体物种没有形成一个单系组,表明这几个二倍体物种存在一定程度的分化;(5)在异源多倍体物种中,其St染色体组的质体序列形成了不同的分支,表明St染色体组在多倍体物种中也具有分化;(6)亚洲分布的拟鹅观草属二倍体物种可能参与了大部分亚洲分布物种的起源,北美分布的披碱草属物种中St染色体组可能来源于北美的拟鹅观草属物种;有些物种在多倍化起源过程中可能发生了重复杂交过程。
     3.对14个仲彬草属物种及其相关二倍体物种的叶绿体trnL-F序列进行了最大简约法分析和贝叶斯推断。结果表明:仲彬草属物种被分为两大支,其中K.melanthera、K.mutica和K.thoroldiana与冰草属二倍体物种聚在一起,表明它们的母本可能来源于二倍体冰草属;其余仲彬草属物种K.batalinii、K.nana、K.kokonorica、K.kaschgarica、K.hirsuta、K.alatavica、K.gobicola、K.zhaosuensis、K.rigidula、K.longiglumis和K.grandiglumis聚类在St+E~e+E~b支中,表明其母本染色体供体可能为St染色体组或者Y染色体组。
     4.对鹅观草属无芒类群物种:R.alashanica、R.elytrigioides、R.grandis、R.magnicaespes和拟鹅观草属物种P.geniculata的Acc-1和Q基因的系统发育分析和网状结构分析,结果表明:(1)R.alashanica具有一套修饰的St染色体组,且该染色体组与E~e染色体组很近,其另一套染色体组与P、H染色体组有一定的亲缘关系;(2)R.magnicaespes也具有一套St染色体组,另一套染色体组与P、H染色体组有一定的亲缘关系;(3)R.elytrigioides有两套St染色体组,它的染色体组成有别于R.alashanica,把R.elytrigioides处理成P.elytrigioides是合理的;(4)R.grandis的染色体组成应为St~gY,St~g是由St分化而来,与Y染色体组有很大程度的同源性;(5)P.geniculata具有一套St染色体组,而另一套染色体组与P、H、W染色体组有一定的关系。P.geniculata的亚种P.geniculata ssp.scythica具有E~eSt染色体组,因此它们应当作为不同的物种归于不同的属当中;(6)Y染色体组有可能来源于St染色体组,它与E~e、E~b、St和W染色体组的关系较近;(7)R.alashanica、R.magnicaespes和P.geniculata之间的关系较近,与R.elytrigioides的关系稍远,R.grandis与它们的关系最远。
     5.根据二倍体拟鹅观草属物种与不同染色体组成的广义披碱草属物种的属间和种间杂种F_1花粉母细胞减数分裂中期I染色体配对行为及繁育特性的分析结果表明:(1)中东的拟鹅观草二倍体物种(P.libanotica和P.tauri)中St染色体组与来自北美的物种(P.spicata)的St染色体组可能存在差异;(2) St染色体组在鹅观草属物种中(StY)和在披碱草属物种中(StH,StYW)均存在一定程度的变异,具有一定程度的分化;(3) St染色体组与Y染色体组具有一定程度的同源性,亲缘关系较近,而与H染色体组的关系较远。
Triticeae Dumortier is a very important group in the tribe Poaceae which includes three of the most important cereal crops,i.e.,wheat,barley,and rye,as well as many economically valuable forage grasses.The genus Elyrnus L.sensu lato delimited by L(o|¨)ve is an important perennial genus of Triticeae Dumortier(Poaceae),and contains approximately 150 perennial and exclusively polyploid species occurring from the Arcic and temperate to subtropicalall regions.It includes the traditional species of Roegneria, Hystrix,Sitanion and Kengyilia.Many species are free herbages,and some species have characters of resistance to disease,insect resistance and stress tolerance,which are precious germplasm resources in crop forage breeding.The species in Elymus s.1.are allopolyploids ranging from tetraploids,hexaploids to octaploids with different genomic constitutions.Because of the large numbers and wide distribution,the definitions,precise taxonomic ranks of the genus and the phylogenetic relationships among species have been under discussion.Cytological studies suggest that five basic genomes,namely,the St,Y,H, P,and W in various combinations constitute Elymus species.St was/ecognized as the maternal donor of the species in Elymus s.1.,however,this result need further confirmation. The Y genome was also an important foundamental genome in Elymus s.1.Because of the unknown donor of the Y genome the extensive investigations should be carried out.In this study,data from molecular systematical and cytogenetic analyses have been used to systematically evaluate the phylogenetic relationships of the genus and to deduce the evolution history of the polyploid species.The main results are as follows:
     1.The ITS sequences were analyzed from 75 species by using Maximum Parsimony(MP) and Bayesian Inference(BI) methods.The main results were:(1) Most species in Roegneria,Elymus and Sitanion were clustered in the St clade with diploid St genome species,and it was difficult to distinguish the species in Roegneria and Elymus;(2) The polyploid species with St genomes in the St clade were divided into three groups,which suggests that there exists differentiation of St genome in polyploids;(3) Most species of Kengyilia have only P-type of clone and clustered with diploid Agropyron species,which may suggest that Kengyilia is a valid genus;(4) Hy.patula,the type species of Hystrix was clustered with species of Elymus,while Hy.duthiei ssp.duthiei,Hy.duthiei ssp. longearistata,Hy.coreana and Hy.komarovii were grouped with diploid Psctthyrostachys species.It indicated that Hy.patula is distinct related to other Hystrix species,and it is reasonable to treat Hystrix patula as Elymus hystrix and other species in Hystrix should be transferred to Leymus;(5) The "clones bias" in ITS sequences are widespread in the allopolyploid species.
     2.The plasid trnL-F sequences were analyzed from 48 species.The results indicated that: (1) the maternal donor of Elymus s.1.species is not always from Pseudoroegneria.The P genome serves as the maternal donor of K.melanthera and K.thoroldiana,while the Ns genome is the maternal donor of Hy.duthiei ssp.duthiei and Hy.duthiei ssp.longearistata; (2) the MP tree from trnL-F reveals the close relationships among P、W and St genomes, while the H and Ns are distinctly related to them;(3) K.melanthera and K.thoroldiana were clustered with diploid Agropyron species,which indicated the close relationships among them.Hy.patula was clustered in the St clade,while Hy.duthiei ssp.duthiei and Hy. duthiei ssp.longearistata were grouped in the Ns clade.It indicated that the genomic constitution of Hy.patula is different from Hy.duthiei ssp.duthiei and Hy.duthiei ssp. longearistata,which supported the ITS results from this study;(4) the five diploid species. with St genome didn't form the monophyletic clades,which suggested the differentiation of the diploid species;(5) The polyploid species with St genomes were not clustered in one clade,which suggests that there exists differentiation of St genome in polyploids;(6) the species distributed in Asia may originated from the diploid species of Pseudoroegneria from Eurasia,while the North America Elymus species may originated from North America Pseudoroegneria species.Some species may have a multiple origin and experienced recurrent hybridization between species with different genomes.
     3.The chloroplast trnL-F sequences of 14 Kengyilia species and its related diploid species were analyzed by using Maximum Parsimony(MP) and Bayesian Inference(BI) methods. The species in Kengyilia were clustered into two different clades.K.melanthera,K.mutica and K.thoroldiana grouped with diploid Agropyron(P) species,while the rest species clustered in St+E~e+E~b clade,which indicated that Agropyron(P) is the likely maternal genome donor to K.melanthera,K.mutica and K.thoroldiana,while the maternal donor to K.batalinii,K.nana,K.kokonorica,K.kaschgarica,K.hirsuta,K.alataviea,K.gobicola, K.zhaosuensis,K.rigidula,K.longiglumis and K.grandiglumis was St or Y genome. 4.The single copy sequences of the plastid acetyl-CoA carboxylase gene(Accl) of R. alashanica,R.magnicaespes,R.elytrigioides,R.grandis and P.geniculata and their related species were analyzed.The results indicated that:(1) R.alashanica contains one set of modified St genome which is closely related to the E~e genome,and the other set of genome was closely related to the P and H genomes;(2) R.magnicaespes contains one set of St genome,the other set of genome may be closely related to the P and H genomes;(3) R.elytrigioides contains two sets of St genomes,and it is reasonable to be treated as P. elytrigioides;(4) the genome of R.grandis should be designed as St~gY.The St~g genome is a differentiated form of the St genome in Pseudoroegneria and is homoeologous with the Y genome in Roegneria;(5) P.geniculata contains one set of St genome,the other set of genome may be closely related to the P,H and W genomes.The genomic constitution of P. geniculata is distinctly related to P.geniculata ssp.scythica(E~eSt),and they should be treated as different species in different genera;(6) the Y genome was possibly originated from the St genome,and was closely related to E~e,E~b,St and W genomes;and(7) R. alashanica,R.magnicaespes,P.geniculata were closer to each other than to R. elytrigioides.R.grandis is distinctly related to the four species.
     5.The interspecific and intergeneric hybrids among diploid Pseudoroegneria species and Elymus s.1.species with different genomes were analyzed.The fertility and chromosome paring behavior in meiosis of the parents and their hybrids F_1 were investigated.The results indicated that:(1) the St genome in P.libanotica and P.tauri which come from Iran maybe different from that of P.spicata in North America;(2) differentiation of the St genome was found in allopolyploid species with StY,StH and StYW genome combinations;(3) a certain degree of homoeology has been observed between St and Y genomes.St genome is closely related to Y genome and distinct from H genome.
引文
1.蔡联炳,智力.以礼草属的分类研究.植物分类学报,1999,37:451-467
    2.蔡联炳.鹅观草属的几个新组合.植物研究,1996,16(1):48-50
    3.蔡联炳.以礼草属的地理分布.植物分类学报,2001,39(3):248-259
    4.蔡联炳.中国鹅观草属的分类研究.植物分类学报,1997,35:148-177
    5.陈守良,金岳杏,吴竹君.以礼草属(拟)Kengyilia Yen &J.L.Yang的叶片表皮微形态研究及其分类意义的探讨.南京中山植物园研究论文集,1991,1-6
    6.陈守良,徐克学.应用数量分类探讨鹅观草属的归属问题.植物分类学报,1989,27(3):190-196
    7.崔大方.新疆披碱草属的新分类群.植物研究,1990,10(3):25-38
    8.丁春邦,周永红,杨瑞武,等.应用RAPD特异标记分析拟鹅观草属部分物种的基因组组成.广西植物,2005,25(3):249-253
    9.丁春邦,周永红,郑有良,等.拟鹅观草属6种2亚种和鹅观草属3种植物的核型研究.植物分类学报,2004,42(2):162-169
    10.耿以礼,陈守良.国产鹅观草属Roegneria C.Koch之订正.南京大学学报,1963,3(1):60-64
    11.耿以礼.中国高等植物图说-禾本科.北京:科学出版社,1959,342-409
    12.郭本兆.中国植物志,第9卷3分册.北京:科学出版社,1987,51-401
    13.刘成,杨足均,刘畅,等.小麦族中含St染色体组物种的特异分子标记的建立.遗传,2007,29(10):1271-1279
    14.刘大钧.向小麦转移外源抗病性的回顾与展望.南京农业大学学报,1994,17(3):1-7
    15.卢宝荣,Salomon B.种间杂种染色体配对所揭示的披碱草属植物StY基因组分化及其进化意义.生物多样性,2004,12(2):213-226
    16.卢宝荣.小麦族遗传资源的多样性及其保护.生物多样性,1995,3(2):63-68
    17.万永芳,颜济,杨俊良,刘发圈.小麦近缘野生植物的赤霉抗性研究.植物病理学报,1997,27(2):107-111
    18.颜济,杨俊良,Baum BR.小麦族生物系统学(第三卷).北京:农业出版社,2006,3-117
    19.颜济,杨俊良,Baum BR.小麦族生物系统学(第四卷).北京:农业出版社,2008,252-280
    20.颜济,杨俊良.耿氏草属Kengyilia,中国禾本科小麦族一新属.四川农业大学学报,1990,8:75-76
    21.颜济,杨俊良.西藏地区鹅观草属一新种.云南植物研究,1984,6(1):75-76
    22.杨锡麟.鹅观草属的部分组见解.内蒙古师范大学学报(自然版).1990,3:39-42.
    23.于海清.拟鹅观草属四倍体物种的分子细胞遗传学研究.四川农业大学博士学位论文,四川雅安,四川农业大学,2007
    24.张颖,周永红,张利,等.鹅观草属、披碱草属、猬草属和仲彬草属物种的RAMP分析及其系统学意义.西北植物学报,2005,25(2):368-375
    25.张颖,张利,张海琴,等.鹅观草属、披碱草属、猬草属和仲彬草属物种的醇溶蛋白分析.四川农业大学学报,2006a,3(24):256-262
    26.张颖,周永红.张利,等.小麦族鹅观草属、披碱草属、猬草属和仲彬草属细胞质基因组PCR-RFLP分析.遗传,2006b,28(4):449-457
    27.张利,周永红,丁春邦,等。应用ISSR标记研究仲彬草属植物的遗传变异.广西植物2006a,4(26):375-380+394
    28.张利,周永红,魏育明,等.应用RAMP分子标记探讨仲彬草属的种间关系.高技术通讯,2003,13(4):28-33
    29.张利,周永红,郑有良,刘世贵。仲彬草属物种细胞质基因组PCR-RFLP分析.草业学报2006b,3(15):115-122
    30.张新全,伍碧华,颜济,等.阿拉善鹅观草,大鹅观草及大丛鹅观草杂种的细胞学研究.草业学报,1999b,8(4):23-28
    31.张新全,杨俊良,颜济,等.鹅观草与大鹅观草杂种的细胞遗传学及形态学研究.广西植物,1999a,19(4):355-358
    32.张新全,杨俊良,颜济,等.纤毛鹅观草同阿拉善鹅观草、大丛鹅观草间杂种细胞学研究.云南植物研究,2000,22(2):155-160
    33.周永红,杨俊良,郑有良,等.用RAPD分子标记探讨鹅观草属的种间关系.植物学报,1999a,41(10):1076-1081
    34.周永红,郑有良,颜济,等.10种披碱草属植物的RAPD分析及共系统学意义.植物分类学报,1999b,37(5):425-432
    35.周永红,郑有良,杨俊良,等.利用RAPD分子标记评价仲彬草属的种间关系.植物分类学报,2000,38(5):515-521
    36.朱光华,解新明,杨锡麟.鹅观草属与披碱草属属界划分的酯酶和过氧化物酶同工酶比较研究.西北植物学报,1990,10(1):43-53
    37.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001,10-55
    38.Akaike H.A new look at the statistical model identification,IEEE Transactions on actions on Automatic Control,1974,19:716-723
    39.Alvarez L,Wendel JF.Ribosomal ITS sequences and plant phylogenetic inference.Mol Phylogenet Evol,2003,29:417-434
    40. Baden C, Frederiksen S, Seberg O. A taxonomic revision of the genus Hystrix (Triticeae, Poaceae). Nord J Bot, 1997, 17: 449-467
    
    41. Bailey CD, Carr TG, Harris SA et al. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol, 2003,29: 435-455
    
    42. Baldwin BG, Sanderson MJ, Porter JM, et al.. The ITS region of nuclear ribosome DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard, 1995, 82: 247-277
    
    43. Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol, 1999, 16: 37-48
    
    44. Barkworth ME, Dewey DR. Genomically based genera in the perennial Triticeae of North America: Identification and Membership. Ame J Bot, 1985, 72: 767-776
    
    45. Barkworth ME, Taxonomic and nomenclatural comments on the Triticeae in North America, Phytologia, 1997, 83: 302-311
    
    46. Barkworth ME. Elymus. In: Hickman JC, ed. The Jeseon Manual: Higher plants of California. Berkeley and Los Angeles, University of California Press, 1993
    
    47. Baum BR, Yang JL, Yen C. Taxonomic seperation of Kengyilia (Poaceae: Triticeae) in relation to nearest related Roegneria, Elymus and Agropyron based on some morphological characters. Plant Syst Evol, 1995, 194: 123-132
    
    48. Baum BR, Yen C, Yang JL. Roegneria: its generic limits and justification for its recognition. Can J Bot, 1991,69:282-294
    
    49. Bothmer R von, Jacobsen N, Baden C, et al.. An ecogeographical study of the genus Hordeum. Systematic and Ecogeographical studies on crop genepools 7: IBPGR, Rome, 1991, 127
    
    50. Buckler ESIV, Holtsford TP. Zea systematics: ribosomal ITS evidence. Mol Biol Evol, 1996, 13: 612-622
    
    51. Buckler ESIV, Ippolito A, Holtsford TP. The evolution of ribosomal DNA: Divergent paralogues and phylogenetic implications. Genetics, 1997, 145: 821-832
    
    52. Buerkle CA, Morris RJ, Asmussen MA, et al.. The likelihood of homoploid hybrid speciation. Heredity, 2000, 84: 441 -451
    
    53. Cassens I, Mardulyn P, Milinkovitch MC. Evaluating Intraspecific "Network" Construction Methods Using Simulated Sequence Data: Do Existing Algorithms Outperform the Global Maximum Parsimony Approach?. Syst. Biol., 2005, 54: 363-372
    
    54. Chuck G, Meeley RB, Hake S. The control of maize spikelet meristem fate by APETALA2-like gene indeterminate spikelet. Genes Dev, 1998, 12: 1145-1154
    
    55. Church GL, Taxonomic and genetic relationships of eastern North American species of Elymus with setaceous glumes, Rhodora, 1967, 69: 121-162.
    
    56. Clegg MT, Gant BS, Learn GH. Rates and patterns of chloroplast DNA evolution. Proc. Natl. Acad. Sci. U.S.A., 1994, 91: 6795-6801
    
    57. Czerepanov SK. Vascular plants of Russia and adjacent states (the former USSR). Cambridge, Cambridge University Press, 1995
    58. Dewey DR. Genomic and phylogenetic relationships among North American perennical Triticeae. In: Estes JR, Tyrl RJ, Brunken JN, eds. Grasses and Grasslands: Systematics and Ecology. Norman, University of Oklahoma Press, 1982, 51-88
    
    59. Dewey DR. The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP. ed. Gene Manipulation in Plant Improvement. New York: Plenum Press, 1984, 209-279
    
    60. Dong YS, Zhou RH, Xu SJ, et al. Desirable characteristics in perennial Trticeae collected in China for wheat improvement. Hereditas, 1992, 116: 175-178
    
    61. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus, 1990, 12, 13-15
    
    62. Doyle JJ, Doyle JL. Nuclear protein-coding genes in phylogeny reconstruction and homology assessment: some examples from Leguminosae. In: Hollingsworth PM, Bateman RM, Gornall RJ, eds. Molecular Systematics and Plant Evolution. Taylor and Francis, London, UK, 1999, 229-254
    
    63. Ellneskog-Staam P, Bothmer R von, Anamthawat-Jonsson K, et al.. Genome analysis of species in the genus Hystrix (Triticeae; Poaceae). Plant Syst Evol, 2007, 265: 241-249
    
    64. Endo TR, Gill BS. The deletion stocks of common wheat. J Hered, 1996, 87: 295-307
    
    65. Fan X, Zhang HQ, Sha LN, et al.. Phylogenetic analysis among Hystrix, Leymus and its affinitive genera (Poaceae: Triticeae) based on the sequences of gene encoding plastid acetyl-CoA carboxylase. Plant Sci, 2007, 174: 701-707
    
    66. Faris JD, Fellers JP, Brooks SA, et al.. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 2003, 164: 311-321
    
    67. Faris JD, Gill BS. Genomic targeting and highresolution mapping of the domestication gene Q in wheat. Genome, 2002, 45: 706-718
    
    68. Feldman M. Gene transfer from wild species into cultivated plants. Genetika, 1983, 15: 145-161
    
    69. Franzke A, Mummenhoff K. Recent hybrid speciation in Cardamine (Brassica ceae)-conversion of nuclear ribosomal ITS sequences in statu nascendi. Theor Appli Genet, 1999, 98: 831-834
    
    70. Gaut BS, d'Ennequin ML, Peek AS, et al.. Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci USA, 2000,97: 7008-7015
    
    71. Ge S, Sang T, Lu BR, Hong DY. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Missouri Bot Gard, 1999, 88: 373-457
    
    72. Gornicki P, Fans J, King I, et al.. Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. Proc Natl Acad Sci USA, 1997,94: 14179-14184
    
    73. Gould FW. Nomenclatrural changes on Elymus with a key to the Californian species. Madrono, 1947, 9:120-128
    
    74. Helfgott DM, Mason-Gamer RJ. The evolution of North American Elymus (Triticeae, Poaceae) allotetraploids: evidence from phosphoenolpyruvate carboxylase gene sequences. Syst Bot, 2004, 29:850-861
    75. Hershkovitz MA, Zimmer EA, Hahn WJ. Ribosomal DNA sequences and angiosperm systematics. In: Hollingworth PM, Baterman RM, Gomall RJ, eds. Molecular Systematics and plant evolution. London: Taylor & Francis, 1999: 268-326
    
    76. Hitchcock AS. Manual of the Grasses of the United States. 2nd edition revised by Chase A. Washington DC: UADA Misc Pub 200 US Gov't Printing Offica. 1951
    
    77. Hsiao C, Chatterton NJ, Asay KH, et al.. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome, 1995,38: 221-223
    
    78. Hsiao C, Wang RRC, Dewey DR. Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. Canadian Journal of Genetics and Cytology, 1986,28: 109-120
    
    79. Huang S X, Sirikhachornkit A, Su S J, Faris J D, Gill B S, Haselkorn R, Gomicki P. Gene encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutinary history of polyploid wheat. Proc Natl Acad Sci USA, 2002b, 99: 8133-8138
    
    80. Huang SX, Sirikhachornkit A, Faris JD et al.. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol, 2002a, 48: 805-820
    
    81. Huang SX, Su XJ, Haselkom R, et al.. Evolution of switchgrass (Panicum virgatum L.) based on sequences of the nuclear gene encoding plastid acetyl-CoA carboxylase. Plant Sci, 2003, 164:43-49
    
    82. Huelsenbeck JP, Ronquist F. MrBayes: Bayesian Inference of Phylogenetic Trees. Bioinformatics, 2001,17:754-755
    
    83. Jaaska V. Isoenzyme variation in the grass genus Elymus (Poaceae). Hereditas, 1992, 117: 11-22
    
    84. Jakob SS, Blattner FR. A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Mol Biol Evol, 2006, 23: 1602-1612
    
    85. Jauhar PP, Crane CF. An evaluation of Baum et al's assessment of the generic system of classification in the Triticeae. Am J Bot, 1989, 76: 571-576
    
    86. Jauhar PP. Multidisciplinary approach to genome analysis in the diploid species, Thinopyrum bessarabicum and T. elongation (Lophoprum elongatum) of the Triticeae. Theor Appli Genet, 1990, 80: 523-536
    
    87. Jensen KB, Chen SL. An overview: Systematic relationship of Elymus and Roegneria (Poaceae). Hereditas, 1992, 116: 127-132
    
    88. Jensen KB, Wang RRC. Cytological and molecular evidence for transferring Elymus coreanus from the genus Elymus to Leymus and molecular evidence for Elymus californicus (Poaceae: Triticeae). In J Plant Sci, 1997, 158: 872-877
    
    89. Jensen KB. Cytology, fertility, and morphology of Elymus kengii (Keng) Tzvelev and E. grandiglumis (Keng) A Love (Triticeae: Poaceae). Genome, 1990a, 33: 563-570
    
    90. Jensen KB. Cytology and taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus, and E. batalinii (Poaceae: Triticeae). Genome, 1990b, 33: 668-673
    
    91. Jensen KB. Genome analysis of Eurasion Elymus thoroldianus, E. melantherus, and E. kokonoricus (Triticeae: Poaceae). In J Plant Sci, 1996, 157: 136-141
    
    92. Jiang JM, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73: 199-212
    
    93. Johnson LA, Soltis DE. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard, 1995, 82: 149-175
    
    94. Jones TA, Redinbaugh MG, Zhang Y The western wheatgrass chloroplast genome originates in Pseudoroegneria. Crop Science, 2000, 40: 43-47
    
    95. Kellogg EA, Appels R. Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics, 1995, 140: 325-343
    
    96. Kihara H, Nishiyama I. Genomanalyse bei Triticum und Aegilops. I. Genomaffini-taten tri-, tetra- und pentaploiden Weizenbastarden. Cytologia, 1930, 1: 270-284
    
    97. Kihara H. Fertility and morphological variation in the substitution and restoration backcrosses of the hybrid Triticum vulgare × Aegilops caudata. Proc 10th Congr Genet, Montreal, 1959, 142-171
    
    98. Kihara H. Interspecific relationship in Triticum and Aegilops. Seiken Zih, 1975, 15: 1-12
    
    99. Kilian B, Ozkan H, Deusch O et al.. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol, 2007,24: 217-227
    
    100. Kimber G, Alonso LG The analysis of meiosis in hybrids. III. Tetraploid hybrids. Can J Genet Cytol, 1981,23:235-254
    
    101. Kimber G. Genome analysis in the genus Triticum. In: Saksmoto S, ed. Proceedings of the 6th International Wheat Genetics' Symposium. Japan, Kyoto, Kyoto University Press, 1983, 23-28
    
    102. Koch M, Al-Shehbaz LA, Molecular systematics of the Chinese Yinshania (Brassicaceae): evidence from plastid trnL intron and nuclear ITS DNA sequence data, Annals of the Missouri Botanical Garden, 2000, 87: 246-272
    
    103. Koch MA, Dobes C, Thomas MO. Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in north American Arabis divaricarpa (Brassicaceae). Mol Biol Evol, 2003,20(3): 338-350
    
    104. Konishi T, Shinohara K, Yamada K. Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryote forms of this enzyme. Plant Cell Physiol, 1996,37: 117-122
    
    105. Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5: 150-163
    
    106. Lin JZ, Brown AH, Clegg MT. Heterogeneous geographic patterns of nucleotide sequence diversity and two alcohol dehydrogenase genes in wild barley (Hordeum vulgare ssp. sponianeum). Proc Natl Acad Sci USA, 2001, 98(2): 531-536
    
    107. Linder CR, Rieseberg LH. Reconstructing patterns of reticulate evolution in plants. Am J Bot, 2004,91: 1700-1708
    
    108. Liu QL, Ge S, Tang HB, et al.. Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phyto, 2006, 170:411-420
    
    109. Liu ZW, Wang RRC. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata ssp. scythica, and Thinopyrum intermedium (Triticeae: Gramineae). Genome, 1993,36: 102-111
    
    110. Love A. Conspectus of the Triticeae. Feddes Repert, 1984, 95: 425-521
    
    111. Love A. Generic evaluation of the wheatgrass. Biology Zentralbl, 1982, 101: 199-212
    
    112. Lu BR. The genus Elymus L. in Asia: taxonomy and biosystematics with special reference to genomic relationships. In: Wang RRC, Jensen KB, Jaussi C, eds. Proceedings of the 2nd International Triticeae Symposium, Logan, Utah, USA. The Utah State University Press, 1994a, 219-233
    
    113.Lu BR. Meiotic analysis of the intergeneric hybrids between Pseudoroegneria and tetraploid Elymus. Cathaya, 1994b, 6: 1-14
    114. Lu BR, Bothmer R von. Cytologica] studies of a dihaploid and hybrid from intergeneric cross Elymus shandongensis × Triticum aestivum. Hereditas, 1989, 111(2): 231-238
    115.Lu BR, Bothmer R von. Intergeneric hybridization between Hordeum and Asiatic Elymus. Hereditas, 1990a, 112: 109-116
    
    116. Lu BR, Bothmer R von. Genomic constitution of Elymus parviglume and E. pseudonutans in the tribe Triticeae (Poaceae). Hereditas, 1990b, 113(1): 109-119
    
    117. Lu BR, Bothmer R von. Meiotic analysis of Elymus caucasicus, E. longearistatus, and their interspecific hybrids with twenty-three Elymus species: Triticeae (Poaceae). Plant Syst Evol, 1993a, 185(1): 35-53
    
    118. Lu BR, Bothmer R von. Genomic constitutions of four Chinese endemic Elymus species: E. brevipes, E. yangii, E. anthosachoides, and E. altissimus (Triticeae, Poaceae). Genome, 1993b, 36: 863-876
    
    119. Lu BR, Salomon B, Bothmer R von. Cytogenetic studies of progenies from the intergeneric crosses Elymus × Hordeum and Elymus × Secale. Genome, 1990, 33: 425-432
    
    120. Lu BR, Salomon B. Differentiation of the SY genomes in Asiatic Elymus. Heredidas, 1992, 116: 121-126
    
    121. Lu BR, Salomon B. Genomic relationships among the Elymus parviglumis, E. semicostatus, and E. tibeticus groups (Triticeae: Poaceae). Genetica, 1993, 90: 47-60
    
    122. Mason-Gamer RJ. Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based of granule-bound starch synthase gene sequences. 2001, Syst Bot, 26: 757-758
    
    123. Mason-Gamer RJ. Reticulate evolution, introgression, and intertribal gene capture in an allohexaploid grass. Syst Biol, 2004, 53: 25-37
    
    124. Mason-Gamer RJ, Kellogg EA. Chloroplast DNA analysis of the monogenomic Triticeae: phylogenetic implications and genome-specific markers. In: Jauhar PP, ed. Methods of Genome Analysis in Plants. CRC Press, Boca Raton, FLA, 1996, 310-325
    
    125. Mason-Gamer RJ, Kellogg EA. Phylogenetic analysis of the Triticeae using the starch synthase gene, and a preliminary analysis of some North American Elymus species. In: Jacobs SWL, Everett J, eds. Grasses: Systematics and Evolution. CSIRO, Melbourne, 2000, 102-109
    
    126. Mason-Gamer RJ, Orme NL, Anderson CM. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome, 2002, 45: 991-1002
    
    127. Mason-Gamer RJ, Weil CF, Kellogg EA. Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol, 1998, 15: 1658-1673
    
    128. McMillan E, Sun GL. Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions. Theor Appli Genet, 2004, 108(3): 535-542
    
    129. Meguire PE, Dvorak J. High salt tolerance potential in wheat grasses. Crop Sci, 1981, 21:102-105
    
    130. Moench C. Methodus Plantas Horti Botanici et Agri Marburgensis a Staminum Situ Describendi. Margburgi Cattorum, 1794
    
    131. Morrison JW. Chromosome behaviour in wheat monosomics. Heredity, 1953, 7: 203-217
    
    132. Nevski SA. Tribe Hordeae Benth. In: Komarov VL, Roshevits RY, Shishkin BK, eds. Flora USSR. Leningrad, Academy of Science Press USSR, 1934,2: 590-728
    
    133. Nylander JAA, Ronquist F, Huelsenbeck JP, et al.. Bayesian phylogenetic analysis of combined data. Syst Biol, 2004, 53: 47-67
    
    134. Olmstead RG, Palmer JD. Chloroplast DNA systematics: A review of methords and data analysis. Am J Bot, 1994, 81: 1205-1224
    
    135. Osada T. Illustrated Grasses of Japan. Tokyo, Heibonsha, 1989
    
    136. Petersen G, Seberg O. Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. Mol Phylogenet Evol, 1997, 7: 217-230
    
    137. Popp M, Oxelman B. Inferring the history the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences, Mol Phylogenet Evol, 2001,20:474-481
    
    138. Randall LS. Phylogeny of Hibiscus sect. Muenchhusia (Malvaceae) Based on Chloroplast rpL16 and ndhF, and Nuclear ITS and GBSSI Sequences. Syst Bot, 2004,29: 385-392
    
    139. Redinbaugh MG, Jones TA, Zhang Y. Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome, 2000, 43: 846-852
    
    140. Rieseberg LH. Hybrid origins of plant species. Annual Review of Ecology and Systematics, 1997, 28: 359-389
    
    141.Rozas J, Sanchez-DeLBarrio JC, Messeguer X et al.. DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19(18): 2496-2497
    
    142. Runcmark H, Heneen WK. Elymus and Agropyron, a problem of generic delimitation. Bot Votiser, 1968,21:51-79
    
    143. Sakamoto S, Muramatsu M. Cytogenetics studies in the tribe Triticeae III. Pentaploid Agropyron hybrids and genome relationships among Japanese and Nepalese species. Japan J Genet, 1966, 41: 155-168
    144. Sakamoto S. Cytogenetic studies in the tribe Triticeae I: a polyhaploid plant of Agropyron tsukusheinsis var. transiens Ohwi found in a state of nature. Japan J Genet, 1964, 39, 393-400
    
    145. Sakamoto S. Patterns of phylogenetic differentiation in the tribe Triticeae. Seiken Ziho, 1973, 24: 11-31
    
    146. Sang T, Crawford DJ, Stuessy T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot, 1997, 84: 1120-1136
    
    147. Savolainen V, Chase MW. A decade of progress in plant molecular phylogenetics. Trends Genet, 2003, 19:717-724
    
    148. Sears ER. Transfer of alien genetic material to wheat. In: Evans LT, Peacook WJ, eds. Wheat Science Today and Tomorrow. Cambridge University Press, 1981, 75-89
    
    149. Semerikov VL, Lascoux M. Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae) species. Am J Bot, 2003, 90: 1113-1123
    
    150. Sharma HC, Gill BS, Uyemoto JK. High level of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Theor Appl Genet, 1984, 77: 369-374
    
    151. Sharma HC, Gill BS. Current status of wide hybridization in wheat. Euphytica, 1983, 32(1): 17-31
    
    152. Simons KJ, Fellers JP, Trick HN, et al.. Molecular Characterization of the Major Wheat Domestication Gene Q. Genetics, 2006, 172: 547-555
    
    153. Small RL, Ryburn JA, Cronn RC, et al.. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot, 1998, 85, 1301-1315
    
    154. Smith SE. Biparental inheritance of organelles and its implications in crop improvement. In: Janick J, ed. Plant Breeding Reviews. Portland-Ore, Timber Press, 1989, 361-393
    
    155. Soltis DE, Soltis PS. Choosing an approach and an appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ, eds. Molecular Systematics Plants. II. DNA Sequencing. Boston: Kluwer Academy Publications, 1998, 1-42
    
    156. Soltis DE, Soltis PS. Polyploidy: recurrent formation and genome evolution. Trends in Ecology and Evolution, 1999, 14: 348-352
    
    157. Soltis PS, Soltis DE. The role of genetics and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA, 2000, 97: 7051-7057
    
    158. Soltis DE, Soltis PS, Tate JA. Advanced in the study of polyploidy since plant speciation. New Phytol, 2003, 161: 173-191
    
    159. Stebbins JL, Pun FT. Artificial and natural hybrids in the Gramineae, tribe Hordeae. V. Diploid hybrids of Agropyron. Am J Bot, 1953, 40: 444-449
    
    160. Sun GL, Daley T, Ni Y. Molecular evolution and genome divergence at RPB2 gene of the St and H genome in Elymus species. Plant Mol Biol, 2007, 64: 645-655
    
    161. Sun GL, Ni Y, Daley T. Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Mol Phylogenet Evol, 2008,46: 897-907
    162. Sun GL, Salomon B, Bothmer R von. Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome, 1997,40: 806-814
    
    163. Svitashev S, Bryngelsson T, Li XM, et al.. Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus. Genome, 1998,41: 120-128
    
    164. Svitashev S, Salomon B, Bryngelsson T, et al.. A study of 28 Elymus species using repetitive DNA sequences. Genome, 1996,39: 1093-1101
    
    165. Swofford DL. PAUP*: Phylogenetic analysis using parsimony (*and other method). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USA. 2003
    
    166. Taberlet P, Gielly L, Pautou G, et al.. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol, 1991, 17: 1105-1109
    
    167. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673-4680
    
    168. Torabinejad J, Mueller RJ. Genome constitution of the Australian hexaploid grass, Elymus scabrus (Poaceae: Triticeae). Genome, 1993,36: 147-151
    
    169. Tzvelev NN. Tribe 3. Triticeae Dum. Poaceae URSS. Leningrad: Nauka, 1976
    
    170. Tzvelev NN. Tribe I. Triticeae. Infederov AA, ed. Grasses of the Soveit Union I. Dew Delhi & Calcutta: Oxohian Press, 1983, 147-298
    
    171. Wan YF, Yen C, Yang JL, Liu DC. The diversity of resources resistant to scab in Triticeae (Poaceae). Wheat information Service, 1997, 84: 7-12
    
    172. Wang RRC. Genome relationships in the perennial Triticeae based on diploid hybrids and beyond. Hereditas, 1992, 116: 133-136
    
    173. Wendel JF, Schnable A, Seelanan T. Bi-direction interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA, 1995, 92: 280-284
    
    174. Wilson FD. Revision of Sitanion (Triticeae, Grameneae). Brittonia, 1963,15: 303-323
    
    175. Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nucear DNAs. Proc Natl Acad Sci, 1987, 84: 9054-9058
    
    176. Yang JL, Yen C, Baum BR. Kengyilia: synopsis and key to species. Hereditas, 1992, 116: 25-28
    
    177. Yen C, Yang JL, Baum BR. Douglasdeweya: a new genus, with a new species and a new combination (Triticeae: Poaceae). Can J Bot, 2005a, 83: 413-419
    
    178. Yen C, Yang JL, Yen Y. Hitoshi Kihara, Askell Love and the modem genetic concept of the genera in the tribe Triticeae (Poaceae). Acta Phytotax Sin, 2005b, 43: 82-93
    
    179. Yen C, Yang JL. Kengyilia gobicola, a new taxon from west China. Can J Bot, 1990, 68: 1894-1987
    
    180. Yu H Q, Fan X, Zhang C, et al. Phylogenetic relationships of species in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences. Biologia, 2008, 63: 498-505
    
    181.Zeng J, Zhang L, Fan X, et al.. Phylogenetic analysis of Kengyilia species based on nuclear ribosomal DNA internal transcribed spacer sequences. Biol Plant, 2008, 52: 231-236
    
    182. Zhang HQ, Yang RW, Dou QW, et al. Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae: Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization. Chromosome Research, 2006, 14: 595-604
    
    183. Zhang HQ, Zhou YH, Zheng YL. Morphological and cytological studies on hybrid from Roegneria grandis × R. alashanica. Guihaia, 2002, 22 (4): 352-356
    
    184. Zhang HQ, Zhou YH. Meiotic pairing behaviour reveals difference in genomic constitution between Hystrix patula and other species of the genus Hystrix Moench (Poaceae, Triticeae). Plant Syst Evol, 2006, 258: 129-136
    
    185. Zhang L, Zheng YL, Wei YM, et al.. The genetic diversity and similarities among Kengyilia species based on random amplified microsatellite polymorphism. Genet Resour Crop Evol, 2005, 52:1011-1017
    
    186. Zhang XQ, Yang JL, Yen C, et al.. Cytogenetic and systematic analysis of Kengyilia gobicola, K. zhaosuensis and K. batalinii var. nana (Poaceae). Genet Resour Crop Evol, 2000,47:451 -454
    
    187. Zhang XQ, Yang JL, Yen C. The genome constitution of Roegneria grandis (Poaceae, Triticeae). Plant Syst Evol, 1998,209: 67-73
    
    188. Zhou YH, Zheng YL, Yang JL et al.. Relationships among species of Hystrix Moench and Elymus L. assessed by RAPDs, Genet Resour Crop Evol, 2000,47: 191-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700