用户名: 密码: 验证码:
甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对作物遗传改良来讲,产量是最重要的目标性状。然而,产量又是极其复杂的性状,它是作物整个生命周期内一系列生长发育过程和环境互作的最终产物。首先,产量构成因子直接决定产量;其次,产量相关性状可以通过影响产量构成因子或其它未知的机制间接影响产量。虽然有大量的研究,但是在这些实验中产量及其杂种优势的遗传结构和遗传决定仍然是模糊不清的。首先,单个研究所检测到的QTL和互作对数目很少;其次,产量和具体的产量关联性状没有联系起来;最后,实验所设置的环境很少。
     本研究利用Tapidor(欧洲冬性油菜品种)×Ningyou7(中国半冬性油菜品种)组合F_1小孢子培养得到的含202个株系的DH群体在10个环境(6个半冬性和4个冬性),及这些株系随机相互杂交衍生的RC-F_2群体在3个环境(2个半冬性和1个冬性)下的田间实验,考察了种子产量及8个产量关联性状(5个产量相关性状:一次分枝数、生物学产量、花期、成熟期和株高;3个产量构成因子:全株角果数、每角果粒数和千粒重),结合一张高密度的分子标记遗传连锁图及其和拟南芥基因组的比较作图和候选基因的电子定位,利用元分析的方法对产量及其杂种优势的遗传结构和遗传决定在全基因组水平上进行了全面和深入的剖析。
     遗传图谱的构建、比较作图和候选基因的电子定位:利用TNDH群体202个株系1040个分子标记的基因型用JoinMap 3.0软件构建了一张786个分子标记的遗传连锁图:它覆盖甘蓝型油菜全基因组19个连锁群(A1-A10;C1-C9),图谱总长2117.2cM,标记间距为2.7 cM。以已鉴定的拟南芥21个保守区段为基础,将TNDH遗传连锁图上已知序列信息的277个分子标记作为锚定标记与拟南芥基因组进行比对,共鉴定了上百个共线性区段和保守岛。从拟南芥网站和发表的文献中收集了425个与本研究考察性状(如花期、株高、分枝数和种子数目等)相关的拟南芥基因,用电子定位的方法将它们的2185个同源基因定位到TNDH遗传连锁图上。
     亲本和群体的表型和杂种优势:对于花期、成熟期和千粒重,不管是冬性还是半冬性环境,两个亲本的表现都是一致的;对于其它6个性状,两个亲本在冬性和半冬性环境的表现完全相反而均值相当,这说明这6个性状的可塑性更大。而且,这6个性状的杂种优势都达到了显著水平:种子产量的中亲优势最强,其次是全株角果数和生物学产量,而株高、每角果粒数和一次分枝数较弱。F_1组合的中亲优势要强于RC-F_2群体的平均中亲优势,这说明一般来讲杂合有利于杂种优势。RC-F_2群体许多组合的中亲优势超过了F_1组合,这说明并不是所有杂合位点都对杂种优势有利,而有些纯合位点反而对杂种优势有利。
     表型和杂种优势的遗传相关和遗传力:不同环境同一对性状的表型和杂种优势间的遗传相关都有较大差异(大部分在程度上,少部分在方向上),这说明遗传相关的程度强烈依赖于所处的环境。性状表型及其杂种优势间的遗传相关表现出类似的规律:种子产量和绝大部分的其它性状都显著相关(和花期、成熟期负相关;和其它6个性状正相关)而且具有最高的平均决定系数,这说明产量及其杂种优势高度依赖于其它性状,它反映了产量的综合性特征。方差分析结果表明:基因型、环境和基因型×环境对所调查的性状都有显著的影响。性状中亲优势的遗传力普遍比表型遗传力低,而且在不同性状间表现相同的趋势:花期最高、千粒重和成熟期较高,株高和每角果粒数居中,生物学产量、一次分枝数和每角果粒数较低,种子产量最低。
     一般杂合度/特殊杂合度和杂种优势/杂种表型的遗传相关:一般来讲,特殊杂合度和杂种表型/中亲优势之间的相关性要高于一般杂合度和杂种表型/中亲优势的相关性,而杂种表型和杂合度之间的相关性和中亲优势与杂合度的相关性差别不大。不同环境间,其相关系数却表现出较大的差异,以S5最高,S6和N6差别不大。不同性状之间,其相关系数却表现出较大的差异。以种子产量各类相关系数的均值最大,其次是全株角果数、生物学产量和千粒重,再次是每角果粒数和一次分枝数,花期和成熟期最小。这一结果与这些性状杂种优势的强弱基本吻合。总的来看,这些相关系数都不高,这说明由分子标记杂合度无法预测杂种表型或中亲优势。
     QTL的检测及其遗传模式:两群体9性状在10个环境中共检测到了1022个QTL(其中614和408个分别在P=0.05和0.5的显著水平),去掉其中152个不能重复的P=0.5水平的QTL后,确定了870个QTL(命名为“identified-QTL”),其中85个控制种子产量。使花期推迟、成熟期延长、种子重量降低的identified-QTL等位基因大部分来自Tapidor,使分枝增多、生物学产量增加、植株增高、角果增多、种子增多、种子产量增加的等位基因基本上平均分布于双亲,这一结果与双亲这些性状的差异基本吻合。对RC-F_2群体来说,部分显性QTL所占的比例最高(53%),其次是加性(24%),显性和超显性所占的比例较少(12%和11%)。而且,种子产量QTL更多的表现显性和超显性,其次是全株角果数和生物学产量,每角果粒数、千粒重、一次分枝数和株高较少,花期和成熟期没有表现超显性的。
     不同实验QTL的整合及其对自然环境的响应:同一性状的大部分identified-QTL置信区间相互重叠,其中的694个用元分析的方法被整合成225个可重复的“consensus-QTL”,它们的平均置信区间也从6.5 cM缩减至3.7 cM,另外的176个identified-QTL未参与整合。这样,总的QTL数目缩减至401,它们分成两类:15个major QTL(至少在一次实验中R~2≥20%或至少在两次实验中R~2≥10%)和386个minor QTL(余下的)。将近一半consensus-QTL只在1个环境中出现,很少有consensus-QTL能够在一半以上的环境中出现。三分之一consensus-QTL能在冬性和半冬性环境中都出现,而三分之二的consensus-QTL只在其中一个出现。这说明产量性状及其杂种优势基因的表达强烈依赖于所处的环境。
     不同性状QTL的整合及指示QTL的确定:大部分consensus-QTL的置信区间相互重叠,其中的329个再次用元分析的方法被整合成111个多效性的“unique-QTL”,它们的平均置信区间缩小到2.5 cM,另外72个consensus-QTL未参与整合。所有55个种子产量consensus-QTL中只有8个是“独立”的,其它47个分别被整合成多效性的unique-QTL。事实上,这8个所谓“独立”的种子产量QTL中有6个与本研究未报道性状(叶片硫苷和菌核病抗性)的QTL重叠。这基本上表明,在我们的研究中,所有种子产量QTL都依赖于其它产量关联性状。种子产量和其它产量关联性状表现出最高程度的遗传相关,而且高比例的种子产量consensus-QTL和其它产量关联性状consensus-QTL重叠,这暗示着这些和产量consensus-QTL共定位的产量关联性状consensus-QTL是产量的潜在遗传决定。为了估计哪些产量关联性状consensus-QTL最有可能对产量consensus-QTL具有潜在的多效性效应,我们提出了指示QTL的概念及其确定标准:(1)和产量consensus-QTL重叠,(2)LOD值更高,(3)可重复性更好;(4)和产量QTL在更多环境中共同出现。47个多效性的种子产量consensus-QTL中有29个与多个产量关联性状consensus-QTL共定位,这说明除了多效性以外,产量QTL可能是多个紧密连锁的产量关联性状QTL的综合效应。因此,对其中19个多效性的种子产量consensus-QTL,我们确定了几个指示QTL,最后总共确定了63个指示QTL。多个indicatro-QTL和种子产量consensus-QTL可在相同或不同的环境中出现,这暗示着产量遗传结构的综合性、可变性和可塑性。与种子产量consensus-QTL相比,指示QTL往往LOD值和R~2更大,重复性更好,候选基因更容易鉴定,性状更容易考察,因而它方便了产量QTL的克隆。有几个间接的证据支持指示QTL是种子产量consensus-QTL的潜在遗传决定:(1)指示QTL和种子产量consensus-QTL之间的遗传距离很近,平均只有1.1 cM。(2)指示QTL和种子产量consensus-QTL置信区间的重叠比例很高,平均高达80.9%。(3)对于花期和成熟期,指示QTL和种子产量QTL加性效应的方向往往是相反的,而对于其它6个性状则往往是相同的,这一结果与这些性状和种子产量遗传相关的方向基本吻合。(4)许多指示QTL加性效应所估计出来的种子产量的变化值和种子产量QTL的加性效应很接近。
     互作对的检测、分布、类型、效应及其对自然环境的响应:两群体9性状在10个环境中共检测到了538个互作对,它们大多数主效并不显著。这些互作位点在基因组中的分布极不均匀,可见集中分布的热点,但是和这些热点互作的位点绝大部分是在不同的环境中检测到的,并且只有1%左右的互作对能在不同的环境中重复出现,这一比例远低于玉米和水稻(10%左右),这说明多倍体基因组中上位性的高度可变性和可塑性。对于RC-F_2群体检测到的互作对,加加互作的数目和总贡献率最大,其次是加显/显加互作,显显互作最小;而对于QTL,显性效应的总贡献率只占很小一部分。而且对于种子产量来说,互作对的总贡献率要大于QTL的总贡献率。因此,我们认为上位性(特别是加加上位性)是甘蓝型油菜杂种优势的主要遗传基础。9性状所有互作对两位点9种基因型组合的表型排序分析表明:(1)双杂合子没有排名第一和最后的,呈现两头小中间大的趋势,其它3类都有可能排名第一或最后;(2)单杂合子虽然有排名第一和最后的,但比例较小,而且其它排名的比例很均匀;(3)重组类型的纯合子和亲本类型的纯合子排名第一和最后的比例最高,呈现两头大中间小的趋势。这说明:双杂合子的稳定性>单杂合子的稳定性>纯合子的稳定性。
     本研究具有重要的科学意义和应用价值:(1)在一次实验中定位了几百个产量性状及其杂种优势相关的QTL,其中一半以上可在多个实验中得到验证,它们为分子标记辅助选择、QTL克隆和基因功能分析提供了重要的遗传资源。(2)利用元分析的方法首次准确的揭示了这些产量性状及其杂种优势QTL和互作对自然环境的响应规律,这对作物遗传育种研究具有重要的指导意义。(3)初步构建了一张较完整的产量及其杂种优势的遗传结构图,它的复杂性体现在产量QTL的多效性、综合性、可变性和可塑性以及上位性的重要性、高度可变性和可塑性。(4)在国际上首次创造性地提出了指示QTL的概念并通过它估计了产量及其杂种优势的候选基因,不但深化了我们对作物产量及其杂种优势遗传决定的认识,方便了产量QTL的克隆,而且为复杂性状的研究提供了一种新的思想和方法。
Yield is the most important and complex trait for the genetic improvement of crops, reflecting the culmination of all processes of growth and development and their interaction with the environment.Crop yield is directly determined by yield-component traits.Yield-related traits may also indirectly affect yield by affecting the yield-component traits or by other unknown mechanisms.Although much research has been reported,in each such experiment the genetic architecture and determinants of yield and heterosis has remained ambiguous.Firstly,few QTL have been identified;Secondly,yield,a particularly complex factor,has not been associated with any of the yield-associated traits, relatively simple factors;Thirdly,trials were carried out in a few environments.
     In this study,we developed two permanent populations of rapeseed(Brassica napus) from a cross,Tapidor(a European winter cultivar)×Ningyou7(a Chinese semi-winter cultivar).One is a double haploid population(named as TNDH) of 202 lines derived by microspore culture of F_1,and the other one is a reconstructed F_2(named as TNRC-F_2) population of 404 lines resulted from the randomly intermating of the 202 lines of TNDH population.The two populations(TNDH and TNRC-F_2) were grown in 10 and 3 year×location combinations(microenvironments),respectively,with a randomized complete block design of 3 replicates.Seed yield and eight yield-associated traits(3 yield-component traits:pod number,seed number and seed weight;5 yield-related traits: branch number,biomass yield,flowering time,maturity time and plant height) were investigated.The genetic architecture and determinants of yield was analyzed thorough identification and meta-analysis of quantitative trait loci(QTL) for seed yield and 8 yield-associated traits from two populations and 10 year×location combinations using a high-density linkage map,comparative mapping and candidate gene in silico mapping. The main results and conclusions are summarized as follows:
     Construction of linkage map,comparative mapping and in silico mapping of candidate genes:A high-density linkage map of 786 molecular markers was constructed by JoinMap 3.0 software using 1040 molecular markers genotyped with TNDH population. It covered 19 linkage group identified as A1-A10(A genome) and C1-C9(C genome), with a total length of 2117.2 cM and an average distance of 2.7 cM between markers.Based on the 21 syntenic blocks of Arabidopsis identified in previous research, 277 molecular markers with known sequence information were employed as anchored markers for the alignment between the linkage map of TNDH and the genome of Arabidopsis thaliana and more than one hundred syntenic blocks or insertion fragments (islands) were identified.A total of 425 genes of Arabidopsis with known functions relating to flowering time,plant height,branch number,and other traits investigated in this study were collected from the TAIR website and the published papers.A total of 2185 homologous of the 425 Arabidopsis genes were were aligned to the TNDH linkage map by in silico mapping approach.
     Phenotype and heterosis of two parents and populations:Ningyou7,a semi-winter cultivar,had larger seeds and flowered and matured earlier than the winter cultivar,Tapidor,in all environments.However,for the other six traits,the performance of the two parents in the two macroenvironments(winter and semi-winter) was reversed, such that the means in the two macroenvironments were similar.This reflects the adaptability of the two cultivars to the different macroenvironments and the phenotypic plasticity of flowering time,maturity time and seed weight were smaller than that of other 6 traits.The six traits also showed significant heterosis:seed yield>pod number and biomass yield>plant height,seed number and branch number.The midparent heterosis of F_1 was higher than that of the mean of RC-F_2 population,this indicated that heterozygote was generally favorable to heterosis.The midparent heterosis of many cross in RC-F_2 population was greater than that of F_1 cross,this indicated heterozygote are not always favorable to heterosis and homozygote at some loci may further improve heterosis.
     Genetic correlations and heritability of phenotype and heterosis among different traits:In different microenvironments,pair-wise genetic correlations among the phenotype/midparent heterosis of different traits differed considerably(mostly in degree,a few in direction),which suggested that genetic correlations depended strongly on the environment.In general,seed yield was correlated with all investigated traits(negatively for flowering and maturity times,and positively for the other 6 traits),notably with the highest average coefficients of determination.This indicated seed yield strongly depended on other traits investigated in this research,reflecting the synthesis and complexity of seed yield.Despite strong genotypic and environmental effects for all investigated traits,there were significant genotype×environment interactions.The broad-sense heritability of trait performance was higher than that of midparent heterosis:flowering time>seed weight and maturity time>plant height and seed number>biomass yield,branch number and pod number>seed yield.
     Correlations of general heterozygosity/special heterozygosity and heterosis and hybrid performance:In general,the correlation of specail heterozygosity and hybrid performance and midparent heterosis was higher than that of general heterozygosity and hybrid performance and heterosis.But the correlation of hybrid performance and heterozugosity were not significantly different with that of heterosis and heterozygosity.In different microenvironments,the correlation coefficients showed significant difference: the highest for S5,S6 and N6 were not significantly different with each other.For different traits,the correlation coeffecients showed great variations:seed yield>pod number,biomass yield and seed weight>seed number per pod and branch number>flowering time and maturity time.This result was well accordant with the heterosis level of these traits.In general,these correlation coefficients were all low,this indicated that heterosis could not be exactly predicted by molecular marker heterozygosity.
     Detection of QTL and mode of inheritance:A total of 1022 QTL(614 and 408 respectively at P=0.05 and 0.5) were detected for the nine traits from two populations and 10 microenvironments using WinQTLCart 2.5 software.After deleting 152 non-overlapping QTL at P=0.5,a total of 870 QTL were identified for the nine traits(then named as "identified-QTL"),of which nearly 10%(85) were for seed yield.The identified-QTL alleles that increased flowering and maturity times but decreased seed weight came mostly from Tapidor,and that increased branches,bioamass yield,plant height,pod number,seed number and seed yield came basically equally from the two parents,which accorded well with the performance of the two parents for these traits.For RC-F_2 population,the proportion of partial-dominant QTL was the highest,followed by additive QTL,the least was dominant and over-dominant QTL.For seed yield,more QTL showed dominant and over-dominant mode,then followed by pod number and biomass yield,followed by seed number,seed weight,branch number and plant height,the least was flowering time and maturity time:no over-dominant QTL was found.
     Meta-analysis of identified-QTL in different experiments and expression response of consensus-QTL in natural environments:Where the confidence intervals of identified-QTL for each trait in different experiments overlapped,the 694 overlapping identified-QTL were integrated into 225 reproducible "consensus-QTL" by meta-analysis using BioMercator 2.1 software,with reduced confidence intervals from an average of 6.5 to 3.7 cM.The other 176 non-overlapping identified-QTL were not involoved in the "actual" integration.The total 401 consensus-QTL were classified into two types:15 major QTL(those occurring at least once with R~2≥20%or at least twice with R~2≥10%) and 386 minor QTL(the remainder with relatively small effect).Nearly half consensus-QTL,particularly those of seed yield,was specifically detected in one of the 10 microenvironments and few were detected in more than half microenvironments.Two thirds of the consensus-QTL was detected in either the winter or semi-winter macroenvironment,and only one third appeared in both.The high proportion of environment-specific QTL indicates the large impact the natural environment has on the genes underlying seed yield and yield-associated traits.
     Meta-analysis of consensus-QTL for different traits and the identification of indicator-QTL:Most of the consensus-QTL determined for each trait overlapped with those determined for other traits,the 329 overlapping consensus-QTL were integrated into 111 pleiotropic "unique-QTL" by meta-analysis again,with reduced average putative confidence interval of 2.5 cM.Another 72 consensus-QTL were not invooved into the "actual" integration.The 55 consensus-QTL for seed yield were classified into two types: (ⅰ) 8 non-overlapping QTL,and(ⅱ) 47 overlapping QTL,which were integrated into pleiotropic unique-QTL with shorter average confidence interval of 2.5 cM.Additionally, six of eight "independent" QTL for seed yield overlapped other QTL for traits not published in this paper.Seed yield showed the highest correlation with the other 8 traits, and a high percentage(85%) of QTL for seed yield colocalized with QTL for other yield-associated traits,which indicated that the QTL of yield-associated traits were potential contributors to the colocalized QTL for seed yield.To estimate which QTL of yield-associated trait(s) were more likely to have pleiotropic effect on seed yield at a particular locus,the idea of indicator-QTL was proposed to identify the probable genetic determinant of the colocalized QTL for seed yield.The indicator-QTL are determined by their larger LOD scores,better reproducibility,overlapping confidence intervals and presence in common environment(s) with the QTL for seed yield.Twenty-nine of 47 pleiotropic QTL for seed yield colocalized with more than two consensus-QTL,which indicated that,in addition to pleiotropy,the effect of the QTL for seed yield could be a synthetic effect of several underlying tightly linked QTL of different yield-associated traits.Multiple indicator-QTL were chosen for 14 pleiotropic QTL for seed yield and a total of 63 indicator-QTL were determined.Multiple indicator-QTL came from the same or different environments,indicating the synthesis,variability and plasticity of QTL for yield which was strongly dependent on the environmental conditions.Indicator-QTL, from easily measured traits,usually had more stable expression,higher LOD scores,larger R~2 values,and identifiable candidate genes than the colocalized QTL for seed yield and thus will facilitate the cloning of yield QTL,assuming that pleiotropy and not linkage is the cause of the colocalization of the indicator-QTL with the corresponding QTL for seed yield.There is indirect evidence that supports the idea that pleiotropy is likely to be the genetic cause of the co-localization of indicator-QTL and seed yield QTL:(1) the peak positions of the two kinds of QTL are very close to each other;(2) the proportion of the overlapping confidence intervals of the two kinds of QTL is very high;(3) the additive-effect directions of the seed yield QTL are generally opposite(-) to that of indicator-QTL for two traits(flowering time and maturity time) while mostly the same(+) for the other six traits,which accorded well with the signs of the genetic-correlation coefficients of seed yield with the above eight yield-associated traits;(4) in many cases, the additive effect of the seed yield QTL was very near to the putative change in the value of seed yield that was estimated from the additive effect of the indicator-QTL.
     Detection,distribution,type,effect and environmental response of epistatic interactions:A total of 538 E-QTL were found in two populations in all microenvironments for nine traits,most of them did not show significant main-effect.The loci involved into E-QTL showed uneven distribution in the genome with significant hotspot that was identified in different microenvironments.Only 1%of the E-QTL was reproducible and this proportion was significantly lower than that of maize and rice(10%). This reflected the high variability and plasticity of the epistatic interactions in polyploid. For the E-QTL identified in RC-F_2 population,the total number and R~2 of AA interaction was the largest,followed by AD/DA interaction,the least was DD interaction.For the M-QTL,dominant effect was responsibole for a minor part of variance explained.For seed yield,the variance explained by E-QTL was higher than that of M-QTL.This strongly suggested that epistasis,especially AA epistasis,was the major genetic basis of heterosis in Brassica napus.Double homozygote was most likely to be the best and worst genotype.Double heterozygote was most unlikely be the best and worst genotype.
     Our research has great significance for science and application:(1) We identified hundreds of QTL for yield traits and their heterosis,more than half of them were confirmed by different experiments and provided an important genetic resource for marker-assisted selection,QTL cloning and gene function analysis.(2) The mode of expression of QTL for yield traits and heterosis in natural environments was revealed by meta-analysis and this may have significant implications for crop genetics and breeding. (3) The complexity of the genetic architecture of yield and heterosis was demonstrated by meta-analysis,illustrating the pleiotropy,synthesis,variability,and plasticity of yield QTL and the importance,high variability and plasticity of epistasis.(4)The idea of estimating indicator-QTL for yield QTL and identifying potential candidate genes for yield not only deepens our understanding of the genetic determinants of yield and facilitates the cloning of yield QTL but also provides an advance in methodology for complex traits.
引文
1.陈伟.用分子标记剖析油菜重要农艺性状的遗传基础.[博士学位论文],武汉:华中农业大学图书馆,2007
    2.孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2005
    3.Allard RW.Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors.J Hered,1988,79:225-238
    4.Anholt RR,Dilda CL,Chang S,Fanara JJ,Kulkarni NH,Ganguly I,Rollmann SM,Kamdar KP,Mackay TF.The genetic architecture of odor-guided behavior in Drosophila:epistasis and the transcriptome.Nat Genet,2003,35:180-184
    5.Arcade A,Labourdette A,Falque M,Mangin B,Chardon F,Charcosset A,Joets J.BioMercator:integrating genetic maps and QTL towards discovery of candidate genes.Bioinformatics,2004,20:2324-2326
    6.Ashikari M,Sakakibara H,Lin S,Yamamoto T,Takashi T,Nishimura A,Angeles ER,Qian Q,Kitano H,Matsuoka M.Cytokinin oxidase regulates rice grain production.Science,2005,309:741-745
    7.Auger DL,Gray AD,Ream TS,Kato A,Coe EH,Jr.,Birchler JA.Nonadditive gene expression in diploid and triploid hybrids of maize.Genetics,2005,169:389-397
    8.Avery L,Wasserman S.Ordering gene function:the interpretation of epistasis in regulatory hierarchies.Trends Genet,1992,8:312-316
    9.Babula D,Misztal LH,Jakubowicz M,Kaczmarek M,Nowak W,Sadowski J.Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana:identification and genome comparative mapping of specific gene homologues.Theor Appl Genet,2006,112:410-420
    10.Baenziger PS,Russell WK,Graef GL,Campbell BT.Improving lives:50 years of crop breeding,genetics,and cytology(C-1).Crop Sci,2006,46:2230-2244
    11.Bahcall O.Candidate screening with epistasis.Nat Genet,2006,38:19-19
    12.Bao J,Lee S,Chen C,Zhang X,Zhang Y,Liu S,Clark T,Wang J,Cao M,Yang H,Wang SM,Yu J.Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars.Plant Physiol,2005,138:1216-1231
    13.Baratta R,Di Paola R,Spampinato D,Fini G,Marucci A,Coco A,Vigneri R,Frittitta L,Trischitta V.Evidence for genetic epistasis in human insulin resistance:the combined effect of PC-1(K121Q) and PPARgamma2(P12A) polymorphisms.J Mol Med,2003,81:718-723
    14. Barendse W, Harrison BE, Hawken RJ, Ferguson DM, Thompson JM, Thomas MB,Bunch RJ. Epistasis between calpain 1 and its inhibitor calpastatin within breeds of cattle. Genetics, 2007, 176:2601-2610
    
    15. Baurle I, Dean C. The timing of developmental transitions in plants. Cell, 2006,125:655-664
    
    16. Beavis WD (1994) The power and deceit of QTL experiments:lessons from comparitive QTL studies. Proceedings of the Forty-Ninth Annual Corn & Sorghum Industry Research Conference. American Seed Trade Association, Washington, DC,pp 250-266
    
    17. Beavis WD (1998) Molecular Dissection of Complex Traits. CRC Press, New York
    
    18. Belkhadir Y, Wang X, Chory J. Brassinosteroid signaling pathway. Sci STKE, 2006,314:1410-1411
    
    19. Benfey PN, Mitchell-Olds T. From genotype to phenotype: systems biology meets natural variation. Science, 2008, 320:495-497
    
    20. Bernig T, Taylor JG, Foster CB, Staats B, Yeager M, Chanock SJ. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun, 2004, 5:461-476
    
    21. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L. Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize.Theor Appl Genet, 2006, 113:206-224
    
    22. Blanc G, Hokamp K, Wolfe KH. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res, 2003, 13:137-144
    
    23. Boote KJ, Sinclair TR. Crop physiology: Significant discoveries and our changing perspective on research. Crop Sci, 2006, 46:2270-2277
    
    24. Bowers JE, Chapman BA, Rong J, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 2003,422:433-438
    
    25. Briggs WH, McMullen MD, Gaut BS, Doebley J. Linkage mapping of domestication loci in a large maize-teosinte backcross resource. Genetics, 2007, 177:1915-1928
    
    26. Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B. Practical applications of the bioinformatics toolbox for narrowing quantitative trait Loci. Genetics, 2008,180:2227-2235
    
    27. Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B,Munier-Jolain N, Duc G. Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol, 2007, 144:768-781
    
    28. Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTLxenvironment interaction on the developmental behavior of plant height in rice (Oryza sativa L.).Theor Appl Genet, 2001, 103:153-160
    
    29. Carlborg O, Jacobsson L, Ahgren P, Siegel P, Andersson L. Epistasis and the release of genetic variation during long-term selection. Nat Genet, 2006, 38:418-420
    
    30. Catano G, Agan BK, Kulkarni H, Telles V, Marconi VC, Dolan MJ, Ahuja SK.Independent effects of genetic variations in mannose-binding lectin influence the course of HIV disease: the advantage of heterozygosity for coding mutations. J Infect Dis, 2008, 198:72-80
    
    31. Chen W, Zhang Y, Liu X, Chen B, Tu J, Tingdong F. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F(2) populations. Theor Appl Genet, 2007, 115:849-858
    
    32. Chen X, Li M, Shi J, Fu D, Qian W, Zou J, Zhang C, Meng J. Gene expression profiles associated with intersubgenomic heterosis in Brassica napus. Theor Appl Genet, 2008, 117:1031-1040
    
    33. Cheng SH, Cao LY, Zhuang JY, Chen SG, Zhan XD, Fan YY, Zhu DF, Min SK. Super hybrid rice breeding in China: Achievements and prospects. J Integr Plant Biol, 2007,49:805-810
    
    34. Christians JK, Senger LK. Fine mapping dissects pleiotropic growth quantitative trait locus into linked loci. Mamm Genome, 2007, 18:240-245
    
    35. Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping.Genetics, 1994, 138:963-971
    
    36. Cockerham CC, Zeng ZB. Design III with marker loci. Genetics, 1996,143:1437-1456
    
    37. Cockram J, Jones H, Leigh FJ, O'Sullivan D, Powell W, Laurie DA, Greenland AJ.Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot, 2007, 58:1231-1244
    
    38. De Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci, 2007, 12:474-481
    
    39. Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell,2006, 127:1309-1321
    40. Downey RK, Rimmer SR (1993) advances in agronomy. Academic Press, San Diego,California
    
    41. Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007, 316:1862-1866
    
    42. Dyrskjot L, Zieger K, Orntoft TF. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers. Front Biosci, 2007,12:2063-2073
    
    43. Eckardt NA. Epistasis and genetic regulation of variation in the Arabidopsis metabolome. Plant cell, 2008, 20:1185-1186
    
    44. Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116:113-125
    
    45. Evenson RE, Gollin D. Assessing the impact of the green revolution, 1960 to 2000.Science, 2003, 300:758-762
    
    46. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112:1164-1171
    
    47. Featherstone DE, Broadie K. Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays, 2002, 24:267-274
    
    48. Flavell AJ, Bolshakov VN, Booth A, Jing R, Russell J, Ellis TH, Isaac P. A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucleic Acids Res, 2003, 31(19):e115
    
    49. Flint-Garcia SA, Thomsberry JM, Buckler ESt. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54:357-374
    
    50. Frascaroli E, Cane MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pe ME. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics, 2007, 176:625-644
    
    51. Fu BY, Xiong JH, Zhu LH, Zhao XQ, Xu HX, Gao YM, Li YS, Xu JL, Li ZK.Identification of functional candidate genes for drought tolerance in rice. Mol Genet Genomics, 2007, 278:599-609
    
    52. Gao M, Li G, Yang B, McCombie WR, Quiros CF. Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome, 2004, 47:666-679
    
    53. Garcia AA, Wang S, Melchinger AE, Zeng ZB. QTL mapping and the genetic basis of heterosis in maize and rice. Genetics, 2008, 180:1707-1724
    
    54. Gibson G. Epistasis and pleiotropy as natural properties of transcriptional regulation.Theor popul biol, 1996, 49:58-89
    
    55. Gjuvsland AB, Hayes BJ, Omholt SW, Carlborg O. Statistical epistasis is a generic feature of gene regulatory networks. Genetics, 2007, 175:411-420
    
    56. Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000,155:463-473
    
    57. Greb T, Mylne JS, Crevillen P, Geraldo N, An H, Gendall AR, Dean C. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Curr Biol, 2007,17:73-78
    
    58. Groh S, Gonzalez-de-Leon D, Khairallah MM, Jiang C, Bergvinson D, Bonn M,Hoisington DA, Melchinger AE. QTL Mapping in Tropical Maize: III. Genomic regions for resistance to diatraea spp. and associated traits in two RIL populations.Crop Sci 1998, 38:1062-1072
    
    59. Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV. Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol,2002, 129:191-200
    
    60. Guo LB, Qian Q, Zeng DL, Dong GJ, Teng S, Zhu LH. Genetic dissection for leaf correlative traits of rice (Oryza sativa L.) under drought stress. Acta Genetica Sinica,2004,31:275-280
    
    61. Guo M, Yang S, Rupe M, Hu B, Bickel DR, Arthur L, Smith O. Genome-wide allele-specific expression analysis using Massively Parallel Signature Sequencing (MPSS) reveals cis- and trans-effects on gene expression in maize hybrid meristem tissue. Plant Mol Biol, 2008, 66:551-563
    
    62. Gupta PK, Rustgi S, Kumar N. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 2006,49:565-571
    
    63. Guzman PS, Diers BW, Neece DJ, Martin SKS, Leroy AR, Grau CR, Hughes TJ,Nelson RL. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47:111-122
    
    64. He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J.Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res, 2006, 16:618-626
    
    65. Hellernann D, Larsson A, Madsen HO, Bonde J, Jarlov JO, Wiis J, Faber T, Wetterslev J, Garred P. Heterozygosity of mannose-binding lectin (MBL2) genotypes predicts advantage (heterosis) in relation to fatal outcome in intensive care patients.Hum Mol Genet, 2007, 16:3071-3080
    
    66. Hibberd JM, Sheehy JE, Langdale JA. Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol, 2008, 11:228-231
    
    67. Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci, 2007, 12:427-432
    
    68. Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho HP,Hochholdinger F. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179:1275-1283
    
    69. Hollick JB, Chandler VL. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action. Genetics, 1998, 150:891-897
    
    70. Hu KM, Qiu DY, Shen XL, Li XH, Wang SP. Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach.Mol Plant, 2008, 1:786-793
    
    71. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A, 2003, 100:2574-2579
    
    72. Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance.Genetics, 2002, 162:1885-1895
    
    73. Huang Y, Zhang L, Zhang J, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q.Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol, 2006, 62:579-591
    
    74. Hubbard L, McSteen P, Doebley J, Hake S. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics, 2002, 162:1927-1935
    
    75. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y,Matsuoka M, Yamaguchi J. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 2001, 13:999-1010
    
    76. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436:793-800
    77. Ishimaru K. Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol, 2003,133:1083-1090
    
    78. Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics, 1993,135:205-211
    
    79. Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci.Generics, 1995, 140:1111-1127
    
    80. Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. Nat Genet, 2008, 40:1365-1369
    
    81. Ju C, Zhang F, Gao Y, Zhang W, Yan J, Dai J, Li J. Cloning, chromosome mapping and expression analysis of an R2R3-MYB gene under-expressed in maize hybrid. Mol Biol Rep, 2006, 33:103-110
    
    82. Jung KH, An GH, Ronald PC. Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Na Rev Genet, 2008, 9:91-101
    
    83. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci.Genetics, 1999, 152:1203-1216
    
    84. Kearsey MJ, Farquhar AGL. QTL analysis in plants: where are we now? Heredity,1998,80:137-142
    
    85. Kroymann J, Mitchell-Olds T. Epistasis and balanced polymorphism influencing complex trait variation. Nature, 2005, 435:95-98
    
    86. Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S, Heckenberger M, Meyer RC,Altmann T, Melchinger AE. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics, 2007a, 175:2009-2017
    
    87. Kusterer B, Piepho HP, Utz HF, Schon CC, Muminovic J, Meyer RC, Altmann T,Melchinger AE. Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics, 2007b, 177:1839-1850
    
    88. Lan TH, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J,Kresovich S, Paterson AH. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res, 2000, 10:776-788
    
    89. Lan TH, Paterson AH. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics, 2000, 155:1927-1954
    
    90. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199
    91. Li CB, Zhou AL, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryzanivara. New Phytol, 2006, 170:185-193
    
    92. Li J, Thomson M, McCouch SR. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics, 2004,168:2187-2195
    
    93. Li L, Lu K, Chen Z, Mu T, Hu Z, Li X. Dominance, Over-dominance and Epistasis Condition the Heterosis in Two Heterotic Rice Hybrids. Genetics, 2008,
    
    94. Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R. Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.Genetics, 2001, 158:1737-1753
    
    95. Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW. Epistasis for three grain yield components in rice (Oryza sativa L). Genetics, 1997, 145:453-465
    
    96. Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CH, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS,Srivantaneeyakul S, Khush GS. QTL × environment interactions in rice. I. heading date and plant height. Theor Appl Genet, 2003, 108:141-153
    
    97. Liao CY, Wu P, Hu B, Yi KK. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet,2001,103:104-111
    
    98. Lippman ZB, Semel Y, Zamir D. An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev, 2007,17:545-552
    
    99. Liu B, Fujita T, Yan ZH, Sakamoto S, Xu D, Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot, 2007, 100:1027-1038
    
    100.Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J. Flowering time quantitative trait Loci analysis of oilseed brassica in multiple environments and genomewide alignment with Arabidopsis.Genetics, 2007, 177:2433-2444
    
    101.Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet,2003, 107:494-502
    
    102.Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003, 164:359-372
    103.Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics,2001, 158:1755-1771
    
    104.Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A, 2006, 103:5224-5229
    
    105.Maccaferri M, Sanguineti MC, Corneti S, Ortega JL, Salem MB, Bort J, DeAmbrogio E, del Moral LF, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V,Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A,Tuberosa R. Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics, 2008,178:489-511
    
    106.Malmberg RL, Mauricio R. QTL-based evidence for the role of epistasis in evolution. Genet res, 2005, 86:89-95
    
    107.Marquardt S, Boss PK, Hadfield J, Dean C. Additional targets of the Arabidopsis autonomous pathway members, FCA and FY. J Exp Bot, 2006, 57:3379-3386
    
    108.Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro MB, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A,Sakakibara H, Edwards KJ, Hirel B. Two cytosolic glutarnine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006,18:3252-3274
    
    109.McCallum CM, Comai L, Greene EA, Henikoff S. Targeted screening for induced mutations. Nat Biotechnol, 2000, 18:455-457
    
    110.Melchinger AE, Utz HF, Piepho HP, Zeng ZB, Schon CC. The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Genetics, 2007a,177:1815-1825
    
    111 .Melchinger AE, Piepho HP, Utz HF, Muminovic J, Wegenast T, Torjek O, Altmann T,Roisterer B. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics, 2007b, 177:1827-1837
    
    112.Mei HW, Li ZK, Shu QY, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110:649-659
    113.Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107:89-101
    114.Meng J, Sharpe A, Bowman C, Tian Z, Qian X, D L. Genetic diversity of Brassica napus accessions mainly from China detected with RFLP markers. Chin J Genet,1996,23:12
    115.Meyer S, Pospisil H, Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol, 2007, 63:381-391
    116.Michaels SD, Bezerra IC, Amasino RM. FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proc Natl Acad Sci U S A, 2004, 101:3281-3285
    117.Miller FP. After 10,000 years of agriculture, whither agronomy? Agronomy J, 2008,100:22-34
    118.Mitchell PL, Sheehy JE. Supercharging rice photosynthesis to increase yield. New Phytol, 2006, 171:688-693
    119.Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics, 2003, 270:371-377
    120.Moore JH. A global view of epistasis. Nat Genet, 2005, 37:13-14
    121.Munns R. Genes and salt tolerance: bringing them together. New Phytol, 2005,167:645-663
    122.Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008,59:651-681
    123.Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009,457:327-331
    124.Norton GJ, Aitkenhead MJ, Khowaja FS, Whalley WR, Price AH. A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs. Genomics, 2008, 92:344-352
    125.O'Neill CM, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J, 2000, 23:233-243
    126.Osmont KS, Sibout R, Hardtke CS. Hidden branches: developments in root system architecture. Annu Rev Plant Biol, 2007, 58:93-113
    127.Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ.Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171:765-781
    128.Parkin IAP, Sharpe AG, Lydiate DJ. Patterns of genome duplication within the Brassica napus genome. Genome, 2003, 46:291-303
    129.Paterson AH, Lan TH, Amasino R, Osborn TC, Quiros C. Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biol,2001,2:REVIEWS1011
    130.Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD.Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335:721-726
    131.Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J,Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP. 'Green revolution' genes encode mutant gibberellin response modulators. Nature,1999,400:256-261
    132.Peng J, Ronin Y, Fahima T, Roder MS, Li Y, Nevo E, Korol A. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci U S A, 2003, 100:2489-2494
    133.Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A, 2004, 101:9971-9975
    134.Petreikov M, Shen S, Yeselson Y, Levin I, Bar M, Schaffer AA. Temporally extended gene expression of the ADP-GIc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit. Planta, 2006, 224:1465-1479
    
    135.Price AH. Believe it or not, QTLs are accurate! Trends Plant Sci, 2006, 11:213-216
    136.Qi XH, Yang JH, Yu JQ, Zhang MF. Genetic and heterosis analysis for important agronomic traits of Chinese vegetable mustard {Brassica juncea) in different environments. Genetica, 2008,
    137.Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E,Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S,Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114:67-80
    138.Quarrie S, Pekic Quarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD,Leverington M, Ceoloni C, Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot, 2006,57:2627-2637
    
    139.Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N,Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P,Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S,Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet, 2005, 110:865-880
    
    140.Quijada PA, Maureira IJ, Osborn TC. Confirmation of QTL controlling seed yield in spring canola (Brassica napus L.) hybrids. Mol Breed, 2004, 13:193-200
    
    141.Quijada PA, Udall JA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1.Identification of genomic regions from winter germplasm. Theor Appl Genet, 2006,113:549-561
    
    142.Quiros CF, Grellet F, Sadowski J, Suzuki T, Li G, Wroblewski T. Arabidopsis and Brassica comparative genomics: sequence, structure and gene content in the ABI-Rps2-Ckl chromosomal segment and related regions. Genetics, 2001,157:1321-1330
    
    143.Radoev M, Becker HC, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping.Genetics, 2008, 179:1547-1558
    
    144.Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol, 2002, 5:94-100
    
    145.Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A,Arumugam N, Pental D, Pradhan AK. Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet, 2007, 115:807-817
    
    146.Rana D, van den Boogaart T, O'Neill CM, Hynes L, Bent E, Macpherson L, Park JY,Lim YP, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J, 2004, 40:725-733
    
    147.Reif JC, Kusterer B, Piepho HP, Meyer RC, Altmann T, Schon CC, Melchinger AE. Unraveling epistasis with triple testeross progenies of near-isogenic lines. Genetics,2009,181:247-257
    148.Rhode JM, Cruzan MB. Contributions of heterosis and epistasis to hybrid fitness. Am Nat,2005, 166:124-139
    149.Roder MS, Huang XQ, Borner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics, 2008, 8:79-86
    150.Roff DA, Emerson K. Epistasis and dominance: evidence for differential effects in life-history versus morphological traits. Evolution, 2006, 60:1981-1990
    151.Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ. Biochemical Networks and Epistasis Shape the Arabidopsis thaliana Metabolome. Plant cell, 2008,20:1199-1216
    152.Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M,Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M.Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2006, 24:105-109
    153.Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci, 2005, 10:297-304
    154.Schlappi MR. FRIGIDA LIKE 2 is a functional allele in Landsberg erecta and compensates for a nonsense allele of FRIGIDA LIKE 1. Plant Physiol, 2006,142:1728-1738
    155.Schrag TA, Maurer HP, Melchinger AE, Piepho HP, Peleman J, Frisch M. Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield. Theor Appl Genet, 2007, 114:1345-1355
    156.Schranz ME, Lysak MA, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci, 2006,11:535-542
    157.Schwartz D, Laughner WJ. A molecular basis for heterosis. Science, 1969,166:626-627
    158.Segre D, DeLuna A, Church GM, Kishony R. Modular epistasis in yeast metabolism.Nat Genet, 2005, 37:77-83
    159.Seki M, Umezawa T, Urano K, Shinozaki K. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol, 2007, 10:296-302
    160.Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T,Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci U S A, 2006, 103:12981-12986
    161.Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J.Unraveling the complex trait of crop yield with QTL mapping in Brassica napus.Genetics, 2009, (In press)
    162.Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40:1023-1028
    163.Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Fans JD. Molecular characterization of the major wheat domestication gene Q. Genetics, 2006,172:547-555
    164.Slafer GA. Genetic basis of yield as viewed from a crop physiologist's perspective.Ann ApplBiol, 2003, 142:117-128
    165.Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A, 2003, 100:9055-9060
    166.Song X, Qiu SQ, Xu CG, Li XH, Zhang Q. Genetic dissection of embryo sac fertility,pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor Appl Genet, 2005, 110:205-211
    167.Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630
    168.Springer NM, Stupar RM. Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell, 2007,19:2391-2402
    169.Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefher PJ, McCusker JH,Davis RW. Dissecting the architecture of a quantitative trait locus in yeast. Nature,2002,416:326-330
    170.Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132:823-839
    171.Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis.BMC Plant Biol, 2008, 8:33
    172.Su N, Sullivan JA, Deng XW. Modulation of F1 hybrid stature without altering parent plants through trans-activated expression of a mutated rice GAI homologue. Plant Biotechnol J, 2005, 3:157-164
    173.Swamy BP, Sarla N. Yield-enhancing quantitative trait loci (QTLs) from wild species.Biotechnol Adv, 2008,26:106-120
    174.Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci U S A,2006, 103:6805-6810
    175.Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet,2008,40:1360-1364
    176.The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796-815
    177.Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR.Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics,2006, 172:2501-2514
    178.Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ESt.Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286-289
    179.Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). TheorAppl Genet, 2006, 113:619-629
    180.Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol,2002,48:697-712
    181.Turelli M, Orr HA. Dominance, epistasis and the genetics of postzygotic isolation.Genetics, 2000, 154:1663-1679
    182.U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot, 1935,7:389-452
    183.Udall JA, Quijada PA, Lambert B, Osborn TC. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2.Identification of alleles from unadapted germplasm. Theor Appl Genet, 2006, 113:597-609
    184.Umezawa T, Fujita M, Fujita Y Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol, 2006, 17:113-122
    185.Uzarowska A, Keller B, Piepho HP, Schwarz G, Ingvardsen C, Wenzel G, Lubberstedt T. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol,2007,63:21-34
    186.Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol, 2006, 9:189-195
    187.Van Camp W. Yield enhancement genes: seeds for growth. Curr Opin Biotechnol,2005, 16:147-153
    188.Van Driessche N, Demsar J, Booth EO, Hill P, Juvan P, Zupan B, Kuspa A, Shaulsky G. Epistasis analysis with global transcriptional phenotypes. Nat Genet, 2005,37:471-477
    189.Veyrieras JB, Goffinet B, Charcosset A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics,2007, 8:49
    190.Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J.Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5.Genetics, 2008, 179:2239-2252
    191.Wang BH, Wu YT, Huang NT, Zhu XF, Guo WZ, Zhang TZ. QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. Acta Genetica Sinica, 2006, 33:161-170
    192.Wang DL, Zhu J, Li ZKL, Paterson AH. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999,99:1255-1264
    193.Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H,Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40:1370-1374
    194.Wang Y, Li J. Molecular basis of plant architecture. Annu Rev Plant Biol, 2008,59:253-279
    195.Wang Z, Ni Z, Wu H, Nie X, Sun Q. Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 113:1283-1294
    196.Wang ZK, Ni ZF, Wu HL, Nie XL, Sun QX. Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 113:1283-1294
    197.Warden CH, Yi N, Fisler J. Epistasis among genes is a universal phenomenon in obesity: evidence from rodent models. Nutrition, 2004, 20:74-77
    198.Warrington CV, Zhu S, Parrott WA, All JN, Boerma HR. Seed yield of near-isogenic soybean lines with introgressed quantitative trait loci conditioning resistance to corn earworm (Lepidoptera: Noctuidae) and soybean looper (Lepidoptera: Noctuidae) from PI 229358. JEcon Entomol, 2008, 101:1471-1477
    199.Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci U S A,2006,103:14631-14636
    200.Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995,140:745-754
    201.Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ann SN. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa x O. rufipogon cross. Theor Appl Genet, 2008, 116:613-622
    202.Xie X, Song MH, Jin F, Ahn SN, Suh JP, Hwang HG, McCouch SR. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet,2006, 113:885-894
    203.Xing YZ, Tang WJ, Xue WY, Xu CG, Zhang Q. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. TheorAppl Genet, 2008, 116:789-796
    204.Xu S. An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics, 2007, 63:513-521
    205.Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X,Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40:761-767
    206.Xue Y, Xu Z. An introduction to the china rice functional genomics program. Comp Fund Genomics, 2002, 3:161-163
    207.Yang DL, Jing RL, Chang XP, Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics, 2007, 176:571-584
    208.You A, Lu X, Jin H, Ren X, Liu K, Yang G, Yang H, Zhu L, He G Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics, 2006, 172:1287-1300
    209.Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Maroof MA. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A,1997,94:9226-9231
    210.Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, Davis GT,Schmidt ME, Lightfoot DA. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci, 2002,42:271-277
    21 l.Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A, 1993, 90:10972-10976
    212.Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468
    213.Zeng ZB, Wang T, Zou W. Modeling quantitative trait Loci and interpretation of models. Genetics, 2005, 169:1711-1725
    214.Zhang Q. Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A,2007, 104:16402-16409
    215.Zhang Y, Luo L, Xu C, Zhang Q, Xing Y. Quantitative trait loci for panicle size,heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet, 2006, 113:361-368
    216.Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113:33-38
    217.Zhuang J-Y, Fan Y-Y, Wu J-L, Xia Y-W, Zheng K-L. Comparison of the detection of QTL for yield traits in different generations of a rice cross using two mapping approaches. Acta Genetica Sinica, 2001, 28:458-464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700