用户名: 密码: 验证码:
药物洗脱支架聚合物涂层的设计、制备与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动脉粥样硬化导致的各种缺血性疾病已经严重威胁人类的健康,而经皮腔内成形术及支架植入术是治疗血管管腔狭窄的重要手段。由于金属裸支架植入人体后容易诱发急性血栓和血管内再狭窄,因此人们在传统金属支架的基础上发展了药物洗脱支架。药物洗脱支架及其相关的涂层制备与药物控制释放技术囊括了材料学、医学、药剂学、生物学、力学以及高分子化学等各个领域的知识,使之成为一种具有高技术含量的产品。本论文针对药物洗脱支架的涂层设计、制备及评价,对非降解与可降解涂层的物理化学性能、药物释放动力学以及多孔表面等问题进行了研究,并且利用计算软件MATLAB编程以蒙特卡洛法对可降解体系的失重特性与药物释放动力学进行分析与优化。论文的主要内容与结果包括:
     1.深入研究了雷帕霉素与药物载体丙烯酸树脂或聚乳酸-乙醇酸(PLGA)之间的相互作用。雷帕霉素是一种抗增生型药物,丙烯酸树脂是一种通用的非降解型医用高分子材料,而PLGA是一种常用的可降解医用高分子材料。实验结果表明药物-载体共混体系中药物与载体的混合并没有发生化学作用,峰值强度为两种成分的叠加,而雷帕霉素在PLGA中具有更高的饱和溶解度,热稳定性也是雷帕霉素-PLGA共混体系更好。纯雷帕霉素是多晶粉末,但是载体会抑制雷帕霉素的结晶,因此两种共混体系均无明显的晶体峰。
     2.使用硅烷偶联剂γ-氨丙基三乙氧基硅烷(γ-APS)处理316L不锈钢样品,这种处理方法使基体表面活化并使聚合物溶液有效铺展,从而提高PLGA涂层与基体的结合力。此外γ-APS层对不锈钢表面具有早期保护作用,可以避免因基体腐蚀造成的结合力下降。
     3.使用蒙特卡洛法对PLGA膜的降解特性进行模拟与分析,结果表明这种方法对本体溶蚀材料进行比较准确的预测。PLGA材料的降解与溶蚀过程大致分成四个阶段:Ⅰ——初期快速失重阶段,Ⅱ——准稳定阶段,Ⅲ——快速失重阶段,Ⅳ——材料崩解阶段,而闭合降解区的积累与数量下降决定了阶段Ⅲ的开始与结束的时间,通过控制闭合降解区的变化状态可以控制PLGA膜的失重速率。
     4.分析与对比了共混膜与梯度膜的降解特性。共混膜的性能介于两种初始成分之间,可以通过调整两种PLGA的比例来调节材料的降解特性,实现“定时失重”。梯度膜由两种不同共聚物组成的PLGA按不同配比进行层层叠加得到的,这样得到的不均匀成分分布可以改善PLGA膜的降解性能。当降解速度相对较快的PLGA(如PLGA50/50)的含量在多层结构由外至内梯度下降时,可以得到比较平稳的失重曲线。
     5.对丙烯酸树脂与PLGA含药膜的药物释放动力学进行了测试和数值模拟。非降解的丙烯酸树脂含药膜基本符合Higuchi模型,但是常数项的存在使药物释放曲线偏离标准的Higuchi模型。对于可降解PLGA含药体系,基体降解使药物扩散系数发生极大变化,导致药物释放过程更加复杂。通过建立蒙特卡洛-扩散复合模型,并根据计算结果求解扩散系数,并使其成为位置与时间的函数。计算结果表明该法的计算结果优于Higuchi模型,与实验结果符合得很好。丙烯酸树脂与PLGA这两种载体进行对比,在其他条件相同时,雷帕霉素在PLGA中的释放速率更快。
     6.利用相转化法在316L不锈钢表面制备PU和PLGA多孔涂层,并且通过改变溶液的浓度与环境的湿度来控制孔径。聚合物多孔涂层的孔径大体与溶液的浓度成正比,与环境湿度成反比。低浓度高湿度条件下PU溶液倾向于形成孔中有孔的结构,而提高溶液浓度可以有效降低这种现象的发生几率。对于PLGA涂层,由于其成孔性能比PU差,湿度较低时容易出现岛状结构。接触角实验结果表明多孔涂层具有强疏水性,而血小板粘附实验的观测结果表明,由于多孔涂层的强疏水性会导致血小板在材料表面的结合能下降,多孔涂层表面粘附血小板的数量最少,而且血小板的形态无显著变化,使多孔涂层具有良好的血液相容性。
Ischemic diseases induced by atherosclerosis are severe threats to mankind's health,and percutaneous stem implantation is an important method to deal with vascular stenosis. Because bare metal stems tend to induce acute thrombosis and in-steM restenosis, drug-eluting stents have been developed based on those traditional metal stents.Drug-eluting stents and correlated coating preparation and controlled drug release technology consist of the knowledge in materials,medicine,pharmacy,biology,mechanics and high polymer chemistry, and these stents are real high-technology products.To study the coating design,preparation and evaluation of drug-eluting stents,physical and chemical properties,drug release kinetics and porous surfaces for both non-degradable and degradable coatings are researched in this paper,furthermore,computing software MATLAB and Monte Carlo method are applied for the analysis and optimization of degradation properties and drug release kinetics for degradable system.The paper includes the following content:
     1.The interaction between sirolimus and drug carrier(acrylate resin or poly (lactic-co-glycolic acid)(PLGA)) was thoroughly researched.Sirolimus is a kind of anti-proliferation drug,and acrylate resin is a kind of universal non-degradable biomaterial, moreover,PLGA is a kind of biodegradable medical polymer.For the blend system of drug and carrier,the results of experiment indicated no chemical reaction happened between them, and the peak intensity is only the sum of two componems.Furthermore,sirolimus had higher solubility in PLGA system than that in acrylic resin system,and the PLGA system also had better thermal stability than acrylic resin system.Pure sirolimus is in a state of polycrystalline powder,while carrier will inhibit the crystallization of sirolimus,and the blends showed no obovious crystal peak.
     2.316L stainless steel samples were treated uing a kind of silane coupling agent namedγ-aminopropyltriethoxysilane(γ-APS) to active the substrate surface,and this treatment made casting solution spread effectively and enhanced the adherence between coating and substrate. In addition,γ-APS layer can provide early protection of the stainless steel substrate,and avoid adherence decrease due to substrate corrosion.
     3.The degradation properties of PLGA coatings were simulated and analyzed using Monte Carlo method and the results indicated this method could be used to predict the degradation properties of bulk erosion materials.The degradation and erosion of PLGA could be divided into four stages:Ⅰ—early mass loss stage,Ⅱ—quasi-stable stage,Ⅲ—fast mass loss stage,Ⅳ—breakdown stage,and the accumulation and vanishing of closed and degradated regions controlled the occurring and ending time of stageⅢ.The degradation properties of PLGA coatings could be controlled by operating the transformation of closed and degradated regions and "controlled mass loss" will achieve.
     4.The degradation properties of blend film and gradient film were analyzed and contrasted with each other.A blend film had balanced degradation property between two original components,and by adjusting the ratio of two components the degradation property of the blend could be easily controlled and "time mass loss" was achieved.A gradient film could be obtained by different ratio of two components in each sublayer,and this non-uniform structure could improve the degradation property of PLGA coating,when PLGA with higher degradation rate such as PLGA50/50 was distributed gradually from outer to inner part of matrix,stable mass loss curve could be obtained.
     5.The drug release kinetics of acrylic resin and PLGA drug contained coatings were tested and numerically simulated.The release curves of non-degradable acrylic resin coatings almost fit Higuchi's model,while the existence of constant part made the curves deviate the standard Higuchi's model.For the degradable drug contained PLGA system,the drug diffusion coefficient was critically changed due to matrix degradation,and that would complicate the drug release process.The drug diffusion coefficient was considered as the function of distance and time,and calculated using Monte Carlo-diffusion combined model in this paper.The calculating result indicates that the result of above method is better than that of Higuchi's model,and it fit the experiment data well.To contrast the acrylic resin and PLGA,sirolimus tends to diffuse faster in PLGA systerm under the same condition.
     6.Polyurethane(PU) and PLGA porous coatings by phase inversion method were obtained on the surface of 316L stainless steel,and the pore diameter was controlled by alternating casting solution concentration and atmospheric humidity.It was observed that pore diameter increased with the increase of casting solution concentration and the decrease of atmospheric humidity.PU casting solution tended to form pore-in-pore structure under under the condition of low solution concentration and high atmospheric humidity,and the probability of this phenomenon could be effectively decreased by increasing solution concentration.For PLGA coatings,island structure appeared under the condition of low atmospheric humidity due to the worse ability of pore formation than PU.The contact angle experiment showed strong hydrophobicity of porous coatings,and platelet adhesion experiment indicated that strong hydrophobicity resulted in the decrease of binding energy between platelets and coating surfaces.The surfaces of porous coatings had the least amount of platelets,and there was no significant change on the morphology of platelets.All of above factors make PU porous coatings achieve excellent blood compatibility.
引文
[1]Brown S A.Corrosion and wear,in:encyclopedia of medical devices and instrumentation.Biomaterials,1987,2:351-361.
    [2]杨大智,吴明雄.Ni-Ti形状记忆合金在生物医学领域的应用.北京:冶金工业出社,2003.
    [3]刘敬肖.316L不锈钢和NiTi合金表面薄膜的制备、结构及其生物相容性研究(博士学位论文).大连:大连理工大学.2001.
    [4]Hunt J A,Laughlin P J M,Flanapan B F.Technigues to investigation cellular and molecular interactions in the host molecular interactions in the host response to implanted biomaterials Biomaterials,1997,18:1449-1459.
    [5]Ratner R D.The engineering of biomaterials exhibiting recognition and specificity.Journal of Molecular Recognition,1996,9:617-625.
    [6]葛红花,周国定,解群.304、316L不锈钢耐氯离子和硫离子性能比较.华东电力,2005.33:13-15.
    [7]薛淼,陈希贤,李一鸣.镍钛记忆合金的研究基础研究-(Ⅰ)模拟腐蚀实验.口腔医学,1981,1:40-43.
    [8]Stinemann S G.Metal implants and surface reactions.Injury,1996,27(supplement):S/C16-S/C22,S/C49,S/C52,S/C55,S/C58.
    [9]Ryhonen J,Kallioinen M,Serlo W.Bone healing and mineralization,implant corrosion,and trace metals after nickel-titanium shape memory metal intramedullary fixation.Journal of Biomedical Materials Research,1999,47:472-480.
    [10]梁奇峰.铬与人体健康.广东微量元素科学,2006,13:67-69.
    [11]江澜,王小兰.铬的生物作用及污染治理.重庆工商大学学报(自然科学版),2004,4:325-328.
    [12]任伊宾,杨柯,梁勇.医用金属材料中的镍危害.生物医学工程学杂志,2005,22:1067-1069.
    [13]王夔.生命科学中的微量元素.北京:中国计量出版社,1996.
    [14]Hanawa T,Hiromoto S,Asami K.Characterization of the surface oxide film of a Co-Cr-Mo alloy after being located in quasi-biological environments using XPS.Applied Surface Science,2001,183:68-75.
    [15]彭帆,黄勇,刘鸿涛.钴毒性的临床反应.国外医学(医学地理分册),2001,22:7,8,22.
    [16]魏磊磊.钒与人体健康.微量元素与健康研究,2003,20:64-65.
    [17]曾英,倪师军,张成江.钒的生物效应及其环境化学行为.地球科学进展,2004,19(增刊):472-476.
    [18]Mackey E A,Becker P R,Demiralp R.Bioaccumulation of vanadium and other trace metals in livers of Alaskan Cetaceans and Pinniples.Archives of Environmental Contamination and Toxicology,1996,30:503-512.
    [19]Sabbioni E,Kueera J,Pietra R.A critical review on normal concentrations of vanadium in human blood,serum and urine.The Science of the Total Environmental,1996,188:49-58.
    [20]MIV Therapeutics I.Stent coating and drug delivery technology opportunity,2004.
    [21]FDA official web site,http://www.fda.gov/hearthealth/,2004.
    [22]Dotter C T,Judkins M P.Transluminal treatment of arteriosclerotic obstruction:description of a new technic and a preliminary report of its application.Circulation,1964,30:654-670.
    [23]徐克,邹英华,欧阳墉.管腔内支架治疗学.科学出版社,2004.
    [24]Gruntzig A,Kumpe D A.Technique of percutaneous transluminal angioplasty with the Oruntzig balloon catheter.American Journal of Roentgenology,1979,132:547-552.
    [25]Gruntzig A R,Senning A,Siegenthaler W E.Nonoperative dilatation of coronary-artery stenosis:percutaneous transluminal coronary angioplasty.The New England Journal of Medicine 1979,301:61-68.
    [26]Sigwart U,Prel J,Mirkoritch V et al.Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty.The New England Journal of Medicine 1987,316(supplement):701-706.
    [27]Savage M P,Fischman D L,Rake R.Efficacy of coronary stenting versus balloon angioplasty in small coronary arteries.Journal of American Collages Cardiology,1998,31:307-311.
    [28]Vivek R,Stanley G R.Coronary restenosis:a review of mechanisms and management.Coronary Restenosis/Rajagopal and Rockson.,2003,115:547-553.
    [29]闫培全,崔连群.炎症反应在冠状动脉介入术中的意义.山东医药,2001,41:61-62.
    [30]陈金明,吴宗贵.冠状动脉再狭窄的理论与实践.上海:第二军医大学出版社,1999.
    [31]Farb A,Heller P F,Shroff S.Pathological analysis of local delivery of paclitaxel via a polymer modified stent.Circulation,2001,104:473-479.
    [32]张晶,何胜虎.冠状动脉支架内再狭窄机制研究现状.心血管病学进展,2006,27:197-200.
    [33]Takami Y,Yamane S,Makinouchi K et al.Protein adsorption onto ceramic surfaces.Journal of Biomedical Materials Research,1998,40:24-30.
    [34]Ran K,Hong M K,Tio F O.In-stent restenosis:contribution of inflammatory reponses and arterial injury neointimal hyperplasia.Journal of The American College of Cardiology 1998,31:224-230.
    [35]Beusekom H M v,Whelan D M,Hofma S H.Long-term endothelial dysd-function is more pronounced after stenting than balloon angioplasty on porcine coronary arteries.Journal of the American College of Cardiology 1998,32.
    [36]白谊涵,李玉明.血管损伤修复与炎症反应的研究进展.心血管病学进展,2006,27:53-56.
    [37]Arroyo L H,Lee R T.Mechanisms of plaque rupture:mechanical and biologic interactions.Cardiovascular Research,1999,41:369-375.
    [38]周谨,李拥军.金属基质蛋白酶抑制剂在冠状动脉介入术后再狭窄过程中的作用.临床荟萃,2006.21:986-988.
    [39]Cutlip D E,Windecker S,Mehran R.Clinical end points in coronary stent trials:a case for standardized definitions.Circulation,2007,115:2344-2351.
    [40]Nakazawa G,Finn A V,Virmani R.Morphologic predictors of drug-eluting stent thrombosis.Interventional Cardiology 2007,US Cardiovascular Disease 2007:75-76.
    [41]Zhou Y,Wu X Y.Finite element analysis of diffusional drug release from complex matrix systems.I.Complex geometries and composite structures.Journal of Controlled Release,1997,49:277-288.
    [42]Wu X Y,Zhou Y.Finite element analysis of diffusional drug release from complex matrix systems.Ⅱ.Factors influencing release kinetics.Journal of Controlled Release,1998,51:57-71.
    [43]谭丽丽.心血管支架的表面改性研究(博士学位论文).沈阳:中国科学院金属研究所,2005.
    [44]Szycher M,Poirier V L,Dempsey D J.Detection of a toxic product released by a polyurethane-containing film using a composting test Journal of Elastomers and Plastics,1983,15:81.
    [45]杜民慧,李建树,魏阳等.生物医用脂肪族聚氨酯的合成、表征及血液相容性研究.生物医学工程学杂志,2003,20:273-276.
    [46]Wache H M,Tarakowska D J,Hentrich A et al.Development of a polymer stent with shape memory effect as a drug delivery system.Journal of Materials Science:Materials in Medicine,2003,14:109-112.
    [47]杜宗罡,朱光明,秦瑞丰等.形状记忆聚氨酯的发展现状及应用前景.中国塑料,2004,18:6-11.
    [48]Tamai H,Igaki K,Kyo E.Initial and 6-month results of biodegradable poly-1-lactic acid coronary stents in humans.Circulation,2000,102:399-404.
    [49]Siepmann J,G(o|¨)pferich A.Mathematical modeling of bioerodible,polymeric drug delivery systems.Advanced Drug Delivery Reviews,2001,48:229-247.
    [50]Burkersroda F v,Schedl L,Gopferich A.Why degradable polymers undergo surface erosion or bulk erosion.Biomaterials,2002,23:4221-4231.
    [51]Kenley R A,Lee M O,Mahoney T R et al.Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro.Macromolecules,1987,20:2398-2403.
    [52]Zygourakis K.Development and temporal evolution of erosion fronts in bioerodible controlled release devices.Chemical Engineering Science,1990,45:2359-2366.
    [53]Zygourakis K,Markenscoff P A.Computer-aided design of bioerodibte devices with optimal release characteristics:a cellular automata approach.Biomaterials,1996,17:125-135.
    [54]G(o|¨)pferich A,Langer R.Modeling of polymer erosion.Macromolecules,1993,26:4105-4112.
    [55]G(o|¨)pferich A,Langer R.Modeling monomer release from bioerodible polymers.Journal of Controlled Release,1995,33:55-69.
    [56]G(o|¨)pferich A.Mechanisms of polymer degradation and erosion.Biomaterials,1996,17:103-114.
    [57]G(o|¨)pferich A.Erosion of composite polymer matrices.Biomaterials,1997,18:397-403.
    [58]朱盛山.药物制剂工程.北京:化学工业出版社,2002.
    [59]马艳秋,曲韵智,李津明.固体分散体老化现象与抗老化的研究进展.中国新药杂志,2007,16:442-446.
    [60]Lahann J,Klee D,Pluester W et al.Bioactive immobilization of r-hirudin on CVD-coated metallic implant devices.B iomaterials,2001,22:817-826.
    [61]Zhu A,Zhang M,Wu J et al.Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface.Biomaterials,2002,23:4657-4665.
    [62]Morra M,Cassinelli C.Simple model for the XPS analysis of polysaccharide-coated surfaces.Surface and Interface Analysis,1998,26:742-747.
    [63]Yoshioka T,Tsuru K,Hayakawa S et al.Preparation of alginic acid layers on stainless-steel substrates for biomedical applications.Biomaterials,2003,24:2889-2894.
    [64]Iler R K.Multilayers of colloidal particles.Journal of Colloid and Interface Science,1966,21:569-594.
    [65]Ji J,Tan Q G,Fan D Z et al.Fabrication of alternating polycation and albumin multilayer coating onto stainless steel by electrostatic layer-by-layer adsorption.Colloids and Surfaces B:Biointerfaces,2004,34:185-190.
    [66] Magnani A, Busi E, Barbucci R. In situ ATR/FTIR studies of protein adsorption on polymeric surfaces.Journal of Materials Science: Materials in Medicine, 1994, 5: 849-843.
    
    [67] Tan Q G, Ji J, Barbosa M A et al. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials, 2003,24: 4699-4705.
    
    [68] Zhu H G, Ji J, Tan Q G et al. Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules. Biomacromolecules, 2003,4: 378-386.
    
    [69] Ju R T C, Nixon P R, Patel M V. Drug release from hydrophilic matrices. 1. New scaling laws for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer. Journal of Pharmaceutical Sciences, 1995, 84: 1455-1463.
    
    [70] Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension.Journal of Pharmaceutical Sciences, 1961, 50: 874-875.
    
    [71] Higuchi T. Mechanism of sustained-action medication, theoretical analysis of release of solid dispersed in solid matrices. Journal of Pharmaceutical Sciences, 1963, 52: 1145-1149.
    
    [72] Zhou Y, Wu X Y. Modeling and analysis of dispersed-drug release into a finite medium from sphere ensembles with a boundary layer. Journal of Controlled Release, 2003, 90: 23-36.
    
    [73] Siepmann J, Kranz H, Bodmeier R et al. HPMC-natrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics.Pharmaceutical Research, 1999, 16: 1748-1756.
    
    [74] Siepmann J, Podual K, Sriwongjanya M et al. A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose yablets. Journal of Pharmaceutical Sciences, 1999, 88: 65-72.
    
    [75] Wu X Y, Zhou Y. Studies of diffusional release of a dispersed solute from polymeric matrixes by finite element method. Journal of Pharmaceutical Sciences, 1999, 88: 1050-1057.
    
    [76] Hopfenberg H B. Controlled release from erodible slabs, cylinders, and spheres. In: Paul D R,Harris F W (Eds.), American Chemical Society, Washington, Controlled Release Polymeric Formulations, 1976:26-32.
    
    [77] Heller J, Baker R W. Theory and practice of controlled drug delivery from bioerodible polymers. In:Baker R W (Ed.), Controlled Release of Bioactive Materials, Academic Press, New York, 1980: 1-18.
    
    [78] Lee P I. Diffusional release of a solute from a polymeric matrix - approximate analytical solutions.Journal of Membrane Science, 1980, 7:255-275.
    
    [79] Thombre A G, Himmelstein K J. A simultaneous transport-reaction model for controlled drug delivery from catalyzed bioerodible polymer matrices. The AIChE Journal 1985, 31: 759-766.
    
    [80] Joshi A, Himmelstein K J. Dynamics of controlled release from bioerodible matrices. Journal of Controlled Release, 1991, 15: 95-104.
    
    [81] Thombre A G. Theoretical aspects of polymer biodegradation: mathematical modeling of drug release and acid-catalyzed poly(ortho-ester) biodegradation, in: M.Vert, J. Feijen, A. Albertsson, G. Scott, E.Chiellini (Eds.). Biodegradable Polymers and Plastics, 1992:214-228.
    
    [82] Peppas N A. Analysis of fickian and non-fickian drug release from polymers. Pharmaceutical Acta Helvetica, 1985,60: 110-111.
    
    [83] Ritger P L, Peppas N A. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 1987,5:23-36.
    [84]Charlier A,Leclerc B,Couarraze G.Release of mifepristone from biodegradable matrices:experimental and theoretical evaluations.International Journal of Pharmaceutics,2000,200:115-120.
    [85]Siepmann J,Faisant N,Benoit J-P.A new mathematical model quantifying drug release from bioerodible microparticles using monte carlo simulations.Pharmaceutical Research,2002,19:1885-1893.
    [86]徐盈,李世普.生物无机/有机复合多孔材料的制备与应用.化工中间体,2007,5:22-25.
    [87]Bae S E,Son J S,Park K et al.Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine.Journal of Controlled Release,In Press,Corrected Proof.
    [88]马建标,王红军,何炳林.壳聚糖海绵体的不同制备方法对人胎儿皮肤成纤维细胞相容性的影响.生物医学工程学杂志,1999,16(增刊):84-85.
    [89]Yoshioka T,Kawazoe N,Tateishi T et al.In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges.Biomaterials,2008,29:3438-3443.
    [90]Langer R,Vacanti J P.Tissue engineering.Science,1993,260:920-926.
    [91]陈观文,曾一鸣.膜微孔形成方法的研究进展.膜科学与技术,2003,23:117-122.
    [92]韩宁波,赵建宁.软骨组织工程常用支架制备技术.中国组织工程研究与临床康复,2008,12:3693-3696.
    [93]Lee W K,Ichi T,Ooya T et al.Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering.Journal of Biomedical Materials Research Part A,2003,67A:1087-1092.
    [94]Ma P X,Zhang R.Synthetic nano-scale fibrous extracellular matrix.Journal of Biomedical Materials Research,1999,46:60-72.
    [95]Jons S,Ries P,McDonald C J.Porous latex composite membranes:fabrication and properties.Journal of Membrane Science,1999,155:79-99.
    [96]Chen J-W,Tseng K-F,Delimartin Set al.Preparation ofbiocompatible membranes by electrospinning.Desalination,2008,233:48-54.
    [97]张幼珠,吴佳林,王立新等.静电纺丝PLA/丝素复合纤维膜的结构和性能.合成纤维工业,2008,31:1-4.
    [98]顾书英.生物可降解及生物材料的电场纺丝及应用.高分子通报,2005,11:13-17.
    [99]Leob G S,Sourirajian S.Sea water demineralization by means of an osmotic membrane.Advances in Chemistry Series,1963,38:117-132.
    [100]Gaides G E,McHugh A J.Gelation in an amorphous polymer:a discussion of its relation to membrane formation.Polymer,1989,30:2118-2123.
    [101]Konno M,Nishikori Y,Saito S.Digital Image Analysis of Phase Separation Structures in Spinodal Decomposition of a Polymer Blend.Journal of chemical engineering of Japan,1993,26:33-36.
    [102]赵晓勇,曾一鸣,施艳荞等.相转化法制备超滤和微滤膜的孔结构控制.功能高分子学报,2002,15:487-495.
    [103]Jenquin M R,McGinity J W.Characterization of acrylic resin matrix films and mechanisms of drug-polymer interactions.International Journal of Pharmaceutics,1994,101:23-34.
    [104]胡融刚,林昌健.电化学改性不锈钢钝化膜的XPS/SERS研究.中国腐蚀与防护学报,2000,20:149-154.
    [105]葛红花,周国定,解群.304、316L不锈钢耐氯离子和硫离子性能比较.华东电力,2005,33:13-15.
    [106]Marcus P,Olefjord I.A round robin on combined electrochemical and AES/ESCA characterization of the passive films on Fe-Cr and Fe-Cr-Mo alloys.Corrosion Science,1988,28:589-602.
    [107]Bastidas J M,Torres C L,Cano E et al.Influence of molybdenum on passivation of polarised stainless steels in a chloride environment.Corrosion Science,2002,44:625-633.
    [108]Xie J,Alpas A T,Northwood D O.A mechanism for the crack initiation of corrosion fatigue of Type 316L stainless steel in Hank's solution.Materials Characterization,2002,48:271-277.
    [109]Shih C C,Shih C M,Su Y Y et al.Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications.Corrosion Science,2004,46:427-441.
    [110]齐宝芬.外科植入不锈钢产品钝化工艺.材料保护,2000,33:37-38.
    [111]丁宝峰,吴荫顺,汪轩义等.316L不锈钢无铬钝化工艺研究.腐蚀与防护,2001,22:520-521,534.
    [112]马李洋,丁毅,马立群等.316L不锈钢柠檬酸钝化工艺及其耐点蚀性能研究.表面技术,2007,36:39-41.
    [113]Maurice V,Yang W P,Marcus P.XPS and STM study of passive films formed on Fe-22Cr(110)single-crystal surfaces.Journal of the Electrochemical Society,1996,143:1182.
    [114]Abreu C M,Cristobal M J,Losada R et al.Comparative study of passive films of different stainless steels developed on alkaline medium.Electrochimica Acta,2004,49:3049-3056.
    [115]Yang W P,Costa D,Marcus P.Resistance to pitting and chemical composition of passive films of a Fe-17%Cr alloy in chloride-containing acid solution.Journal of the Electrochemical Society,1994,141:2669.
    [116]Trabelsi W,Dhouibi L,Triki E et al.An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes.Surface and Coatings Technology,2005,192:284-290.
    [117]Linhart W,Peters F,Lehmann W et al.Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials.Journal of Biomedical Materials Research,2001,54:162-171.
    [118]Ara M,Watanabe M,Imai Y.Effect of blending calcium compounds on hydrolytic degradation of poly(lactic acid-co-glycolic acid).Biomaterials,2002,23:2479-2483.
    [119]Nie H,Lee L Y,Tong H et al.PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques:new carriers for DNA delivery.Journal of Controlled Release,2008,129:207-214.
    [120]Subramanian V,van Ooij W J.Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes.Corrosion Science,1998,54:204-215.
    [121]Subramanian V,van Ooij W J.Siane based metal pretreatment as alternatives to chromating.Surface Engineering,1999,15:168-172.
    [122]蔡晴,贝建中,王身国等.乙交酯/丙交酯共聚物的体内外降解行为及生物相容性研究.功能高分子学报,2000,13:249-254.
    [123]G(o|¨)pferich A.Polymer bulk erosion.Macromolecules,1997,30:2598-2604.
    [124] Zolnik B S, Leary P E, Burgess D J. Elevated temperature accelerated release testing of PLGA microspheres. Journal of Controlled Release, 2006, 112: 293-300.
    
    [125] Zolnik B S, Burgess D J. Effect of acidic pH on PLGA microsphere degradation and release. Journal of Controlled Release, 2007, 122: 338-344.
    
    [126] Wu L, Ding J. In vitro degradation of three-dimensional porous poly(d,l-lactide-co-giycolide) scaffolds for tissue engineering. Biomaterials, 2004, 25: 5821-5830.
    
    [127] Wang X, Venkatraman S S, Boey F Y C et al. Controlled release of sirolimus from a multilayered PLGA stent matrix. Biomaterials, 2006, 27: 5588-5595.
    
    [128] Cai Q, Shi G, Bei J et al. Enzymatic degradation behavior and mechanism of Poly(lactide-co-glycolide) foams by trypsin. Biomaterials, 2003, 24: 629-638.
    
    [129] Xu X, Liu T, Zhang K et al. Biodegradation of poly(1-lactide-co-glycolide) tube stents in bile.Polymer Degradation and Stability, 2008, 93: 811-817.
    
    [130] Wen X, Tresco P A. Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials, 2006,27: 3800-3809.
    
    [131] Schliecker G, Schmidt C, Fuchs S et al. Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity. International Journal of Pharmaceutics, 2003, 266:39-49.
    
    [132] Giunchedi P, Conti B, Scalia S et al. In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. Journal of Controlled Release, 1998, 56: 53-62.
    
    [133] Catiker E, G(?)m(?)(?)derelioglu M, G(?)ner A. Degradation of PLA, PLGA homo- and copolymers in the presence of serum albumin: a spectroscopic investigation. Polymer International, 2000, 49: 728-734.
    
    [134] Huang Y Y, Qi M, Liu H Z et al. Degradation of porous poly(D,L-lactic-co-glycolic acid) films based on water diffusion. Journal of Biomedical Materials Research Part A, 2007, 80A: 909-915.
    
    [135] Park T G. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials, 1995, 16: 1123-1130.
    
    [136] Walsh D, Furuzono T, Tanaka J. Preparation of porous composite implant materials by in situ polymerization of porous apatite containing [var epsilon]-caprolactone or methyl methacrylate. Biomaterials, 2001, 22: 1205-1212.
    
    [137] Sebastien F, Stephane G, Copinet A et al. Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydrate Polymers, 2006,65: 185-193.
    
    [138] Lickorish D, Guan L, Davies J E. A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design. Biomaterials, 2007, 28: 1495-1502.
    
    [139] Huang C-P, Chen X-M, Chen Z-Q. Biomimetic construction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/apatite composite materials by an alternate incubation process. Materials Letters, 2008,62: 1499-1502.
    
    [140] Custodio J M, Wu C-Y, Benet L Z. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Advanced Drug Delivery Reviews, 2008, 60: 717-733.
    
    [141] Gu X, Kuang Y, Guo X et al. Synthesis and drug release properties of poly(ethylene oxide) segmented polysulfone copolymers. Journal of Controlled Release, 2008, 127: 267-272.
    [142]Faisant N,Akiki J,Siepmann F et al.Effects of the type of release medium on drug release from PLGA-based microparticles:Experiment and theory.International Journal of Pharrnaceutics,2006,314:189-197.
    [143]Zweers M L T,Engbers G H M,Grijpma D Wet al.Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles.Journal of Controlled Release,2006,114:317-324.
    [144]Wada R,Hyon S-H,Ikada Y.Kinetics of diffusion-mediated drug release enhanced by matrix degradation.Journal of Controlled Release,1995,37:151-160.
    [145]Ruan G,Feng S-S.Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid)(PLA-PEG-PLA) microspheres for controlled release of paclitaxel.Biomaterials,2003,24:5037-5044.
    [146]Westedt U,Kalinowski M,Wittmar M et al.Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)nanoparticles for local delivery of paclitaxel for restenosis treatment.Journal of Controlled Release,2007,119:41-51.
    [147]Mehilli J,Byrne R A,Wieczorek A et al.Randomized trial of three rapamtcin-eluting stents with different coating strategies for the reduction of coronary restenosis.European Heart Journal 2008,29:1975-1982.
    [148]冷永祥,黄楠.氧化钽薄膜的制各及其血液相容性研究.功能材料,1998,29:639-641.
    [149]Widawski G,Rawiso M,Francois B.Self-organized honeycomb morphology of star-polymer polystrytene films.Nature,1994,369:387-389.
    [150]Jenekhe S A,Chen X L.Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers.Science,1999,283:372-375.
    [151]赵晓勇,蔡晴,石桂欣等.水蒸气辅助法制备LA-GA共聚物蜂窝状多孔膜.膜科学与技术,2004.24:1-6.
    [152]黄莹莹.生物可降解载药涂层支架的制备及其性能研究(博士学位论文).大连:大连理工大学,2006.
    [153]Moizhess T G,Vasiliev J M.Early and late stages of foreign-body carcinogenesis can be induced by implants of different shapes.International Journal of Cancer,1989,44:449-453.
    [154]James S J,Pogribna M,Miller B Jet al.Characterization of cellular response to silicone implants in rats:implications for foreign-body carcinogenesis.Biomaterials,1997,18:667-675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700