用户名: 密码: 验证码:
不同来源甘蓝型油菜品系DH群体遗传变异研究及抗(耐)菌核病恢复系选育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国重要的油料作物和经济作物,我国常年种植面积超过一亿亩,年产油菜籽达1100万吨,种植面积和产量均占世界的三分之一,是世界上最大的油菜种植国和生产国(Zhou and Fu,2007)。因此利用各种生物技术手段,对油菜的主要性状进行进行遗传改良,增强其产量、品质及抗病虫害等能力,提高育种水平,对于发展我国油菜生产具有重要意义。
     甘蓝型油菜是常异花授粉的多倍体作物,在通过不同常规选择方法所获得的品种(品系)内可能存在不同程度的遗传变异。油菜小孢子培养是20世纪80年代发展起来的一项重要的生物技术,通过小孢子培养可以迅速获得基因型纯合的材料,因此研究利用该技术对不同来源的甘蓝型油菜品种(系)进行小孢子培养所获得DH群体的遗传变异特点,对于进一步改良这些油菜品种具有重要指导意义。
     菌核病位居我国油菜三大病害之首,主要发生在油菜的主产区长江流域,一般年份能造成10%的产量损失,重病年份可以使油菜产量减少80%。多年来,国内外在该病害的发生和流行规律及预测预报等方面做了大量的研究工作,在药剂和农业栽培措施防治等方面取得了一定的成绩,但仍未从根本上改变油菜菌核病严重危害的局面,因此,选育和利用抗(耐)病品种,作为最经济有效的方式,越来越受到人们的重视。
     在本试验中,以三个不同来源的波里马恢复系ZS4R、7-5和P24为供体,构建了3个DH群体。以7-5和P24 DH群体,及雷伟侠构建的包含有144个DH系的650 DH群体为材料,考查主要的农艺性状和品质性状,来探索常规品种(系)小孢子培养后代的遗传变异规律,以期为育种选择及小孢子培养技术的进一步应用提供参考。并以ZS4R、7-5、P24和650 DH群体为材料,选择抗(耐)菌核病恢复系,以期直接应用于育种工作。主要结果如下:
     1.对ZS4R、7-5和P24进行了小孢子培养,得到了分别包含有101、356和421个DH系的3个DH群体。
     2.在7-5和P24 DH群体中,所有的农艺性状和品质性状都产生了较大的分离,可以从中选择性状更优的DH系用于育种。
     3.7-5、P24 DH群体与650 DH群体相比,农艺性状和品质性状的变异系数没有显著的差异。
     4.在7-5、P24和650 DH群体中,角果长度和硫甙含量都出现了偏分离的现象,说明小孢子培养过程存在配子选择机制。
     5.对ZS4R、7-5、P24和650 DH群体的苗期菌核病抗性考查发现,四个DH群体苗期菌核病抗性平均水平呈现偏分离,ZS4R、7-5和P24 DH群体平均抗性强于各自的供体亲本,650 DH群体平均抗性偏向于高抗亲本。
     6.对ZS4R、7-5、P24和650 DH群体进行抗(耐)菌核病恢复系的选育过程中,对苗期和成株期菌核病抗性进行了相关分析,发现苗期抗性和成株期抗性相关系数极低。
     7.经过3年的选择鉴定,并配合以分子标记技术鉴定DH系间的遗传距离,最终在ZS4R、7-5、P24和650 DH群体中选到了10个菌核病抗性显著增强的优良DH恢复系,并应用于育种工作。
     本研究结果表明,常规育种方法所获得的油菜品种(系)的小孢子培养后代存在着丰富的遗传变异,且对其进行进一步的选择是有效的。
Rapeseed is an important oil crop and economic crop in China. China is the the biggest rapeseed planting country and the largest producer in the world. The year sown area surpasses 7 million hectares, the annual production of rapeseed amounts to 11 milliom tons, and either the planting area or the output occupies 1/3 of the world (Zhou and Fu, 2007). Therefore it is significant to using biotechnologies to raise the breeding level and improve the main traits of rapeseed, such as yield, quality and disease resistance.
     Brassica napus is an often cross-pollinated polyploid crop. There are possibly genetic variations in varieties which were breeded with traditional selecting. Microspore culture is an important biotechnology which was firstly reported successed in Brassica napus in the 1980s (Litcher, 1982). Homozygous materials could be obtained by using this method. It is significant for improving varieties to study the genetic variations of DH populations which were constructed from different varieties by using microspore culture.
     Sclerotinia stem rot is one of the most devastating diseases of rapeseed in China, and it is mainly occurred in the Yangtze River basin. It has been reported that Sclerotinia stem rot can cause up to 80% yield loss on rapeseed in severe incidences in China. There are a lot of researches about Sclerotinia stem rot's occurrence, regularity of epidemic and forecast forecast, and some progresses have acquired to prevent the disease by medicament and agricultural cultivation. But it still hadn't changed severely impair condition of Sclerotinia stem rot. Therefore breeding and application of S. Sclerotiorum resistant cultivar was regarded as the most ecomomic and efficiecy way to resolve the problem.
     In this research, three doubled haploid (DH) populations were generated from three B. napus polima cytoplasmic male sterility (pol CMS) restorers "ZS4R", "7-5" and "P24". And another "650" DH population included 144 DH lines was also used. Main agronomic traits and quality traits of "7-5", "P24" and "650" DH populations were evaluated to explore genetic variation regularity of descendant of microspore culture. On the other hand, "ZS4R", "7-5", "P24" and "650" DH populations were used to select Sclerotinia stem rot resistant DH restorer lines. Main results of the study are as follows:
     1. By application of microspore culture, "ZS4R", "7-5" and "P24" DH populations consisting of 101, 356 and 421 DH lines, respectively, were generated.
     2. There are abundant variation among all the agronomic traits and quality traits in the 7-5, P24 and 650 DH populations.
     3. There is no significant difference among the coefficient of variation of same trait in the 7-5, P24 and 650 DH populations.
     4. The silique length and glucosinolate content are distorted segregation. Segregation distortion may indicate that preferential gametic selection occurred during the development of the DH lines.
     5. The results of assessment of seedling resistance to Sclerotinia stem rot showed that the average Sclerotinia stem rot resistance of the four DH populations is distorted segregation. The average resistance of "ZS4R", "7-5" and "P24" DH populations is better than the donors, and the average resistance of "650" DH population lean to the higher resistant parent.
     6. Correlation coefficient of seedling stage resistance to adult stage resistance is very low.
     7. Ten elite DH lines with partial resistance to Sclerotinia stem rot were chosen within three years' selection and have been used in hybrid breeding.
     This study revealed that there is abundant genetic variation in DH populations generated from the varieties (lines) breeded by traditional methods and it is efficient to do the selecting in the DH populations.
引文
1.陈爱武.对甘蓝型油菜抗(耐)菌核病材料的初步研究.[硕士学位论文].武汉:华中农业大学图书馆,1997
    2.陈海峰.油菜与荠菜族间杂种和甘蓝型油菜缺体的遗传分析.[博士学位论文].武汉:华中农业大学图书馆,2008
    3.陈锦清,郎春秀,胡张华,刘智宏,黄锐之.反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究.农业生物技术学报,1999,7(4):316-320
    4.陈军,陈正华,刘澄清,姚渝光,张丽华,关月兰.甘蓝型油菜游离小孢子培养的胚胎发生.遗传学报,1995,22(4):307-315
    5.陈君琛.油菜菌核病菌丝体悬浮液培养初探.福建农业科技,1997,(3):15-15
    6.陈伟.用分子标记剖析油菜重要农艺性状的遗传基础.[博士学位论文].武汉:华中农业大学图书馆,2008
    7.陈玉卿,张洁夫.甘蓝型无花瓣油菜对菌核病抗(耐)性研究.江苏农业科学,1991,(6):10-13
    8.陈玉卿,张洁夫,伍贻美,侯庆树,周益军,韩红.芸薹属油菜种质资源抗(耐)菌核病、病毒病的鉴定.中国油料作物学报,1993,(2):4-7
    9.方宣钧,唐纪良,吴为人.作物DNA标记辅助育种.科学出版社,2001
    lO.费维新,胡宝成,李强生,陈凤祥,侯树敏,吴新杰,王文相.油菜抗(耐)菌核病的人工接种鉴定技术研究.安徽农业科学,2002,30(3):331-332,341
    11.傅寿仲,吕忠进,戚存扣.甘蓝型油菜无花瓣种质的基础研究.江苏农业学报,1993,9(3):12-12
    12.傅廷栋.杂交油菜的育种与利用(第二版).武汉:湖北科学技术出版社,2000
    13.韩继祥.甘蓝型油菜含油量的遗传研究.中国油料,1990,16(2):1-6
    14.何昆燕.利用DH(Doubled Haploid)群体对甘蓝型油菜菌核病抗性基因的QTL 定位和分析.[硕士学位论文].武汉:华中农业大学图书馆,2003
    15.胡宝成,S.Rimmer.油菜菌核病离体叶片接种法研究初报.安徽农业科学,1989,(3):56-58
    16.胡宝成,S.Rimmer.油菜同品种不同生育期耐菌核病性差异的初步研究.安徽农业科学,1991,(2):161-164
    17.胡琼,李云昌,梅德圣,方小平,L.Hansen,S.andersen.属间体细胞杂交创建甘蓝型油菜细胞质雄性不育系及其鉴定.中国农业科学,2004,37(3):333-338
    18.胡中立,刘后利.甘蓝型油菜品质性状的配合力分析及低硫甙种质新开发的理论探讨.作物学报,1989,15(3):221-229
    19.黄剑华.甘蓝型油菜耐菌核病性的花粉鉴定.上海农业学报,1999,15(1):33-35
    20.黄永菊,陈军,李云昌.甘蓝型油菜菌核病抗(耐)性的遗传研究Ⅰ.抗性遗传属性与配合力分析.中国油料作物学报,2000,22(4):1-5
    21.黄智明,翁海波,席宇,韩绍印,王时征.转入HPT1基因的油菜种子中维生素E含量的提高.植物生理学通讯,2006,42(005):888-890
    22.蓝海燕,田颖川.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报,2000,27(1):70-77
    23.李风华.油菜抗(耐)菌核病两种鉴定方法的效果.贵州农业科学,2003,31(5):34-36
    24.李秀萍,杜德志.春性甘蓝型油菜小孢子培养技术初探.青海农林科技,1997,(3):17-19
    25.李永红,张璞,穆建新,李殿荣.甘蓝型油菜对菌核病抗耐病性的育种潜力研究.西北植物学报,2001,21(3):451
    26.栗根义.人工合成甘蓝型油菜的方法及效果研究.武汉:华中农业大学图书馆,1988
    27.林宝刚,黄海,张龙,张明龙.甘蓝型油菜Polima和Shan 2A CMS的orf224基因的序列分析.中国农业科学,2006,39(6):1282-1286
    28.林良斌,熊兴华,祁永琼,董娜,马占强,肖关丽.基因枪转化甘蓝型油菜小孢子体系的建立.西南农业大学学报,2005,27(1):5-8
    29.刘澄清,杜德志.甘蓝型油菜的抗耐病性及其遗传效应研究.中国农业科学,1991,24(3):43-49
    30.刘春林.油菜分子标记图谱构建及抗菌核病基因的QTL定位.[博士学位论文].长沙:湖南农业大学图书馆,1999
    31.刘后利.油菜的遗传与育种.上海:科学技术出版杜,1998
    32.刘平武,周国岭,杨光圣,傅廷栋.双低甘蓝型油菜杂交种亲本指纹图谱构建 和杂交种纯度鉴定.作物学报,2005,31(5):640-646
    33.刘胜毅,刘越英,M.Barbetti,P.Salisbury,付先虎,郭学兰,董彩华.油菜菌核病抗性鉴定方法—装备喷雾系统的田间病圃法.第十二届国际油菜大会,2007,
    34.刘胜毅,周必文,余琦,周乐聪.草酸法筛选油菜抗菌核病材料的效果及其影响因素.植物保护学报,1998,25(1):56-60
    35.刘勇,布朗·霍尔腾斯.油菜苗期室内抗菌核病性研究—Ⅰ.离体叶片子囊孢子接种鉴定.西南农业学报,1993,(S1):74-78
    36.刘泽,周永明.甘蓝型油菜离体小孢子胚胎发生能力的遗传分析.作物学报,2000,26(1):101-109
    37.陆光远,杨光圣.应用于油菜研究的简便银染AFLP标记技术的构建.华中农业大学学报,2001,20(005):413-415
    38.罗红蓉,袁代斌,林琦,张义正.甘蓝型油菜转基因植株的获得及抗菌核病研究.第十二届国际油菜大会,2007,:283
    39.牛应泽,刘玉贞.人工合成甘蓝型油菜游离小孢子培养及其再植株再生研究初报.四川农业大学学报,1999,17(2):167-171
    40.牛应泽,刘玉贞.提高甘蓝型油菜游离小孢子产胚率的研究.西南农业学报,2002,15(1):24-27
    41.齐绍武,官春云,刘春林.甘蓝型油菜品系一些酶的活性与抗菌核病的关系.作物学报,2004,30(3):270-273
    42.冉毅,文成敬,牛应泽.油菜菌核病抗性鉴定方法的比较及抗源的筛选.植物保护学报,2007,34(6):601-606
    43.石淑稳,刘后利.甘蓝型油菜及其种间和属间杂种小孢子胚状体的诱导.华中农业大学学报,1993,12(6):544-550
    44.宋来强,贺兴文.甘蓝型油菜小孢子胚状体诱导的主要影响因素研究.江西农业学报,1998,10(2):66-69
    45.宋志荣,官春云.甘蓝型油菜硫苷特性与对菌核病抗性关系.湖南农业大学学报:自然科学版,2008,34(004):462-465
    46.孙超才.甘蓝型油菜抗菌核病性鉴定方法的比较.上海农业学报,1995,11(3):17-22
    47.孙万仓,张涛.抗生素诱导油菜变异的初步研究.中国油料作物学报,1998,20(2):16-20
    48.王丰,邱厥.甘蓝型油菜蛋白质含量的遗传及与其他几个性状相关的研究.中国农业科学,1990,23(6):42-47
    49.王汉中,刘贵华,郑元本,王新发,杨庆.抗菌核病双低油菜新品种中双9号选育及其重要防御酶活性变化规律的研究.中国农业科学,2004,37(1):23-28
    50.王景雪,赵福永,徐培林,田颖川.油菜转抗草甘膦,抗虫基因获得双抗植株.遗传学报,2005,32(012):1293-1300
    51.王俊生,田建华.甘蓝型油菜CMS保持系的选育与改良方法研究.西北农业学报,2002,11(002):90-92
    52.王俊霞.甘蓝型油菜PolCMS育性恢复基因图谱定位及抗菌核病恢复系的分子标记辅助选择.武汉:华中农业大学图书馆,2000
    53.王新发,王汉中,刘贵华,胡赞民,郑元本.导入双价基因的转基因杂交油菜亲本及其对菌核病抗性的研究.植物学通报,2005,22(3):292-301
    54.王新发,王汉中,刘贵华,胡赞民,郑元本.具双价基因的甘蓝型油菜游离小孢子的遗传转化.农业生物技术学报,2004,12(2):138-142
    55.王亦菲,刘成洪.大田油菜游离小孢子培养高频胚状体诱导及植株再生.中国农学通报,2002,18(1):20-23
    56.危文亮,王汉中,刘贵华.甘蓝型油菜新型细胞质雄性不育系NCa不育胞质类型的分子鉴定.中国农业科学,2005,38(10):1965-1972
    57.文静.芸薹属种间杂交合成甘蓝型黄籽油菜及杂交后代的研究.植物科学技术学院,2008,博士
    58.吴力游,高必达.油菜抗菌核病突变体筛选及抗性鉴定.农业现代化研究,1997,18(5):314-316
    59.肖玲,卢长明.以油菜脂肪酸延长酶基因fael为靶标RNAi载体的构建.中国油料作物学报,2004,26(4):6-11
    60.许绍斌,陶玉芬.简单快速的DNA银染和胶保存方法.遗传,2002,24(003):335-336
    61.杨向东,王汉中,刘贵华,王新发.木质素合成调控及其与甘蓝型油菜抗菌核病和抗倒伏性关系研究.第十二届国际油菜大会,2007,:104
    62.尹向锐.甘蓝型油菜抗菌核病QTL的定位和分析.[硕士学位论文].武汉:华中农业大学图书馆,2007
    63.余凤群,刘后利.供体材料和培养基成份对甘蓝型油菜小孢子胚状体产量的影响.华中农业大学学报,1995,14(4):327-332
    64.余凤群,刘后利.提高甘蓝型油菜小孢子胚状体成苗率的某些培养因素研究.作物学报,1997,23(2):165-168
    65.余凤群.甘蓝型油菜未成熟小孢子培养体系的研究.农学系,1994a,博士学位论文
    66.余凤群.芸薹属植物未成熟小孢子培养技术的研究和应用.中国油料,1994b,16(2):2
    67.袁德奎.甘蓝型油菜品种对菌核病抗性的初步鉴定.作物品种资源,1994,(1):20-22
    68.张丽华,党本元.抗菌核病转基因油菜植株的获得.高技术通讯,1999,(12):41-46
    69.张书芬,傅廷栋,马朝芝,朱家成,王建平.甘蓝型油菜F2:3家系重要农艺性状及品质的相关和通径分析.华中农业大学学报,2004,增刊:80-83
    70.张天真.作物育种学总论.北京:中国农业出版社,2003方淑桂,陈文辉,曹小玲,朱朝辉,牛媛嫒,廖晓珍.大白菜游离小孢子培养若干因素探讨.福建农业学报,2004,19(4):243-246
    71.张献龙,唐克轩.植物生物技术.北京:科学出版社,2004
    72.张永泰,李爱民,陆莉,陈柳,惠飞虎,王幼平.通过甘蓝型油菜和白芥属间杂种后代的小孢子培养获得二体异附加系.作物学报,2006,32(11):1764-1766
    73.张志元,官春云.无菌苗法在鉴定油菜菌核病抗(耐)性上的应用.湖北农业科学,2005,(2):50-53
    74.张子龙,李加纳,唐章林,谌利,王瑞,徐新福.甘蓝型黄籽油菜主要品质性状间的相关性分析.中国农学通报,2008,24(007):158-160
    75.赵合句,黄永菊.油菜远缘杂交新品系-远杂3号.农业科技通讯,1996,(6):11-11
    76.中国农科院油料研究所.油菜菌核病.北京:农业出版社,1975
    77.周必文,余琦.油菜抗菌核病、病毒病材料鉴定与筛选.中国油料,1994,(增 刊):57-60
    78.周乐聪,余琦.油菜品种资源对菌核病的抗性鉴定.中国油料,1994,(增刊):69-72
    79.周永明,S.Rimmer.甘蓝型油菜和白菜型油菜种间杂种的小孢子培养.植物学报:英文版,1995,37(11):848-855
    80.周永明,S.Rimmer.甘蓝型油菜和芥菜型油菜种间杂种小孢子培养获得再生植株.作物学报,1996,22(4):399-402
    81.周永明,林忠武,董军刚,魏泽兰,石淑稳,张丽丽.甘蓝型油菜轮回选择研究Ⅳ.油菜菌核病抗(耐)性选择效果的初步评价.华中农业大学学报,1998,17(4):312-316
    82.周永明,谭亚玲.甘蓝型油菜辐射诱变研究.中国油料作物学报,1998,20(4):1-5
    83.祝师元.甘蓝型油菜Pol CMS恢复系小孢子培养后代的遗传变异.[硕士学位论文].武汉:华中农业大学图书馆,2007
    84.(?)hman I,Kazachkova N,Kamnert I,Hagberg P,Dayteg C,Eklund G,Meijer L,Ekbom B,Characterisation of transgenic oilseed rape expressing pea lectin in anthers for improved resistance to pollen beetle.Euphytica 2006:151,321-330.
    85.Bailey D,Screening for resistance to Sclerotinia sclerotiorum in oilseed rape using detached leaves.Annals of applied biology 1987:110,152-153.
    86.Baldev A,Gaikwad K,Kirti P,Mohapatra T,Prakash S,Chopra V,Recombination between chloroplast genomes of Trachystoma ballii and Brassica juncea following protoplast fusion.Molecular and General Genetics MGG 1998:260,357-361.
    87.Bansal V K,Thiagarajah M R,Stringam G R,Hardin R T,Haploid plantlet screening in the development of blackleg resistant DH lines of Brassica napus.Plant Breeding 1998:117,103-106.
    88.Barro F,Fernandez-Escobar J,De La Vega M,Martin A,Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microspores.Plant Breeding 2001:120,262-264.
    89.Barro F,Fernandez-Escobar J,De la Vega M,Martin A,Modification of glucosinolate and erucic acid contents in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores.Euphytica 2003:129,1-6.
    90.Barsby T,Yarrow S,Kemble R,Grant I,The transfer of cytoplasmic male sterility to winter-type oilseed rape (Brassica napus L.) by protoplast fusion. Plant science 1987: 53, 243-248.
    91. Boland G, Hall R, Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 1994: 16, 93-108.
    92. Bradley C, Henson R, Porter P, LeGare D, del Rio L, Khot S, Response of canola cultivars to Sclerotinia sclerotiorum in controlled and field environments. Plant Disease 2006: 90, 215-219.
    93. Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C, Broglie R, Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science 1991: 254, 1194.
    94. Brun H, Tribodet M, Renard M, Plessis J, Tanguy X, A field study of rapeseed (Brassica napus) resistance to Sclerotinia sclerotiorum Proceedings of the 7 th International Rapeseed Congress, Pozan, Poland. 1987: 1216-1221
    95. Buzza G, The inheritance of an apetalous flower character in canola (Brassica napus). Cruciferae Newsletter 1983: 8,11-12.
    96. Cardi T, Earle E, Production of new CMS Brassica oleracea by transfer of 'Anand' cytoplasm from B. rapa through protoplast fusion. Theoretical and Applied Genetics 1997:94,204-212.
    97. Chandler J, Corbesier L, Spielmann P, Dettendorfer J, Stahl D, Apel K, Melzer S, Modulating flowering time and prevention of pod shatter in oilseed rape. Molecular Breeding 2005:15,87-94.
    98. Chen J, Beversdorf W, Fatty acid inheritance in microspore-derived Populations of spring rapeseed (Brassica napus L.). Theoretical and Applied Genetics 1990: 80, 465-469.
    99. Cheung W, Champagne G, Hubert N, Landry B, Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theoretical and Applied Genetics 1997: 94, 569-582.
    100.Chuong P, Deslauriers C, Kott I, Effects of donor genotype and bud sampling on microspore culture. Canadian Journal of Botany 1988: 66, 1671-1675.
    101.Cistue L, Echavarri B, Batlle F, Soriano M, Castillo A, Valles M, Romagosa I, Segregation distortion for agronomic traits in doubled haploid lines of barley. Plant Breeding 2005: 124, 546-550.
    102.Cloutier S, Cappadocia M, Landry B, Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F_2 population and two microspore-derived populations. Theoretical and Applied Genetics 1995: 91, 841-847.
    
    103.Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J, Deschamps M, Genetic control of oil content in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics 2006:113, 1331-1345.
    104.Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung W, Landry B, Renard M, Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theoretical and Applied Genetics 1998: 97,129-134.
    105.Delourme R, Pilet-Nayel M L, Archipiano M, Horvais R, Tanguy X, Rouxel T, Brun H, Renard M, Balesdent M H, A Cluster of Major Specific Resistance Genes to Leptosphaeria maculans in Brassica napus. Phytopathology 2004: 94, 578-583.
    106.Denis M, Delourme R, Gourret J, Mariani C, Renard M, Expression of engineered nuclear male sterility in Brassica napus (genetics, morphology, cytology, and sensitivity to temperature), Vol. 101. Am Soc Plant Biol. 1993: 1295-1304
    107.Dickson M, Petzoldt R, Seedling downy mildew resistance in B. oleracea. Cruciferae Newsletter 1996, 108-109.
    108.Dion Y, Gugel R, Rakow G, Seguin-Swartz G, Landry B, RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.). Theoretical and Applied Genetics 1995: 91, 1190-1194.
    109.Dong X, Ji R, Guo X, Foster S J, Chen H, Dong C, Liu Y, Hu Q, Liu S, Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 2008: 228, 331-340.
    110.Duijs J, Voorrips R, Visser D, Custers J, Microspore culture is successful in most crop types of Brassica oleracea L. Euphytica 1992: 60, 45-55.
    111 .Ecke W, Uzunova M, Weissleder K, Mapping the genome of rapeseed (Brassica napus L.). IL Localization of genes controlling erucic acid synthesis and seed oil content. Theoretical and Applied Genetics 1995: 91, 972-977.
    112.Fan Z X, Lei W X, Hong D F, He J P, Wan L L, Xu Z H, Liu P W, Yang G S, Development and primary genetic analysis of a fertility temperature-sensitive polima cytoplasmic male sterility restorer in Brassica napus. Plant Breeding 2007: 126, 297-301.
    113.Ferreira M, Rimmer S, Williams P, Osborn T, Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 1995: 85, 213-217.
    114.Ferrie A, Epp D, Keller W, Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Reports 1995: 14, 580-584.
    115.Gasic K, Korban S, Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCSl) exhibit enhanced As and Cd tolerance. Plant Molecular Biology 2007: 64, 361-369.
    116.Gland A, Lichter R, Schweiger H G, Genetic and exogenous factors affecting embryogenesis in isolated microspore cultures of Brassica napus L. Journal of plant physiology 1988: 132, 613-617.
    117.Gleba Y, Hoffmann F, "Arabidobrassica": A novel plant obtained by protoplast fusion. Planta 1980: 149, 112-117.
    118.Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay J, Toppan A, Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnology 1996:14, 643-646.
    119.Grosse F, Leon J, Diepenbrock W, Yield formation and yield structure of winter oilseed rape (Brassica napus L.). 1. Genotypic variability. Journal of Agronomy and Crop Science (Germany) 1992.
    120.Gruber M, Wang S, Ethier S, Holowachuk J, Bonham-Smith P, Soroka J, Lloyd A, "HAIRY CANOLA"-Arabidopsis GL3 Induces a Dense Covering of Trichomes on Brassica napus Seedlings. Plant Molecular Biology 2006: 60, 679-698.
    121.Gu H, Zhou W, Hagberg P, High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp. chinensis. Euphytica 2003: 134, 239-245.
    122.Guha S, Maheshwari S C, In vitro production of embryos from anthers of Datura. Nature 1964: 204, 497.
    123.Hansen L, Earle E, Transfer of resistance to Xanthomonas campestris pv campestris into Brassica oleracea L. by protoplast fusion. Theoretical and Applied Genetics 1995:91, 1293-1300.
    124.Hasan M, Seyis F, Badani A, Pons-Kühnemann J, Friedt W, Lulls W, Snowdon R, Analysis of Genetic Diversity in the Brassica napus L. Gene Pool Using SSR Markers. Genetic Resources and Crop Evolution 2006: 53, 793-802.
    125.He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang G S, Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theoretical and Applied Genetics 2008: 117, 11-18.
    126.Hegedus D, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Roger Rimmer S, Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiolum infection, wounding and defense hormone treatment. Planta 2008: 228, 241-253.
    127.Henderson C, Pauls K, The use of haploidy to develop plants that express several recessive traits using light-seeded canola (Brassica napus) as an example. Theoretical and Applied Genetics 1992: 83,476-479.
    128.http://www.ag.ndsu.edu/pubs/plantsci/crops/pp1201w.htm
    129.Huang J, Hirji R, Adam L, Rozwadowski K, Hammerlindl J, Keller W, Selvaraj G, Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiology 2000: 122,747-756.
    130.Hüsken A, Baumert A, Milkowski C, Becker H, Strack D, Mollers C, Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theoretical and Applied Genetics 2005a: 111, 1553-1562.
    131.Hüsken A, Baumert A, Strack D, Becker H, Mollers C, Milkowski C, Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Molecular Breeding 2005b: 16, 127-138.
    132.Inomata N, Production of interspecific hybrids between Brassica campestris and B. oleracea by culture in vitro of excised ovaries. I. Effects of yeast extracts and casein hydrolysable on the development of excised ovaries. Japanese Journal of Breeding 1977: 27, 295.
    133. Javidfar F, Ripley V, Roslinsky V, Zeinali H, Abdmishani C, Identification of molecular markers associated with oleic and linolenic acid in spring. Plant Breeding 2006:125,65-71.
    134. Jean M, Brown G, Landry B, Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the 'Polima' CMS of canola (Brassica napus L.). Theoretical and Applied Genetics 1998: 97, 431-438.
    135.Jourdren C, Barret P, Brunei D, Delourme R, Renard M, Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theoretical and Applied Genetics 1996: 93, 512-518.
    136.Jurke C J, Fernando W G D, Comparison of growthroom screening techniques for the determination of physiological resistance to Sclerotinia stem rot in Brassica napus. Archives of Phytopathology and Plant Protection 2008: 41, 157 - 174.
    137.Kanrar S, Venkateswari J, Dureja P, Kirti P, Chopra V, Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FAT TYACID ELONGATION1 (BjFAEl) gene. Plant Cell Reports 2006: 25, 148-155.
    138.Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S, Identification of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breeding 2005: 124, 367-370.
    139.Keller W, Fan Z, Pechan P, Long N, Grainger J, An efficient method for culture of isolated microspores of Brassica napus Proceedings of the 7 th International Rapeseed Congress, Vol. 1, Pozan, Poland. 1987: 152-157
    140.Khot S D, Bradley C A, Rio L E d, Response of Brassica napus germ plasm accessions to Sclerotinia stem rot, In: Fu T, Guan C, (eds.) Proceedings of the 12th International Rapeseed Congress, Vol. Abstracts, Wuhan, China. 2007: 292
    141.Kirti P, Banga S, Prakash S, Chopra V, Transfer of ogu cytoplasmic male sterility to Brassica juncea and improvement of the male sterile line through somatic cell fusion. Theoretical and Applied Genetics 1995: 91, 517-521.
    142.Kohno-Murase J, Murase M, Ichikawa H, Imamura J, Improvement in the quality of seed storage protein by transformation of Brassica napus with an antisense gene for cruciferin. Theoretical and Applied Genetics 1995: 91, 627-631.
    143.Konishi T, Yoshimi R, Segregation distortion at the Est5 locus in doubled haploid lines of barley. Barley genetics newsletter (USA) 1993.
    144.Kucera V, Vyvadilova M, Tomaskova D, Development of self-incompatible double low winter oilseed rape lines by means of doubled haploid system The 10th international rapeseed congress, Vol. Breeding/Biotechnology, Canberra, Australia. 1999:250
    145.Kuginuki Y, Miyajima T, Masuda H, Hida K-i, Hirai M, Highly Regenerative Cultivars in Microspore Culture in Brassica Oleracea L. var. capitata. Breeding science 1999: 49,251-256.
    146.Landry B, Hubert N, Etoh T, Harada J, Lincoln S, A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 1991: 34, 543-552.
    147.Lashermes P, Combes M, Prakash N, Trouslot P, Lorieux M, Charrier A, Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 2001: 44, 589-596.
    148.Leflon M, Brun H, Eber F, Delourme R, Lucas M, Vallee P, Ermel M, Balesdent M, Chevre A, Detection, introgression and localization of genes conferring specific resistance to Leptosphaeria maculans from Brassica rapa into B. napus. Theoretical and Applied Genetics 2007:115, 897-906.
    149.Li C X, Li H, Siddique A B, Sivasithamparam K, Salisbury P, Banga S S, Banga S, Chattopadhyay C, Kumar A, Singh R, Singh D, Agnihotri A, Liu S Y, Li Y C, Tu J, Fu T D, Wang Y F, Barbetti M J, The importance of the type and time of inoculation and assessment in the determination of resistance in Brassia napus and B-juncea to Sclerotinia sclerotiorum. Australian Journal of Agricultural Research 2007: 58, 1198-1203.
    150.Li C X, Li H, Sivasithamparam K, Fu T D, Li Y C, Liu S Y, Barbetti M J, Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter. Australian Journal of Agricultural Research 2006: 57, 1131-1135.
    151.Li M, Li Z, Zhang C, Qian W, Meng J, Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa. Theoretical and Applied Genetics 2005:110, 1284-1289.
    152.Li R, Rimmer R, Buchwaldt L, Sharpe A, Seguin-Swartz G, Coutu C, Hegedus D, Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genetics and Biology 2004: 41, 735-753.
    153.Lichter R, Induction of haploid plants from isolated pollen of Brassica napus. Z. Pflanzenphysiol 1982: 105, 427-434.
    154.Lionneton E, Beuret W, Delaitre C, Ochatt S, Rancillac M, Improved microspore culture and doubled-haploid plant regeneration in the brown condiment mustard (Brassica juncea). Plant Cell Reports 2001: 20, 126-130.
    155.Liu J, Hong D F, Lu W, Liu P W, He Q B, Yang G S, Genetic analysis and molecular mapping of gene associated with dominant genic male sterility in rapeseed (Brassica napus L.). Genes & Genomics 2008: 30, 523-532.
    156.Liu S, Wang H, Zhang J, Fitt B D L, Xu Z, Evans N, Liu Y, Yang W, Guo X, In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Reports 2005: 24, 133-144.
    157.Liu Z-w, Fu T-d, Tu J-x, Chen B-y, Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theoretical and Applied Genetics 2005:110, 303-310.
    158.Lu G Y, Yang G S, Fu T D, Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant Breeding 2004: 123, 262-265.
    159.Lydiate D, Sharpe A, Aligning genetic maps of Brassica napus using microsatellite markers Book of Abstracts, Plant and Animal Genome XI, San Diego, USA. 2003:
    160.Manninen O, Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (Hordeum vulgare L.). Theoretical and Applied Genetics 2000: 100, 57-62.
    161.Manzanares-Dauleux M, Delourme R, Baron F, Thomas G, Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theoretical and Applied Genetics 2000: 101, 885-891.
    162.Marwede V, Gul M, Becker H, Ecke W, Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breeding 2005:124,20-26.
    163.Melander M, Kamnert I, Happstadius I, Liljeroth E, Bryngelsson T, Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and β-1, 3-glucanase genes in a double-gene construct. Plant Cell Reports 2006: 25, 942-952.
    164.Mullins E, Quinlan C, Jones P, Isolation of mutants exhibiting altered resistance to Sclerotinia sclerotiorum from small M_2 populations of an oilseed rape (Brassica napus) variety. European Journal of Plant Pathology 1999: 105, 465-475.
    165.Neuhaus G, Spangenberg G, Mittelsten Scheid O, Schweiger H, Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theoretical and Applied Genetics 1987: 75, 30-36.
    166.Nishi S, Kawata J, Toda M, On the breeding of interspecific hybrids between two genomes, c and a of Brassica through the application of embryo culture techniques. Japanese Journal of Breeding 1959: 8, 215-222.
    167.Palmer C, Keller W, Annison P, Utilization of Brassica haploids, In: Jain S M, et al., (eds.) In Vitro Haploid Production in Higher Plants, Vol. 3, Dordrecht, the Netherlands: Kluwer Academic Publishers 1996. 173-192
    168.Pilet M, Delourme R, Foisset N, Renard M, Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm.) Ces. et de Not., in winter rapeseed (Brassica napus L.). Theoretical and Applied Genetics 1998b: 96, 23-30.
    169.Pilet M, Delourme R, Foisset N, Renard M, Identification of QTL involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L.). Theoretical and Applied Genetics 1998a: 97, 398-406.
    170.Pilet M, Duplan G, Archipiano M, Barret P, Baron C, Horvais R, Tanguy X, Lucas M, Renard M, Delourme R, Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Science 2001: 41,197-205.
    171.Prakash S, Kirti P, Bhat S, Gaikwad K, Kumar V, Chopra V, A Moricandia arvensis-based cytoplasmic male sterility and fertility restoration system in Brassica juncea. Theoretical and Applied Genetics 1998: 97,488-492.
    172.Purdy L, Sclerotinia sclerotiolum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 1979: 69, 875-880.
    173.Qi X, Zhang M, Yang J, Molecular phylogeny of Chinese vegetable mustard (Brassica juncea) based on the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Genetic Resources and Crop Evolution 2007: 54,1709-1716.
    174. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, et al, A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theoretical and Applied Genetics 2006:114, 67-80.
    175.Quijada P, Udall J, Lambert B, Osborn T, Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theoretical and Applied Genetics 2006: 113,549-561.
    176.Ren J, Dickson M, Earle E, Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theoretical and Applied Genetics 2000: 100, 810-819.
    177.Rudolf K, Bohanec B, Hansen M, Microspore culture of white cabbage, Brassica oleracea var. capitata L.: Genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breeding 1999: 118, 237-241.
    178.Sacristan M, Resistance responses to Phoma lingam of plants regenerated from selected cell and embryogenic cultures of haploid Brassica napus. Theoretical and Applied Genetics 1982: 61,193-200.
    179. Sato S, Katoh N, Iwai S, Hagimori M, Effect of low temperature pretreatment of buds or inflorescence on isolated microspore culture in Brassica rapa (syn. B. Campestris). Breeding science 2002: 52, 23-26.
    180.Sayed H, Kayyal H, Ramsey L, Ceccarelli S, Baum M, Segregation distortion in doubled haploid lines of barley (Hordeum vulgare L.) detected by simple sequence repeat (SSR) markers. Euphytica 2002:125, 265-272.
    181.Schon C, Sanchez M, Blake T, Hayes P, Segregation of Mendelian markers in doubled haploid and F_2 progeny of a barley cross. Hereditas 1990:113, 69-72.
    182.Sedun F, Seguin-Swartz G, Rakow G, Genetic variation in reaction to Sclerotinia stem rot in Brassica species. Canadian Journal of Plant Science 1989: 69, 229-232.
    183.Sjodin C, Glimelius K, Transfer of resistance against Phoma lingam to Brassica napus by asymmetric somatic hybridization combined with toxin selection. Theoretical and Applied Genetics 1989: 78, 513-520.
    184.Sodhi Y, Chandra A, Verma J, Arumugam N, Mukhopadhyay A, Gupta V, Pental D, Pradhan A, A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard Brassica juncea. Theoretical and Applied Genetics 2006: 114, 93-99.
    185.Song K, Suzuki J, Slocum M, Williams P, Osborn T, A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length polymorphism loci. Theoretical and Applied Genetics 1991: 82, 296-304.
    186.Sundberg E, Glimelius K, A method for production of interspecific hybrids within Brassiceae via somatic hybridization, using resynthesis of Brassica napus as a model. Plant Science 1986: 43,155-162.
    187.Takeshita M, Kato M, Tokumasu S, Application of ovule culture to the production of intergeneric or interspecific hybrids in Brassica and Raphanus. The Japanese journal of genetics 1980: 55, 373-387.
    188.Teklewold A, Becker H, Comparison of phenotypic and molecular distances to predict heterosis and F_1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theoretical and Applied Genetics 2006: 112, 752-759.
    189.Thomson J, Kondra Z, Techniques for artificially inoculating oilseed rape with Sclerotinia sclerotiorum Proceedings of the 6th International Rapeseed Congress, Vol. 2, Paris. 1983:969-974
    190.Thormann C, Romero J, Mantet J, Osborn T, Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theoretical and Applied Genetics 1996: 93, 282-286.
    191.Thurling N, Morphophysiological determinants of yield in rapeseed (Brassica campestris and Brassica napus). II.* Yield components. Australian Journal of Agricultural Research 1974: 25, 711-721.
    192.Toroser D, Thormann C, Osborn T, Mithen R, RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L). Theoretical and Applied Genetics 1995: 91, 802-808.
    193.Truco M, Quiros C, Structure and organization of the B genome based on a linkage map in Brassica nigra. Theoretical and Applied Genetics 1994: 89, 590-598.
    194.Tsang E, Yang J, Chang Q, Nowak G, Kolenovsky A, McGregor D, Keller W, Chlorophyll reduction in the seed of Brassica napus with a glutamate 1-semialdehyde aminotransferase antisense gene. Plant Molecular Biology 2003: 51,191-201.
    195.Udall J, Quijada P, Lambert B, Osborn T, Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theoretical and Applied Genetics 2006: 113, 597-609.
    196.Uzunova M, Ecke W, Weissleder K, R(o|¨)bbelen G, Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theoretical and Applied Genetics 1995: 90, 194-204.
    197.Wang G C, He J P, Hong D F, Xie Y Z, Xu Z H, Liu P W, Yang G S, Development of AFLP and SCAR markers linked to a recessive genic male sterile gene (Bnms3) in rapeseed for marker-assisted selection. Korean Journal of Genetics 2007: 29, 481-487.
    198.Wang Y, Sonntag K, Rudloff E, Han J, Production of fertile transgenic Brassica napus by Agrobacterium-mediated transformation of protoplasts. Plant Breeding 2005: 124, 1-4.
    199.Xie Y Z, Hong D F, Xu Z H, Liu P W, Yang G S, Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breeding 2008:127, 145-149.
    200. Xu F, Wang Y, Meng J, Mapping boron efficiency gene (s) in Brassica napus using RFLP and AFLP markers. Plant Breeding 2001: 120, 319-324.
    201.Yamagishi M, Yano M, Fukuta Y, Fukui K, Otani M, Shimada T, Distorted segregation of RFLP markers in regenerated plants derived from anther culture of an F_1 hybrid of rice. Genes & Genetic Systems 1996: 71, 37-41.
    202.Yang B, Srivastava S, Deyholos M K, Kav N N V, Transcriptional profiling of canola (Brassica napus L.) responses to the fungal pathogen Sclerotinia sclerotiorum. Plant Science 2007:173,156-171.
    203 .Yang L Y, Liu P W, Yang G S, Development of Polima temperature-sensitive cytoplasmic male sterile lines of Brassica napus through isolated microspore culture. Plant Breeding 2006: 125, 368-371.
    204.Yang R-C, Thiagarajah M, Bansal V, Stringam G, Rahman M, Detecting and estimating segregation distortion and linkage between glufosinate tolerance and blackleg resistance in Brassica napus L. Euphytica 2006:148, 217-225.
    205.Yu B, Lydiate D, Young L, Sch?fer U, Hannoufa A, Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Research 2008:17, 573-585.
    206. Yu F, Lydiate D, Rimmer S, Identification of two novel genes for blackleg resistance in Brassica napus. Theoretical and Applied Genetics 2005:110, 969-979.
    207.Zhang F, Aoki S, Takahata Y, RAPD markers linked to microspore embryogenic ability in Brassica crops. Euphytica 2003:131, 207-213.
    208.Zhang F, Takahata Y, Inheritance of microspore embryogenic ability in Brassica crops. Theoretical and Applied Genetics 2001:103, 254-258.
    209.Zhang G, He Y, Xu L, Tang G, Zhou W, Genetic analyses of agronomic and seed quality traits of doubled haploid population in Brassica napus through microspore culture. Euphytica 2006: 149, 169-177.
    210.Zhang H, Hodson J, Williams J, Blumwald E, Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences 2001: 98,12832.
    211.Zhao J W, Meng J L, Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theoretical and Applied Genetics 2003: 106, 759-764.
    212.Zhao J W, Udall J A, Quijada P A, Grau C R, Meng J L, Osborn T C, Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theoretical and Applied Genetics 2006: 112, 509-516.
    213.Zhao J, Becker H, Zhang D, Zhang Y, Ecke W, Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theoretical and Applied Genetics 2006:113, 33-38.
    214.Zhao J, Becker H, Zhang D, Zhang Y, Ecke W, Oil content in a Europeanx Chinese rapeseed population QTL with additive and epistatic effects and their genotype-environment interactions. Crop Science 2005: 45, 51-59.
    215.Zhao J, Peltier A J, Meng J, Osborn T C, Grau C R, Evaluation of Sclerotinia stem rot resistance in oilseed Brassica napus using a petiole inoculation technique under greenhouse conditions. Plant Disease 2004: 88,1033-1039. 216.Zhao J, Wang J, An L, Doerge R, Chen Z, Grau C, Meng J, Osborn T, Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta 2007: 227,13-24.
    217.Zhou Y, Fu T, Genetic improvememt of rapeseed in China, In: Fu T, Guan C, (eds.) Proceedings of the 12th International Rapeseed Congress, Wuhan, China. 2007:
    218.Zhou Y, Wang H, Gilmer S, Whitwill S, Keller W, Fowke L, Control of petal and pollen development by the plant cyclin-dependent kinase inhibitor ICKl in transgenic Brassica plants. Planta 2002: 215, 248-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700