用户名: 密码: 验证码:
基于冰雷达的南极冰盖冰厚和冰下地形探测及其演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极冰盖是地球上最大的陆缘冰体,其物质收支和稳定性对全球气候变化和海平面升高有重要的影响。冰雷达(Ice radar),又称无线电回波探测(Radio-echosounding,RES)或探冰雷达(Ice-penetrating radar),主要用于极地冰盖冰厚、内部结构和冰下地貌调查,是冰川学家调查南极冰盖冰下特征的主要方法。这些参数是计算冰盖体积和物质平衡、重建过去冰雪积累和消融率以及冰盖动力和沉积过程的基础。现在,冰雷达测量覆盖了南极绝大部分区域,极大地提升了人们对南极冰盖和全球系统间相互作用的理解。本文首先重点评述了冰雷达在探测研究南极冰盖厚度和冰下地形、内部反射层、冰下湖和冰下水系、冰床粗糙度以及冰晶组构等主要领域的进展,并且对未来冰雷达探测研究南极冰盖的前景进行了展望,给出了我国的现状。
     冰雷达的性能,如探测深度、分辨率和精度等,直接决定了观测结果的有效性和准确性,进而影响冰盖的物质平衡和稳定性研究。自上世纪60年代被引入极地冰盖调查和研究以来,冰雷达性能、探测方法和研究内容得到了不断的提高和发展,成为冰盖研究不可获取的手段。本文分三个时间段(1960s~1980s,1980s~2000年和2000年之后)综述了冰雷达的发展,并展望了其未来的发展趋势。
     Dome A(冰穹A)位于东南极冰盖中央,是南极冰盖最高点。冰盖演化模式显示,Dome A区域很可能保存了过去超过百万年的地球古气候和古环境记录,被认为是深冰芯钻孔的理想位置。冰厚和冰下地形是模式评估冰芯年代尺度和深冰芯钻孔选址的重要依据。中国第21次和24次南极科学考察(CHINARE 21,2004/05;CHINARE 24,2007/08)期间,车载冰雷达系统被用于Dome A区域中心30km×30km范围内冰盖的三维调查,成功获得高分辨率、高精度冰厚和冰下地形数据,得出140.5m×140.5m网格分辨率冰厚分布和冰下地形DEM。调查结果显示,Dome A中心方形区域内的冰厚平均值为2233m,冰厚最小值1618m,昆仑站位置冰厚最大,为3139m;冰下地形起伏相对剧烈,海拔范围949-2445m,呈现典型、清晰的山地冰川作用地貌格局,很可能反映了南极冰盖的早期演化。依据冰厚分布和冰下地形特征,认为昆仑站位置适合开展首支分辨率高、年代久远深冰芯的钻探。不过,冰盖内部层序结构和冰底消融情况仍需进一步研究确定。
     南极冰盖的形成始于~3400万年前,当时的地球气候出现显著而快速的变化。冰盖和气候模式研究的结果显示,大气二氧化碳浓度的降低(不到工业化前280ppm的3倍),以及南极绕极流的形成,导致了地球的大幅度降温,并出现与地球轨道变化相关的冰川作用。基于现有的南极冰盖冰下地形,数值模拟得出的南极冰盖发源地在南极的山脉区域,包括位于东南极冰盖中央Dome A区域的Gamburtsev山脉。尽管如此,由于缺少对Gamburtsev山脉现在地形特征的了解,使得现在关于南极大陆型冰盖的早期冰川作和后续发展仍然很不确定。根据我们通过冰雷达获得的Dome A区域的冰下地形,冰下地貌呈现了经典的阿尔卑斯山脉地形特征,发育有经过山地冰川剥蚀的早期河流谷底,而这样的地形特征的形成需要平均约3℃的夏季表明温度。Dome A区域的冰下地形很可能形成于南极冰盖冰川作用的初期。根据南极的气候历史(来自深海沉积记录),认为Gamburtsev山脉的形成可能早于3400万年前,并且该区域是南极冰盖起源的核心区域。此外,1400万年以来,Dome A区域的冰下地形很可能得到了很好的保存。
     东南极冰盖中山站至Dome A断面是国际横穿南极科学考察计划的核心断面之一,途经过伊丽莎白公主地,沿Lambert冰川东侧上游至Dome A下覆的Gamburtsev冰下山脉区域。东南极冰盖中山站至Dome A断面的冰厚和冰下地形源于CHINARE 24期间的车载冰雷达探测,测线总长1170km,其中在82%的测线上成功探测到冰岩界面,实测数据的水平分辨率<5.6m。测量结果显示:断面上的平均冰厚为2037m,730km处冰厚最大,冰盖边缘位置冰厚最小(891m),内陆1020km位置冰厚略大于冰厚最小值,为1078m;冰下地形平均海拔728m,远高于东南极冰下地形高程平均值,其中1034km处海拔最高,达到2650m,765km处海拔最低。内陆深处900-1170km范围内冰下地形海拔较高,与该段位于Gamburtsev冰下山脉区域有关。除900km位置冰下地形的剧烈升高在冰面造成明显的地形抬升外,总体上,冰下地形对冰面地形的影响不大。在冰雷达探测到冰岩界面的部分,小尺度的冰厚和冰下地形变化相对密集且剧烈,表明沿断面的冰床粗糙度较大,认为是冰流运动、冰下环境和冰下地质构造共同作用的结果。冰雷达未能探测冰岩界面的部分,冰厚明显较大。此外,由于该段冰流运动较强,增加了冰盖内部结构的复杂性,导致冰雷达信号在冰体内传播的衰减严重。
The Antarctic ice sheet is the largest continental ice on the earth, its mass budget and stability has an important influence on global climate change and sea level rise. Ice radar, also called radio-echo sounding(RES) or ice-penetrating radar, mainly used to investigate ice thickness, internal structure and subglacial morphology of the polar ice sheets, constitutes the principal means by which glaciologists investigate the subsurface properties of the Antarctic ice sheet. These parameters are fundamental to calculate ice volume and mass balance and reconstruct past snow accumulation and melting rates, ice dynamics and deposition process. Now, RES has covered most regions in Antarctica and provided significant understanding of the interactions between ice sheet and global system. In the paper, we firstly reviewed the progress of ice radar in investigating and researching Antarctic ice sheet thickness and subglacial topography, internal reflecting horizons, subglacial lakes and water systems, subglacial bedrock roughness and crystal orientation fabrics(COF), and even the prospect of ice radar in investigating and researching Antarctic ice sheet in the future and our present situation was proposed.
     The performances of ice radar, such as the maximal penetrating depth, vertical resolution and precision, determine directly the validity and accuracy of the measurements, and influence the imports and boundary conditions of the models finally. Since ice radar was introduced into the investigation and research of the polar ice sheets from 1960s, the instrument performance, surveying methods and research contents have been improved and developed incessantly. has become an indispensable means of ice sheet study. The development of ice radar in three periods (1960s~1980s, 1980s~2000 and after 2000) was reviewed and its future development was prospected
     Dome A, located in the central East Antarctic ice sheet (EAIS), is the highest summit of the Antarctic ice sheet. From ice-sheet evolution modeling results, Dome A is likely to preserve over one million years of the Earth's paleo-climatic and -environmental records, and considered an ideal deep ice core drilling site. Ice thickness and subglacial topography are critical factors for ice-sheet models to determine the timescale and location of a deep ice core. During the 21st and 24th Chinese National Antarctic Research Expedition (CHINARE 21, 2004/05; CHINARE 24, 2007/08), ground-based ice radar systems were used to a three-dimensional investigation in the central 30 km×30 km region at Dome A. The successfully obtained high resolution and accuracy data of ice thickness and subglacial topography were then interpolated into the ice thickness distribution and subglacial topography digital elevation model (DEM) with a regular grid resolution of 140.5 m×140.5 m. The results of the ice radar investigation indicate that the average ice thickness in the Dome A central 30 km×30 km region is 2233 m, with a minimal ice thickness of 1618 m and a maximal ice thickness of 3139 m at Kunlun Station. The subglacial topography is relatively sharp, with an elevation range of 949—2445 m. The typical, clear mountain glaciation morphology is likely to reflect the early evolution of the Antarctic ice sheet. Based on the ice thickness distribution and subglacial topography characteristics, the location of Kunlun Station was suggested to carry out the first high-resolution, long time-scale deep ice core drilling. However, the internal structure and basal environments at Kunlun Station still need further research to determine
     Ice-sheet development in Antarctica was a result of significant and rapid global climate change about 34 million years ago. Ice-sheet and climate modelling suggest reductions in atmospheric carbon dioxide (less than three times the pre-industrial level of 280 parts per million by volume) that, in conjunction with the development of the Antarctic Circumpolar Current, led to cooling and glaciations paced by changes in Earth's orbit. Based on the present subglacial topography in Antarctic ice sheet, numerical models point to ice-sheet genesis on mountain massifs of Antarctica, including the Gamburtsev mountains at Dome A, the centre of the present ice sheet. Our lack of knowledge of the present-day topography of the Gamburtsev mountains means, however, that the nature of early glaciation and subsequent development of a continental-sized ice sheet are uncertain. According to our radar information about the base of the ice at Dome A, revealing classic Alpine topography with pre-existing river valleys overdeepened by valley glaciers formed when the mean summer surface temperature was around 3.6℃. This landscape is likely to have developed during the initial phases of Antarctic glaciation. According to Antarctic climate history (estimated from offshore sediment records), the Gamburtsev mountains are probably older than 34 million years and were the main centre for ice-sheet growth. Moreover, the landscape has most probably been preserved beneath the present ice sheet for around 14 million years.
     The traverse between Zhongshan Station and Dome A in East Antarctic ice sheet, via Elizabeth Princess Land, along eastern upstreams of Lambert Glacier to Gamburtsev Subglacial Mountains at Dome A region, is a critical transect in ITASE (International Trans-Antarctic Scientific Expedition) project. The ice thickness and subglaical topography of the traverse between Zhongshan Station and Dome A in the paper were detected by ice radar during CHINARE 24. The total radar survey line is 1170 km, of which about 82% ice-bedrock interface is detected successfully, and the horizontal resolution along the traverse is less than 5.6 m. The preliminary results show that, the averaged ice thickness along the traverse is 2037 m, the thickest ice is at 730 km, the thinnest ice (891 m) is at the edge of the ice sheet, but the minimal ice thickness in inland appears at 1020 km(1078 m). The averaged subglacial topography elevation is 728 m, greatly larger than the average subglacial topography elevation in East Antarctic ice sheet. The largest elevation is at 1034 km, reaches up to 2650 m, and the lowest terrain locates at 765 km. In the further inland of 900 - 1170 km, the subglacial topography is relatively high due to the existing of Gamburtsev Subglacial Moutains in the region. Generally, the influence of subglacial topography to ice surface is not significant, in addition to the location of 900 km where ice surface uplifts evidently caused by rising of subglacial topography. Where ice-bed interface was detected, the frequent and strong change of ice thickness and subglacial topography in small-scale means the large bedrock roughness along the traverse, and is consider as the result of the integrated action of ice flow, basal environments and geology. The segment where bedrock was not detected has very large ice thickness. The strong ice flow there probably makes internal structure more complicated and induces serious attenuation of radar signals.
引文
陈廷愚,沈炎彬,赵越,任留东.南极洲地质发展与冈瓦纳古陆演化.北京:商务印书馆,2008
    崔祥斌,孙波,田钢,蒋芸芸,张向培,郭井学,唐学远.冰雷达探测研究南极冰盖的进展与展望.地球科学进展,2009,24:392-402
    侯书贵,李院生,效存德,任贾文.南极Dome A地区的近期积累率.科学通报,2007,52:243-245
    秦大河,任贾文.南极冰川学.北京:科学出版社,2001
    秦大河.南极冰盖表层雪内的物理过程和现代气候及环境记录.北京:科学出版社,1995
    秦大河.南极冰盖表面层内雪的密实化过程.冰川冻土,1987,9(3):190-205
    秦大河,任贾文,效存德.揭示气候变化的南极冰盖研究新进展.地理学报,1995,50(2):178-184
    任贾文.南极洲长城站附近地区冰川的发育条件和物质平衡.见:国家南极考察委员会,南极科学考察论文集(五):冰川学研究.北京:科学出版社,1988a
    任贾文.南极洲纳尔逊岛和乔治王岛冰帽的成冰作用和温度状况.见:南极科学考察论文集(五):冰川学研究,国家南极考察委员会.北京:科学出版社,1988b
    任贾文,效存德,侯书贵,李院生,孙波.极地冰芯研究的新焦点:NEEM与Dome A.科学通报,2009,54:399-401
    任贾文,秦大河,效存德.东南极冰盖中山站-Dome A断面路线考察的初步结果.冰川冻土,2001,23(1):51-56
    孙波,崔祥斌.2007/08年度中国南极DomeA考察新进展.极地研究,2008,4(20):371-378
    孙立广.地球与极地科学.合肥:中国科学技术大学出版社,2003
    唐学远,孙波,李院生,崔祥斌,李鑫.南极冰盖研究最新进展.地球科学进展,2009,24(11):1210-1218
    效存德,李院生,侯书贵,Ian Allison,卞林根,任贾文.南极冰盖最高点钻取最古老冰芯 的必要条件:Dome A最新实测结果.科学通报,2007,52:2456-2460
    张向培.基于冰雷达探测技术的南极冰盖冰层厚度和冰下地形特征研究:[硕士论文].吉林:吉林大学,2007
    Alley R B.Fabrics in polar ice sheets:development and prediction.Science,1988,240(4851 ):493 - 495
    Alley R B,Clark P U,Huybrechts P,Joughin Ⅰ.Ice-sheet and sea-level changes.Science,2005,310:456-460
    Angelis M D,Barkov N I,Petrov V N.Aerosol concentrations over the last climate cycle(160ka )from an Antarctic ice core.Nature,1987,325(6102 ):318 - 21
    Annan A P.Ground penetrating radar workshop notes.Sensors and Software Inc,1999:1091Brevik Place,Mississauga,Ontario,ON L4W 3R7,Canada
    Arcone S A,Lawson D E,Delaney A J.Short-pulse radar wavelet recovery and resolution of dielectric contrast within englacial and basal ice of Matanuska Glacier,Alaska,USA.Journal of Glaciology,1995,41:68-86
    Baldwin D J,Bamber J L,Payne A J,Layberry R L.Using internal layers from the Greenland ice sheet,identified from radio-echo sounding data,with numerical models.Annals of Glaciology,2003,37:325-330.
    Bamber J L,Gomez-Dans J L,Griggs J A.A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data - Part 1:data and methods.Cryos.Discuss.,2008,2(5),811-841.
    Bamber J L,Layberry R L,Gogineni S P.A new ice thickness and bed data set for the Greenland ice sheet 1.Measurement,data reduction,and errors.Journal of Geophysical Research,2001,106:33773-33780
    Bamber J L,Vaughan D,Joughin Ⅰ.Widespread complex flow in the interior of the Antarctic Ice Sheet.Science,2000,287:1248 - 1250
    Barnola J M,Raynaud D,Korotkevich Y S,Lorius C.Vostok ice core provides 160000-year record of atmospheric CO~2. Nature, 1987, 329 (6138): 408-414
    Bell R E, Studinger M, Shuman C A, Fahnestock MA, Joughin I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature, 2007, 445: 904-907
    Berger A, Li X S, Loutre M F. Modelling northern hemisphere ice volume over the last 3 Ma. Quat. Sci. Rev., 1999, 18: 1-11
    Bianchi C, Cafarella L, Michelis D P, Forieri A, Frezzotti M, Tabacco I E, Zirizzotti A. Radio Echo Sounding (RES Knvestigations at Talos Dome (East Antarctica): bedrock topography and ice thickness. Ann Geophys, 2003, 46: 1265-1270
    
    Bindschadler R. Future of the West Antarctic ice sheet. Science, 1998, 282: 428-429
    Bingham R G, Siegert M J, Young D A, Blankenship D D. Organised flow from the South Pole to the Filchner-Ronne Ice Shelf: an assessment of balance velocities in interior East Antarctica using radio-echo sounding data. Journal of Geophysical Research, 2007, 110:F03S26
    Bingham R G, Siegert M J. Radio-Echo sounding over polar ice masses. JEEG, 2007, 12: 47-62
    Bjornsson H, Ferrari R L, Miller K J, Owen G. A 1976 radio echo sounding expedition to the Vatnajokull ice cap, Iceland. The Polar Record, 1977, 18: 375 - 377
    Bogorodskiy V V, Bentley C R, Gudmandsen P. Radioglaciology. Dordrecht: Kluwer, 1985
    Boned C, Lagourette B, Clausse M. Dielectric behaviour of ice microcrystals: a study versus temperature.Journal of Glaciology, 1979, 22: 145-54
    Boutron C F, Lorius C. Trace metals in Antarctic snows since 1914. Nature, 1979, 277: 551-554
    Budd W F, Jensen D, Radock U. Derived physical characteristics of the Antarctic Ice Sheet.ANARE Interim Report, Series A (IV), No.120, 1971
    Budd W F, Young N, Austin C R. Measured and computed temperature distributions in the Law Dome Ice Cap, Antarctica. Journal of Glaciolog, 1976, 16: 99-110
    Budd W F, Jacka T H. A review of ice rheology for ice sheet modeling. Cold Regions Science and Technology, 1989, 16(2): 107-144
    Budd W F, Jenssen D, Smith I N. A three-dimensional time-dependent model of the West Antarctic ice sheet. Ann. Glaciol., 1984, 5: 29-36
    Byrd Polar Research Center. RADARSAT-1 Antarctic Mapping Project, http://bprc.osu.edu/rsl/radarsat/data/download.php?mission=mamm&path=VEL_PROD
    Cafarella L, Urbini S, Bianchi C. Five subglacial lakes and one of Antarctica's thickest ice covers newly determined by radio echo sounding over the Vostok-Dome C region. Polar Research,2006, 25: 69-73
    Catania G A, Scambos T A, Conway H, Raymond C F. Sequential stagnation of Kamb Ice Stream, West Antarctica. Geophysical Research Letters, 2006, 33: L14502
    Cheng X, Gong P, Zhang Y, Sun Z Y, Wei F H. Surface topography of Dome A, Antarctica,from differential GPS measurements. J Glaciol, 2009, 55: 185—187
    Chuah T S. Design and Development of a Coherent Radar Depth Sounder for Measurement of Greenland Ice Sheet Thickness. RSL Technical Report, 1997, 10470 - 104705
    Clarke G, Goodman R. Radio echo soundings and ice-temperature measurements in a surge-type glacier. Journal of Glaciology, 1975, 14: 71-78
    Crowley T J, Kim K. Comparison of longterm greenhouse projections with the geologic record.Geophys. Res. Lett., 1995, 22: 933-936
    Davis M B, Blankenship D D, Holt J W. Subglacial geology of the southern Transantarctic Mountains, Antarctica, from airborne radar sounding. EOS Transactions, 2004, 85: T11A-1235
    DeConto R M, Pollard D. Rapid Cenozoic glaciation of Antarctica triggered by declining atmospheric CO~2. Nature, 2003, 421: 245-249
    DeConto R M, Pollard D. A coupled climate-ice sheet modeling approach to the early Cenozoic histoy of the Antarctic ice sheet. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2003, 198: 39-53
    Delmas R J, Ascencio J M. Polar ice evidence that atmospheric CO~2 2000a BP was 50% of present. Nature, 1980, 284: 155-157
    
    Denton G H, Hughes T J. The last great ice sheet. New York: John Wiley and Sons, 1981
    Denton G E, Sugden D E. Meltwater features that suggest Miocene ice-sheet overriding of the Transantarctic Mountains in Victoria Land, Antarctica. GeografiskaAnnaler, 2005, 87:67-85
    Dome - F Deep Coring Group. Deep ice core drilling at Dome Fuji and glaciological studies in east Dronning Maud Land, Antarctica. Annals of Glaciology, 1998a, 27: 333-337
    Dome - F Deep Coring Group. Preliminary investigation of palaeoclimate signals recorded in the ice core from Dome Fuji station, east Dronning Maud Land, Antarctica. Annals of Glaciology, 1998b, 27: 338-342
    Drewry D J. Initiation and growth of the East Antarctic ice sheet. Journal of the Geological Society, 1975, 131 (3): 255-273, DOI: 10.1144/gsjgs.131.3.0255
    Drewry D J, Robin G. Q. Form and flow of the Antarctic Ice Sheet during the last million years.In: Robin G Q, The climatic record in polar ice sheets, Cambridge: Cambridge University Press, 1983, 28-38
    Drewry D J, Jordan S R, Jankowski E. Measured properties of the Antarctic ice sheet: surface configuration, ice thickness, volume and bedrock characteristics. Annals of Glaciology,1982, 3: 83-91
    Drewry D J. Antarctica: Glaciological and Geophysical Folio. Cambridge: Cambridge University Press, 1983
    Drewry D J. Comparison of electromagnetic and seismic-gravity ice thickness measurements in East Antarctica. Journal of Glaciology, 1975, 15: 137-150
    Dunson D. A Wideband Synthetic Aperture Radar for Ice Sheet Basal Measurements. Technical Report, 2006, University of Kansas, Lawrence, KS
    Duval P. Creep and fabrics of polycrystalline ice under shear and compression. J. Glaciol., 1981, 27 (95): 129- 140
    Ehrmann W U, Setti M, Marinoni L. Clay minerals in Cenozoic sediments off Cape Roberts ( McMurdo Sound, Antarctica) reveal the palaeoclimatic history. Palaeogeogr. Palaeoclim.Palaeoecol., 2005, 229: 187-211
    Eisen O, Wilhelms F, Steinhage D, SCHWANDER J. Instruments and Methods Improved method to determine radio-echo sounding reflector depths from ice-core profiles of permittivity and conductivity. Journal of Glaciology, 2006, 52(177): 299-310
    
    Eisen O, NixdorfU, Wilhelms F, Miller H. Electromagnetic wave speed in polar ice: validation. of the commonmidpoint technique with high-resolution dielectric-profiling and y-density measurements. Ann. Glaciol., 2002, 34: 150-156
    Ekaykin A A, Lipenkov V Y, Barkov N I, Petit J R, Masson-Delmotte V. Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok Station:Implications for ice-core record interpretation. Ann Glaciol, 2002, 35: 181-186
    Ekaykin A, Lipenkov V Y, Kuzmina I N,Petit J R, Masson-Delmotte V, Johnsen S J. The changes in isotope composition and accumulation of snow at Vostok station, East Antarctica, over the past 200 years. Ann Glaciol, 2004, 39: 569-575
    
    Evans S, Robin G Q. Glacier depth sounding from the air. Nature, 1966, 210: 883-885
    Evans S. Progress report on radio echo sounding. Polar Record, 1966, 13(85): 413-420
    Evans S. Dielectric properties of ice and snow: a review. Journal of Glaciology, 1965, 5: 773-786
    Evans S. Radio-echo techniques for the measurement of ice thickness. Polar Record, 1963, 795:406-410
    Ferraccioli F, Jones P C, Curtis M L, Leat P T. Subglacial imprints of early Gondwana break-up as identified from high resolution aerogeophysical data over western Dronning Maud Land,East Antarctica. Terra Nova, 2005, 17: 573-579
    Frezzotti M, Bitelli G, Michelis D. Geophysical survey at Talos Dome, East Antarctica: the search for a new deep-drilling site.Annals of Glaciology, 2004, 39: 423-432
    Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S. Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J. Geophys. Res., 2007, 112:F02032, doi: 10.1029/2006JF000638
    Forieri A, Zuccoli L, Bini A, Zirizzotti A, Remy F, Tabacco 1 E. New bedrock map of Dome C,Antarctica, and morphostructural interpretation of the area. Annals of Glaciology, 2004, 39:321 -325
    Fricker H A, Scambos T, Bindschadler R, Padman L. An active subglacial water system in West Antarctica mapped from space. Science, 2007, 315: 1544-1548
    Fujita S, Mae S. Causes and nature of ice sheet radio echo internal reflections estimated from the dielectric properties of ice. Annals of Glaciology, 1994, 20: 80-87
    Fujita S, Maeno H, Uratsuka S, FURUKAWAT, MAE S, FUJII Y, WATANABE O. Nature of radio echo layering in the Antarctic ice sheet detected by a two-frequency experiment.Journal of Geophysical Research, 1999, 104: 13013-13024
    Fujita S, Mae S, Matsuoka T. Dielectric anisotropy in ice 1H at 9.7 GHz. Annals of Glaciology,1993, 17: 276-280
    Fujita S, Matsuoka T, IshidaT, Matsuoka K, Mae S. A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In: Hondoh T, Physics of ice core records. Sapporo: Hokkaido University Press,2000, 185-212
    Glen J W, Paren J G. The electrical properties of ice and snow. Journal of Glaciology, 1975, 15:15-38
    Gogineni S, ChuahT, Allen C, JEZEK K, MOORE R K. An improved coherent radar depth sounder. Journal of Glaciology, 1998, 44(148): 659-669
    Gogineni S, Tammana D, Braaten D, LEUSCHENC, AKINS T, LEGARSKY J,KANAGARATNAM P, STILES J, ALLEN C, JEZEK K. Coherent radar ice thickness measurements over the Greenland Ice Sheet. Journal of Geophysical Research, 2001, 106:33761 -33772
    Gogineni S, Prescott G, Braaten D, Allen C and the PRISM team. Polar radar for ice sheet measurements. Proceedings of IGARSS, 2003, 3: 1607-1609
    Gogineni S, Braaten D, Allen C, Paden J, Akins T, Kanagaratnam P, Jezek K, Prescott G,Jayaraman G, Ramasami V, Lewis C, Dunson D. Polar Radar for Ice Sheet Measurements (PRISM) . Remote Sensing of Environment, 2007, 111: 204 - 211
    Gow A J, Ueda H T, Garfield D E. Antarctic Ice Sheet: Preliminary Results of first core hole to bedrock. Science, 1968, 161(3845): 1011-1013
    Hamilton G S, Spikes V B, Stearns L A. Spatial patterns in mass balance of the Siple Coast and Amundsen Sea sectors, West Antarctica.Ann.Glaciol., 2005, 41: 105-110
    Hamran S E, Aarholt E. Glacier study using wave number domain synthetic aperture radar. Radio Science, 1993, 28: 559-570
    Harwood D M, McMinn A, Quilty P G. Diatom biostratigraphy and age of the Pliocene S(?)rsdal Formation, Vestfold Hills, East Antarctica. Antarct. Sci., 2000, 12: 443-462
    Hempel L, Thyssen F. Deep radio echo soundings in the vicinity of GRIP and GISP2 drill sites, Greenland. Polarforschung, 1993, 62: 11-16
    Heusser C J. Climate and chronology of Antarctica and adjacent South America over the past 30,000 yr. Palaeogeography. palaeoclimatology. palaeoecology., 1989, 76: 31-37
    Hindmarsh R C A. A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling.J. Geophys. Res., 2004, 109, F01012, doi:10.1029/2003JF000065
    Holt J W, Blankenship D D, Morse D L, Young D A, Peters M E, Kempf S D, Richter T G,Vaughan D G, Corr H F J. New boundary conditions for the West Antarctic Ice Sheet:Subglacial topography of the Thwaites and Smith Glacier catchments. Geophysical Research Letters, 2006, 33: L09502
    Huybrechts P, LeMeur E. Predicted present-day evolution patterns of ice thickness and bedrock elevation over Greenland and Antarctica. Polar Res, 1999, 18 (2): 299-308
    Huybrechts P, De Wolde J. The dynamic response of the Greenland and Antarctic ice sheets to multiple - century climatic warming.J. Clim. 1999, 12: 2169-2188.
    IPCC. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2007
    Jacka T H. Laboratory studies on relationships between ice crystal size and flow rate. Cold Regions Science and Technology, 1984,10(1): 31-42
    Jacobel R W, Welch B C, Steig E J. Glaciological and climatic significance of Hercules Dome,Antarctica: An optimal site for deep ice core drilling. Journal of Geophysical Research,2005, 110: F01015
    Jamieson S S R, Sugden D E. Landscape evolution of Antarctica. In: Cooper A, Barrett P J, Stagg H, Storey B, Stump E, Wise W, the 10th ISAES editorial team. Antarctica, a Keystone in a Changing World. Washington DC: National Academies Press, 2007, 39-54
    Jamieson S S R, Hulton N R J, Hagdorn M. Modelling landscape evolution under ice sheets.Geomorphology, 2008, 97: 91-98
    
    Jenssen D. A three-dimensional polar ice-sheet model. J.Glaciol., 1977, 18(80): 373-389
    Johari P, Charette P. The permittivity and attenuation in polycrystalline and single crystal ice lh at 35 and 60 MHz. Journal of Glaciology, 1975, 14: 293-305
    Jones N. Polar research: buried treasure. Nature, 2007, 446: 126-128
    Joughin I, GRAY L, BINDSCHADLER R, PRICE S, MORSE D, HULBE C, MATTAR K,WERNER C. Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science, 1999, 286 ( 5438 ): 283-286.
    Joughin I, Bamber J L, Scambos T, Tulaczyk S, Fahnestock M, MacAyeal D R. Integrating satellite observations with modelling: basal shear stress of the Filcher-Ronne ice streams, Antarctica. Philos. Trans. R. Soc. London, Ser.A, 2006, 364(1844): 1795-1814
    Jouzel J, Lorius C, Petit J, Genthon C, Barkov N I, Kotlyakov V M, Petrov V M. Vostok ice core: a continous isotope temperature record over the last climatic cycle (160, 000 years ) .Nature, 1987, 329(6138): 403-409
    Jouzel J, Masson V, Cattani O, FALOURD S, STIEVENARD M, STENNI B, LONGINELLI A, JOHNSEN S J, STEFFENSSEN J P, PETIT J R, SCHWANDERJ, SOUCHEZ R,BARXOV N I.A new 27 ky high resolution East Antarctic climate record. Geophys Res Lett, 2001, 28(16): 3199—3202
    Kamb B. Basal zone of theWest Antarctic ice streams and its role in lubrication of their rapid motion. In: Alley R B, Bindschadler R A. The West Antarctic ice sheet: behavior and environment. Washington D C, American Geophysical Union, 2001. 157 - 199 ( Antarctic Research Series 77
    Kanagaratnam P, Gogineni S P, Gundestrup N, Larsen L. High-resolution radar mapping of internal layers at the North Greenland Ice Core Project. Journal of Geophysical Research,2001, 106(D24): 33799-33811
    Kawamura K, Parrenin F, Uemura R, Vimeux F, Severinghaus J P, Nakazawa T, Aoki S,Jouzel J, Matsumoto K, Nakata H, Fujii Y, Watanabe O. Northern Hemisphere forcing of climatic cycles over the past 360, 000 years implied by accurately dated Antarctic ice cores,Nature, 2007, 448: 912-916
    Kennett J P, Houtz R E, Andrews P B, Edwards A R, Gostin V A, Hajos M, Hampton M A,Jenkins D G, Margolis S V, Ovenshine A T, Perch-Nielsen K. Development of the circum-Antarctic current. Science, 1974, 186: 144-147
    Kravchenko I, Besson D, Meyers J. In situ measurements of the index of refraction of the south polar firn with RICE detector.J. Glaciol., 2003, 50(171): 522-532
    Kuchikulla A. Design and development of a wideband coherant radar depth sounder: [Master thesis]. School of Engineering, University of Kansas, Lawrence, KS, 2004
    Lawrence J S, Ashley M C B, Tokovinin A, Travouillon T. Exceptional astronomical seeing conditions above Dome C in Antarctica. Nature, 2004, 431: 278 - 281
    Lawver L A, Gahagan L M. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2003, 198: 11-37
    Legarsky J J, Gogineni S P, Atkins T L. Focused synthetic aperture radar processing of ice-sounder data collected over the Greenland ice sheet. IEEE Transactions on Geoscience and Remote, 2001, 39: 2109-2117
    Leuschen C, Gogineni S, Tammana D. SAR processing of radar echo sounder data. Digest,IGARSS, OOCH37120, Honolulu, 2000, 2570-2572
    Lewis A R, Marchant D R, Kowalewski D E, Baldwin SL,Webb L E. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean. Geology, 2006, 34: 513-516
    Lewis A R, Marchant D R, Ashworth A C, Hemming S R, Machlus M L. Major middle Miocene global climate change: evidence from East Antarctica and the Transantarctic Mountains. Geol.Soc.Am. Bull, 2007, 119: 1449-1461
    Lewis A R, Marchant D R, Ashworth A C, Hedenas L, Hemming S R, Johnson J V, Leng M,Machlus M L, Newton A E, Raine I, Willenbring J K, Williams M, Wolfe A P. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl Acad. Sci. USA,2008, 105: 10676-10680
    Liu H, Jezek K, Li B, Zhao Z. Radarsat Antarctic Mapping Project digital elevation model version 2. Boulder, CO: National Snow and Ice Data Center, 2001
    Lorius C, Merlivat L, Jouzel C, Pourchet M. A 30, 000-year isotope climate record from Antarctic ice. Nature, 1979, 280: 644-648
    Lythe M B, Vaughan D G, the BEDMAP consortium. BEDMAP: A new ice thickness and subglacial topographic model of Antarctica. Journal of Geophysical Research, 2001, 106: 11335- 11351
    Marchant D R, Lewis A R, Phillips W M, Moore E J, Souchez R A, Denton G H, Sugden D E, Potter N, Landis G P. Formation of patterned ground and sublimation till over Miocene glacier ice, southern Victoria Land, Antarctica. Geol. Soc. Am. Bull., 2002, 114: 718-730
    Margerison H R, Phillips W M, Stuart F M, Sugden D E. Cosmogenic He-3 concentrations in ancient flood deposits from the Coombs Hills, northern Dry Valleys, East Antarctica:interpreting exposure ages and erosion rates. Earth and Planetary Science Letters, 2005, 230:163-175
    Matsuoka K, FurukawaT, FujitaS, MAENOH, URATSUKA S, NARUSE R, WATANABE O. Crystal orientation fabrics within the Antarctic ice sheet revealed by a multipolarization plane and dual-frequency radar survey. Journal of Geophysical Research, 2003, 108 (B10):EPM10.1-EPM10.17
    Matsuoka K, Uratsuka S, Fujita S, Nishio F. Ice-flow induced scattering zone within the Antarctic ice sheet revealed by high-frequency airborne radar. J. Glaciol., 2004, 50 (170): 382 - 388
    Matsuoka K, Maeno H, Uratsuka S, Fujita S, Furukawa T, Watanabe O. Aground-based, multi-frequency ice-penetrating radar system. Annals of Glaciology, 2002, 34: 171-176
    Millar D H. Radio-echo layering in polar ice sheets and past volcanic activity. Nature, 1981, 292:441 -443
    Monaghan A J, Bromwich D H, Fogt R L, Wang S H, Mayewski P A, Dixon D A, Ekaykin A,Frezzotti M, Goodwin I D, Isaksson E, Kaspari S D, Morgan V I, Oerter H, Ommen T,Veen C J, Wen J S. Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 2006, 313: 827-830
    Morgn V I, Wookey C W, Li J, Ommen T D, Skinner W, Fitzpatrick M F. Site information and initial results from deep drilling on Law Dome, Antarctica. Journal of Glaciology, 1997,43 (143): 3-10
    MORSE D L, BLANKENSHIP D D, WADDINGTON E D, NEUMANN T A. A site for deep ice coring in West Antarctica: results from aerogeophysical surveys and thermo-kinematic modeling. Annals of glaciology, 2002, 35: 36-44
    Motoyama H. The second deep ice coring project at Dome Fuji, Antarctica. Scientific Drilling,2007, 5: 41 -43
    Mozaffar S. Multiband multistatic synthetic aperture radar for ice sheet measurements: [Master thesis] . The University of Kansas, Lawrence, KS, 2005
    Musil G J, Doake C S M. Imaging subglacial topography by synthetic aperture radar technique.Annals of Glaciology, 1987, 9: 170-175
    Musil G J. Synthetic aperture radar sounding through ice: [PhD thesis] . University of Cambridge, 1985
    Musil GJ. On the underside scarring of floating ice sheets. Annals of Glaciology, 1989, 12: 118-123
    Namburi S P V. Design and Development of an Advanced Coherent Radar Depth Sounder: [Master Thesis]. Electrical Engineering and Computer Science, University of Kansas, 2003
    Narod B B, Clarke G K C. Miniature high-power impulse transmitter for radio-echo sounding.Journal of Glaciology, 1994, 40: 190-194
    
    Nature. China's hunt for climate clues reaches a peak. Nature, 2005, 433: 564
    Nixdorf U, Steinhage D, Meyer U, Hempel L, Jenett M, Wachs P, Miller H. The newly developed airborne radio-echo sounding system of the AWI as a glaciological tool. Annals of Glaciology, 1999, 29: 231-238
    Nolan M, Motkya R J, Echelmeyer K, TRABANT D C. Ice-thickness measurements of Taku Glacier, Alaska, U.S.A., and their relevance to its recent behavior. Journal of Glaciology,1995, 41: 541 -553
    Oswald G K A, Robin G Q. Lakes beneath the Antarctic Ice Sheet. Nature, 1973, 245: 251 -254
    Paden J, Mozaffar S, Dunson D, Allen C, Gogineni S, Akins T. Multiband multistatic synthetic aperture radar for measuring ice sheet basal conditions. Proceedings of IGARSS, 2004,Anchorage, AK, 136-139
    ParenJG, Robin G Q. Internal Reflections in Polar Ice Sheets. Journal of Glaciology, 1975, 14(71): 251 -259
    Parthasarathy R. Fine Resolution Radar for Near-Surface Layer Mapping: [Master Thesis].University of Kansas, 2003
    
    Paterson W S B. The physics of glaciers. Third Edition. Oxford : Pergamon, 1994
    Pearce D C, Walker J W. An empirical determination of the relative dielectric constant of the Greenland Ice Cap. Journal of Geophysical Research, 1967, 72: 5743-5747
    Pekar S F, DeConto R M. High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica. Palaeogeog. Palaeoclimatol. Palaeoecol., 2005, 231:101-109
    Petitetal J R, Briat M, Royer A. Ice Age aerosol content from East Antactic ice core samples and past wind strength. Nature, 1981, 293: 391-394
    Petitetal J R, JouzelJ, Raynaud D, Barkov N I, Barnola J M, Basile I, Benders M, Chappellaz J, Davis M, Delayque G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y,Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429-436
    Peters M E, Blankenship D D, Morse D L. Analysis techniques for coherent airborne radar sounding: Application to West Antarctic ice streams. Journal of Geophysical Research,2005, 110: B06303
    Plewes L A, Hubbard B. A review of the use of radio-echo sounding in glaciology. Progress in Physical Geography, 2001, 25: 203-236
    Popov S V, Sheremet'yev A N, Masolov V N, Lukin V V, Mironov A V, Luchininov V S. Velocity of radio-wave propagation in ice at Vostok station, Antarctica. J. Glaciol., 2003, 49 (165): 179-183
    Raine J I,Askin R A.Terrestrial palynology of Cape Roberts drillhole CRP-3,Victoria Land Basin,Antarctica.Terra Antarct,2001,8:389-400
    Raju G.Coherent Antarctic Radar Depth Sounder(CARDS):Design,Development and Results:[PhD Dissertation].School of Engineering,University of Kansas,1989
    Raju G,Xin W,Moore R K.Design,development,field observations,and preliminary results of the Coherent Antarctic Radar Depth Sounder(CARDS) of the University of Kansas,U.S.A..Journal of Glaciology,1990,36:247-254
    Ravilious K.Impossible peaks.New Scientist,2007,2603:38-40.http://www.sciam.com/article.cfm?id=the-unquiet-ice
    Raymo M E,Hearty P,Conto R D,O'leary M,Dowsett H J,Robinson M M,Mitrovica X.PLIOMAX:Pliocene maximum sea level project].Pages news,2009,17(2):58-59
    Raymo M E,Lisiecki L E,Nisancioglu K H.Plio-pleistocene ice volume,Antarctic climate,and the global delta O-18 record.Science,2006,313:492-495
    Raymond C F.Deformation in the vicinity of ice divides.Journal of Glaciology,1983,29:357-373
    Raynaud D,Lebel B.Total gas content and surface elevation of polar ice sheets:new evidence.Nature,1979,281(5729):289-291
    Remy F,Tabacco I E.Bedrock features and ice flow near the EPICA ice core site(Dome C,Antarctica).Geophysical Research Letters,2000,27:405-408
    Reynolds J M.An introduction to applied and environmental geophysics.Chichester:Wiley,1997
    Rignot E,Thomas R H.Mass balance of polar ice sheets.Science,2002,297:1502-1506
    Rignot E.Changes in ice dynamics and mass balance of the Antarctic ice sheet.Phil.Trans.R.Soc.A.,2006,364:1637-1655,doi:10.1098/rsta.2006.1793
    Rignot E,Bamber J L,Broeke M R,Davis C,Li Y H,Berg W J,Meijgaard E V.Recent Antarctic ice mass loss from radar interferometry and regional climate modelling.Nature Geosci., 2008, 1: 106-110
    Rippin D M, Bamber J L, Siegert M J, Vaughan D G, Corr H F. The role of ice thickness and bed properties on the dynamics of the enhanced-flow tributaries of Bailey Ice Stream and Slessor Glacier, East Antarctica. Annals of Glaciology, 2004, 39: 366-372
    Rippin D M, Bamber J, Siegert M, Vaughan D G, Corr H F. Basal topography and ice flow in the Bailey/Slessor region of East Antarctica. J Geophys Res, 2003, 108: 6008, doi:10.1029/2003 JF000039
    Robin G Q, Evans S, Drewry D J, Harrison C H, Petrie D L. Radio echo sounding of the Antarctic Ice Sheet. Antarctic Journal of the United States, 1970, 5: 229-232
    Robin G D Q. Velocity of radio waves in ice by means of a bore-hole interferometric technique.Journal of Glaciology, 1975, 15: 151-159
    Robin G D Q, Evans S, Bailey J T. Interpretation of radio-echo sounding in polar ice sheets.Philosophical Transactions of the Royal Society of London, Series A, 1969, 265: 437-505
    Rybak O, Huybrechts P. A comparison of Eulerian and Lagrangian methods for dating in numerical ice-sheet models. Ann. Glaciol., 2003, 37: 150-158
    
    Sheriff RE, Geldart L P. Exploration seismology. Cambridge: Cambridge University Press, 1995
    Shevenell A E, Kennett J P, Lea D W. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science, 2004, 305: 1766-1770
    Siegert M J, Brock A. L, Payne A J. Hydrological connections between Antarctic subglacial lakes, the flow of water beneath the East Antarctic Ice Sheet and implications of sedimentary processes. In: Hambrey M J, Christoffersen P, Glasser N F, Hubbard B, Glacial sedimentary processes and products. Oxford, Blackwell Publishing, 2007
    Siegert MJ, Evans C Ellis, Tranter M, Mayer C, Petit J R, Salamatin A, Priscu J C. Physical,chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes.Nature, 2001, 414 (6864): 603-609
    Siegert M J, Payne A J. Past rates of accumulation in central West Antarctica. Geophysical Research Letters, 2004, 31: L12403
    Siegert M J, Hodgkins R, Dowdeswell J A. Internal radio-echo layering at Vostok station,Antarctica, as an independent stratigraphic control on the ice core record. Annals of Glaciology, 1998, 27: 360-364
    Siegert M J, Payne A J, Joughin I. Spatial stability of Ice Stream D and its tributaries, West Antarctica, revealed by radio-echo sounding and interferometry. Annals of Glaciology,2003, 37: 377-382
    Siegert M J, Carter S, Tabacco I, POPOV S, Blankenship D D. A revised inventory of Antarctic subglacial lakes. Antarctic Science, 2005, 17: 453 - 460
    Siegert M J, Taylor J, Payne A J, Hubbard B. Macro-scale bed roughness of the Siple Coast ice streams in West Antarctica. Earth Surface Processes and Landforms, 2004, 29: 1591 - 1596
    Siegert M J, Taylor J, Payne A J. Spectral roughness of subglacial topography and implications for former ice-sheet dynamics in East Antarctica. Global and Planetary Change, 2005, 45: 249-263
    Siegert M J. On the origin, nature and uses of Antarctic ice-sheet radio-echo layering, Progress in Physical Geography, 1999, 23: 159-179
    Siegert M. Antarctic subglacial topography and ice-sheet evolution. Earth Surface Processes and Landforms, 2008, 33 (4): 646 -660
    Smith BE, Fricker H A, Joughin I R, Tulaczyk S. An inventory of active subglacial lakes in Antarctica detected by ICESat ( 2003-2008 ) . Journal of Glaciology, 2009, 55 (192): 573-595
    Steinhage D, Nixdorf U, Meyer U, Millera H. Subglacial topography and internal structure of central and western Dronning Maud Land, Antarctica, determined from airborne radio echo sounding. Journal of Applied Geophysics, 2001, 47: 183-189
    Steinhage D, Nixdorf U, Meyer U, Millera H. New maps of the ice thickness and subglacial topography in Dronning Maud Land, Antarctica, determined by means of airborne radio-echo sounding. Annals of Glaciology, 1999, 29: 267 - 272
    Stone R. Long ( and perilous ) march heralds China's rise as polar research power. Science, 2007,315: 1516
    Strangway D W, Simmons G, LaTorraca G, Watts R, Bannister L, Baker R, Redman JD,Rossiter J R. Radio-frequency interferometry - a new technique for studying glaciers.Journal of Glaciology, 1974, 13: 123-32
    Studinger M, Bell R E,Blankenship D D,Finn C A, Arko R A, Morse D L. Subglacial sediments:a regional geological template for ice flow in West Antarctica. Geophys. Res. Lett., 2001,28 (18), 3493-3496
    Studinger M, Bell RE, Buck W R, Karner D, Blankenship D D. Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth and Planetary Science Letters, 2004, 220: 391-408
    Stenni B, Masson-Delmotte V, Johnsen S, Jouzel J, Longinelli A, MonninE, R(?)thlisberger R,Selmo E. An oceanic cold reversal during the last deglaciation. Science, 2001, 293: 2074-2077
    Summerfield M A, SugdenDE, DentonGH, MarchantDR, Cockburn H A, Stuart F M.Cosmogenic isotope data support previous evidence of extremely low rates of denudation in the Dry Valleys region, southern Victoria Land. Geol. Soc. Lond. Spec. Publ. , 1999, 162:255-267
    Sun B, Siegert M, Simmon M, Sugden D, Fujita S, Cui X B, Jiang Y Y, Tang X Y, Li Y S.The Gamburtsev Mountains and the origin and early evolution of the Antarctic Ice Sheet.Nature, 2009, 459: 690-693
    Sverrisson M, Johannsson A E, Bjornsson H. Radio-echo equipment for depth sounding of temperate glaciers. Journal of Glaciology, 1980, 25: 477-486
    Tabacco I E, Bianchi C, Chiappini M, Passerini A, Zirizzotti A, Zuccheretti E. Latest improvements for the echo sounding system of the Italian radar glaciological group and measurements in Antarctica. Annali Di Geofisica, 1999, 42: 271-276
    Tarboton D G, Bras R L, Rodrigueziturbe I. On the extraction of channel networks from digital elevation data. Hydrol. Process., 1991, 5: 81-100
    Taylor J, Siegert M J, Payne A J, Hubbard B. Regional-scale bed roughness beneath ice masses:measurement and analysis. Computers & Geosciences, 2004, 30: 899-908
    Thompson L G. Variations in microparticle concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd Station, Antarctica, deep ice cores.Proc. Sympos. on Isotopes and Impurities in snow and Ice Grenoble, IAHS - AISH, Publ.,1977, 18: 63-77
    Ueda H, Garfieid D. Deep core drilling at Byrd Station, Antarctica. Antarctica, IASH publication,1970, 86: 53-62
    Van der Veen C J. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys.Res.Lett., 2007, 34: L01501, doi: 10.1029/2006GL028385
    Vaughan D G, Corr H F J, Ferraccioli F, Frearson N, O'Hare A, Mach D, Holt J W, Blankenship D D, Morse D L, Young D A. New boundary conditions for the West Antarctic Ice Sheet:Subglacial topography beneath Pine Island Glacier. Geophysical Research Letters, 2006, 33:L09501
    Veevers J, Saeed A. Gamburtsev Subglacial Mountains provenance of Permian-Triassic sandstones in the Prince Charles Mountains and offshore Prydz Bay: Integrated U-Pb and TDM ages and host-rock affinity from detrital zircons. Gondwana Res, 2007, 14(7): 316-342
    Waite A H. Ice depth soundings with ultra-high frequency radio waves in the Arctic and Antarctic, and some observed over-ice altimeter errors. U.S. Army Signal Research and Development Laboratory: Technical Report 2092, 1959
    Walford M E R, Harper M F L. The detailed study of glacier beds using radio-echo techniques.Geophysical Journal of the Royal Astronomical Society, 1981, 67: 487-514
    Wang B B, Tian G, Cui X B, Zhang X P. The internal COF features in Dome A of Antarctica revealed by multi-polarization-plane RES. Applied Geophysics, 2008, 3: 343 - 346.
    Watanabe O, Kamiyama K, Motoyama H, FUJII Y, IGARASHI M, FURUKAWA T, SAITO T, YOSHIDA N, UEMURA R. General tendencies of stable isotopes and major chemical constituents of the Dome Fuji deep ice core. Memoirs of National Institute of Polar Research Special Issue, Tokyo: National Institute of Polar Research, 2003, 57: 1—24
    Watson D. Contouring: A Guide to the Analysis and Display of Spatial Data. London: Pergamon Press, 1992
    Watts R D, Wright D L. Systems for measuring thickness of temperate and polar ice from the ground and from the air. Journal of Glaciology, 1981, 27: 459 - 469
    Welch B C, Jacobel R W. Analysis of deep-penetrating radar surveys of West Antarctica,USITASE 2001. Geophysical Research Letters, 2003, 30(8): 1444, doi: 10:1029/2003GL017210
    
    Weller D E. The role of Antarctica in Global Change. Cambridge: ICSU Press/SCAR, 1989
    Wingham D J, Siegert M J, Shepherd A, Muir A S. Rapid discharge connects Antarctic subglacial lakes. Nature, 2006, 440(7087): 1033-1036
    Wright D L, Bradley J A, Hodge S M. Use of a new high-speed digital data acquisition system in airborne ice sounding. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27:561 -567
    Xiao CD, Li Y S, Ian A, Hou S G, GabrielleD, Jean-Marc B, Ren J W, Bian L G, Zhang S K, Takao K. Surface characteristics at Dome A, Antarctica: first measurements and a guide to future ice-coring sites. Ann Glaciol, 2008, 48: 82-87
    
    Yang J. China takes bold steps into Antarctic's forbidding interior. Science, 2004, 306: 803 - 804
    Zachos J C, Pagani M, Sloan L, Thomas E. Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292, 686-693
    Zhang SK, E D C, Wang Z M, LI Y S, JIN B, ZHOU C X. Ice velocity from static GPS observations along the transect from Zhongshan station to Dome A, East Antarctica. Ann Glaciol, 2008, 48: 113-118
    Zirizzotti A, Baskaradas J A, Bianchi C, Sciacca U, Tabacco I E, Zuccheretti E. Glacio RADAR system and results. IEEE Radar Conference, Rome, Italy, 2008, 1434-1436
    Zwartz D, Lambeck K, Bird M, Stone J. Constraints on the former Antarctic ice sheet from sea-level observations and geodynamic modelling. In: Ricci C A, The Antarctic region:Geological evolution and processes. Italy: Siena, 1997, 861-868

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700