用户名: 密码: 验证码:
深层地下水位动态对地震活动响应关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是作者在参加“中国地震局汶川地震科学考察”与承担“首都圈井位水文地质与构造环境条件调查”项目的基础上,利用中国地震局地下流体监测网提供的汶川特大地震地下流体监测信息,以汶川Ms8.0级地震为研究背景,运用地下水动力学理论、多孔线弹性理论、固体潮理论、固体潮加卸载响应比以及小波变换等理论与方法,系统地研究了受汶川特大地震影响较大的四川、云南、甘肃、陕西与重庆五省市主要地震地下流体监测点深层地下水位在地震活动各阶段(震前、同震、震后)的变化,提炼出了深层地下水位对非构造应力(气压、固体潮)、地震构造应力和地震波应力的响应特征,初步建立了深层地下水位异常与地震活动性之间的响应关系,并利用深层地下水位异常反演了同震地壳应力场的变化状态。
     本研究是截止目前有关汶川特大地震与地下水位关系研究的较为系统与全面的梳理分析与总结,其研究成果对于深入揭示深层地下水位动态所蕴含的地震活动信息、进一步探讨地下水位动态与地震作用过程之间的联系机制有一定的现实意义与理论价值。
At 14:28 on May 12th, 2008, Ms8.0 Wenchuan Earthquake happened in Sichuan Province, China, which shocked the people all over the world. This earthquake not only brought about catastrophic damage in the vicinity of the epicenter, but also caused the extensive damage in Sichuan Province and its neighboring provinces, with the most serious destruction and the largest spread since the founding of republic. Besides sorrow, people have deeper understanding to earthquake hazards, and have more intense hope for earthquake prediction to defend and relieve earthquake disaster. So, we must seize this natural test-Wenchuan earthquake, to do further study on seismic activity.
     Groundwater is one of the most active components in the earth’s crust, and it widely distributes in 0~30km rock mass below surface. Because of its universality, fluidity and hard compressibility, when it exits the closed confined aquifer system, tiny stress and strain changes can inevitably change the pore pressure of the aquifer, and change the well water lever through groundwater seepage. Therefore, deep groundwater level dynamic can objectively and sensitively reflect the crustal stress and strain information, and it has clear physical meaning to study the earthquake preparation, occurrence and development by deep groundwater level dynamic.
     Based on projects of Scientific research to Wenchuan Earthquake of China Earthquake Administration and Well hydrogeology and tectonic environment condition investigation in the capital circle , using subsurface fluid monitoring data of Wenchuan Earthquake from subsurface fluid monitoring networks of China Earthquake Administration, taking Wenchuan Earthquake as research background, using the theory and method such as groundwater dynamics theory, linear elastic theory, porous tidal theory, tidal load-unload response ratio and wavelet transformation analysis and choosing Sichuan, Yunnan, Gansu, Shanxi Province and Chongqing City as research areas, the author systematically analyzes deep groundwater dynamic response at each stage of Wenchuan Earthquake (including pre-earthquake, coseismic earthquake and post-earthquake), refines deep groundwater level dynamical characteristics to non-tectonic stress (including air pressure and earth tide), seismic tectonic stress and seismic wave stress, initially establishes the response relationship between deep groundwater level anomalies and seismic activity, and also calculates coseismic crust stress state by using deep groundwater level anomalies.
     According to groundwater dynamics and porous linear elastic theory, without interfering factors such as rainfall and so on, mathematical model, which can express deep groundwater level dynamic response to the crustal stress-strain, is established as follows;
     Where, H~0(t )stands for trend item, H_p(t)、H_θ(t )stand for groundwater level response to non-tectonic stress (including air pressure and earth tide), H_E(t )stands for groundwater level response to seismic activity,ε(t )stands for observation noise.
     As seen, the information inherent in deep groundwater level is rich and complex. Totally speaking, it consists of information part and noise part. For earthquake research, information part mean seismic groundwater level dynamic anomalies, the air pressure effect and earth tidal effect belong to noise part. Therefore, before analyzing the seismic groundwater level dynamic anomalies, groundwater level dynamic response to non-tectonic stress (including air pressure effect and earth tidal effect) should be analyzed. By linear correlation analysis, the air pressure coefficient and earth tidal coefficient of typical observing well water level can be calculated. The results show that, groundwater level response to non-tectonic stress is affected by lithology, buried depth, permeability of observing aquifer and other factors. Relatively, when limestone aquifer is deeply buried, groundwater level response to non-tectonic stress is comparatively obvious.
     By removing the noise part and extracting seismic information from deep groundwater level, it is found that deep groundwater level dynamic laws to Wenchuan Earthquake are complicated, with various abnormal shapes, different changing amplitudes, multi-stage temporal distribution, non-homogeneous spatial distribution, temporal and spatial distribution mobility and so on.
     Before earthquake, deep groundwater level dynamic contains information about earthquake preparation. Groundwater level mid-long-term anomalies mainly distribute in Sichuan-Yunnan region, most of which are type of breaking annual variation law and appear abnormal turning point within 17 to 47 months before earthquake. According to groundwater observing curves, mid-short-term anomalies only include Deyang well in Sichuan Province. So, the method of earth tide load-unload response ratio is used to analyze groundwater level mid-short-term and short-term anomalies, the results show that anomalies widely appear within 6 months before earthquake, and anomalies concentrate in Sichuan region within 1~2 months before earthquake. All of these indicate that spatial distribution of groundwater level anomalies has a shift from Sichuan-Yunnan region to larger scope to Sichuan regions, namely a trend from marginal areas to epicenter vicinity, which is consistent with the theory—regional seismic tectonic activity bears seismic source body, and seismic source body develops and generates earthquake. Meanwhile, seismic pregnant process results from interaction of seismic source tectonic activity and regional tectonic activity.
     Impending anomalies of groundwater level play a warning role to occurrence of earthquake, including weak oscillation and pulse type, as well as intense step-rise type. According to wavelet transformation analysis, oscillation and pulse type of groundwater level anomalies imply a similar form of precursor wave. Some well water level, such as Qingshui well, Gulanghengliang well and so on, can capture the information of precursor wave, which has a certain physical meaning to research the seismic source process. Also, impending step-rise anomalies last until post-earthquake, such as Qionglai well and Wudu well, which indicates that some sensitive well water levels can reflect rapid changes of seismic tectonic stress, and suggest the coming of large earthquake.
     Coseismic groundwater level anomalies can record earthquake, and distribute widely. In seismic source region, anomalies are mainly type of step and pulse, where aquifers are affected by the impact of Longmen Mountain fault rupture, seismic source tectonic stress field control the characteristics of groundwater level anomalies, so that, the aquifer solid skeletons occur elastic or plastic deformation, and groundwater level has sudden response to earthquake.
     In marginal region, groundwater level anomalies are type of oscillation, step and pulse.①Oscillation-type anomalies mainly distribute in Yunnan region in the SW direction of Longmenshan Mountain fault. Seismic wave propagation causes the periodic elastic deformation of aquifer solid skeletons, aquifer pore pressure change up and down, and groundwater alternately flows in and out between borehole and aquifer, so, groundwater level takes on up and down oscillation.②Step-type anomalies mainly distribute in Yunnan region in the SW direction of Longmenshan Mountain fault, and other 3 abnormal wells locate in Gansu-Shanxi region. The vibration of seismic waves bring about changes of aquifer medium pores, cracks or dynamic characteristics, result that groundwater movement changes and some sensitive well water levels change up or down.③Pulse-type ananomalies mainly distribute in Shanxi and Gansu region in the NE direction of Longmenshan Mountain fault. If wells locate in the region with regional tectonic stress enhancement, aquifer medium change or tectonic activity, seismic wave propagation or fault fracture can induce changes of stress on aquifers, result that aquifers are affected by both seismic wave and regional tectonic stress. So that, after coseismic pulse-type anomalies of groundwater level recovers, groundwater level takes on new up or down post-earthquake anomalies. Otherwise, when coseismic anomalies are pulse-type, they can recover post-earthquake.
     Post-earthquake anomalies of groundwater level have a certain significance to explore aftershock trend. The anomalies, that post-earthquake anomalies are obvious after coseismic anomalies recover, distribute in the region in the NE direction of Longmenshan Mountain fault. Meanwhile, strong aftershocks occur in the NE direction along Longmenshan Mountain fault, and the farthest aftershocks occur in the border zones among Sichuan, Gansu and Shanxi Provinces. So, where aftershocks occur is consistent with where above anomalies distribute, it shows that above anomalies has an important role in forecasting strong aftershocks, and post-earthquake anomalies reflect the adjustment process of regional stress.
     Coseismic effect is one of the most direct and effective means to reveal the crust medium response to stress-strain. Through coseismic anomalies of groundwater level, the crust stress field is inversely simulated. The results show that, the stress field changes greatly in the seismic source region, and the greatest stress value on aquifers reaches to 2.6MPa in Wenchuan-Qionglai region. In the NW direction along Longmen Mountain fault, aquifers are affected by tensile stress, and in the SE direction along Longmen Mountain fault, aquifers are affected by compressive stress.
     For Longmen Mountain fault, within a long period before earthquake, its hanging wall is obviously compressed, which is in contrast with the simulation results. It indicates that groundwater level changes indeed exit turning points from before earthquake to occurrence, and regional stress field changes from compression to tension, which are exactly consistent with the theories such as DD mode, IPE mode and fissure-pre-displacement mode. So, it provides new clues for earthquake forecast to find turning points of groundwater level.
     Until now, this research is the more comprehensive analysis and summary to the relationship between deep groundwater level dynamic and Wenchuan Earthquake activity. Its research achievement has a certain practical and theoretical significance to deeply reveal the seismic information implied in the deep groundwater level dynamic, and to further discuss mechanism between groundwater level dynamic and earthquake process.
引文
[1]汪成民,车用太,万迪堃,等.地下水微动态研究[M].北京:地震出版社,1988.
    [2]兰双双,姜纪沂,王滨.基于物元可拓法的地下水水质评价——以梨树县平原区浅层地下水为例[J].吉林大学学报(地球科学版):722-727.
    [3] Committee on the Alaska earthquake of the division of earth sciences national researcha council. The great Alaska earthquake of 1964[M].Washington,D.C:Publication 1603 national academy of sciences,1968.
    [4]国家地震局预测预防司编.地下流体地震预报方法[M].北京:地震出版社,1997.
    [5]耿杰,张昭栋,魏焕,等.唐山地震前后地下水动态图像及其形成演化模式[J].地震地质,1998,20(3):255-260.
    [6]孙振璈,孙天林,简春林.张北6.2级地震前北京地下水位井网动态异常初析[J].华北地震科学,1998,16(3):53-61.
    [7]林淑真,李宗仰,陈暐家.台湾地区9.21及3.31地震的地下水位异常统计与介入分析[J].地震地质,2003,26(4):321-327.
    [8] C.-Y.Wang,C.-H.Wang,C.-H Kuo.Temporal change in groundwater level following the 1999 (Mw=7.5)Chi-Chi earthquake,Taiwan[J].Geofluids,2004,4(6):210-220.
    [9]李军.雅江地震前地下水位异常变化[J].四川地震,2002,(1):27-31.
    [10]张世民,舒优良,黄辅琼,等.甘肃玉门5.9级地震前周至数字化综合观测井的异常特征[J].华北地震科学,2003,21(3):37-41.
    [11] Tsutomu Sato,Norio Matsumoto,Yuichi Kitagawa,et al.Changes in groundwater level associated with the 2003 Tokachi-oki earthquake[J].Earth planets space,2004,56:395-400.
    [12]兰双双,迟宝明,姜纪沂.北方沿海中小流域地下水库建设实例研究—以六股河平原区为例[J].水文地质与工程地质,2010,37(231):40-44.
    [13]曹剑锋,迟宝明,王文科,等.专门水文地质学[M].北京:科学出版社,2006.
    [14]国家地震局地下水影响因素研究组.地震地下水动态及其影响因素分析[M].北京:地震出版社,1985.
    [15]路鹏,车用太,张炜.地震地下水动态观测[M].北京:地震出版社,1998.
    [16]董守玉,贾化周,万迪堃,等.地下水位气压效应的基本特征、类型及机理[J].华北地震科学,1987,5(1):58-66.
    [17] Jaccob C.E.On the flow of water in an elastic artesian aquifer[J].EOS Trans.AGU,l940,21:574-586.
    [18] Edwin P. Weeks.Barometric fluctuations in wells tapping deep unconfined aquifers[J].Water Resources Research,1979,15:1167-1176.
    [19] Kamp G.,Gale J.E.Theory of earth tide and barometric effects in porous formations with compressible grains[J].Water Resources Research,1983,19:538-544.
    [20] Rojstaczer S.Determination of fluid flow properties from the response of water levels in wells to atmospheric loading[J].Water Resources Research,1988,24(11):1927-1938.
    [21]张昭栋,郑金涵,冯初刚.气压对水井水位观测的影响[J].地震,1986,(01):42-46.
    [22]张昭栋,郑金涵,张广城,等.承压井水位对气压动态过程的响应[J].地球物理学报,1989,32(05):539-549.
    [23]张昭栋,郑金涵,冯初刚.水井水位的气压效率和降水荷载效率之间的定量关系[J].地震,1989,(06):38-44.
    [24]鱼金子,谷园珠,殷世林.三口井水位的气压系数变化及其与地震关系初探[J].地震,1990,(03):25-32.
    [25]杜品仁.气压变化及其对地壳形变和深井水位的影响[J].地球物理学报,1991,34(1):73-81.
    [26]晏锐,黄辅琼,陈颐.小波分析在井水位的气压和潮汐改正中的应用[J].中国地震,2007,23(2):204-21.
    [27]张昭栋,郑金涵,张广城.井水位对气压响应的滞后及其机理[J].大地测量与地球动力学,1993,13(04):51-56.
    [28]张元胜.深井水位气压系数前兆信息探索[J].内陆地震,1997,11(01):57-61.
    [29] Klonne F.W.Die Periodische Schwankungen in den Inundierten Kohlenschachten Von Dux in Der Periode Vom 8 April Bis 15 September 1879[J].Sitzungsber Kais Akad Wiss,1880:101.
    [30] Grablovitz G.Sul Fenomeno di Marea Osservato Nelle Minieri di Dux in Bohemia[J].Boll.Soc.Adriatica Sc.Nat.Trieste VI,1880:34.
    [31] Ynung A.Tidal phenomena at inland boreholes near cradock[J].Trans R Soc South Africa III,Part 1,1913:61-106.
    [32] Robinson T.W.Earth tides as shown by fluctuations of water levels in wells in New Mexico and Iowa[J].Trans Amer Geoph Union,Part IV,1939:656-666.
    [33] Theis C.V.Earth tides as show by fluctuations of water level in artesian wells New Mexico[J].Intern Union Geodesy and Geophysics,Washington D.C.,Geologieal Survey open-file report10,1939:10.
    [34] George W.O.,Romberg F.E.Tide producing forces and artesian pressures[J].Trans Amer GeophUnion,1951:369-371.
    [35] Melchior P.Analyse Harmonique Des Variations De Niveau Observees Dans Six Puits (Duchov, Carlsbad, Oak Ridge, Iowa C., Kiabukwa,Turnhou)[J].Symp Marees Terrestres Trieste BollGeofisica Teorica E Appl,1960,(2):122-124.
    [36] Bredehoeft J.D.Response of well-aquifer systems to earth tides[J].Geophys Res,1967,72:3075-3087.
    [37] Robinson E.S.,Bell R.The tides in confined well-aquifer systems[J].Geophys Res,1971,76:1857-1869.
    [38] Paul A.Hsieh,John. D.Bredehoeft,John M.Farr.Determination of aquifer transmissivity from earth tide analysis[J].Water Resource.Res,1987,23(10):1824-1832.
    [39]蔡祖煌,石慧馨.地震流体地质学概论[M].北京:地震出版社,1981.
    [40]田竹君,陈益惠.水位固体潮潮汐参数的初步研究[A].国家地震局科技监测司,地震监测与预报方法清理成果汇编(地下水分册)[C].北京:地震出版社,1988:190-195.
    [41]张昭栋,郑金涵,冯初国.井水位的固体潮效应和气压效应与含水层参数间的定量关系[J].西北地震学报,1989,11(3):47-52.
    [42]张昭栋,郑金涵,冯初刚.深井水位的固体潮效应[J].地震学报,1991,13(1):66-75.
    [43]骆鸣津,杨毅,李安印,等.地下水水位固体潮的扩散方程及其解[A].中国地球物理学会,1990年中国地球物理学会第六届学术年会论文集[C].北京:地震出版社,1990:66-76.
    [44]张昭栋,陈学忠,陈建民,等.井水位固体潮加卸载响应比的地震短临前兆[J].地震学报,1997,19(02):174-180.
    [45]李永善.构造应力引起地下水位变化的主要特征[J].西北地震学报,1979,(1):16-22.
    [46]张伯崇,邬慧敏,刘长义.应力对岩石中孔隙流体压力的影响和地下水位震前异常变化机理[J].地震学报,1991,13(1):88-95.
    [47]朱航.地下水位与应变的相关性分析[J].内陆地震,2001,15(3):247-251.
    [48]敬少群,王佳卫.大震前地下水位异常与应力异常区[J].地震,2001,21(2):79-86.
    [49]张昭栋,郑金涵,冯初刚,等.根据井水位阶变反演含水层应力变化的三种方法的对比[J].华北地震科学,1993,11(1):39-43.
    [50]张昭栋,赵淑平,董传富.井水位阶变与含水层所受体应力之间的定量关系[J].地球物理学报,1994,37(增刊1):222-229.
    [51]张昭栋,张广城.利用水位阶变资料反演震时应力场的调整变化[J].地震研究,1987,10(6):693-702.
    [52]张昭栋,王吉易,耿杰.唐山7.8级地震前后地下水位应力场的动态图像象[J].地壳形变与地震,1999,19(2):53-59.
    [53]张昭栋,刘庆国,刘涛,等.由井水位资料反演大同-阳高6.1级地震前后应力场的动态演化过程[J].西北地震学报,2001,23(1):66-68.
    [54]黄辅琼,晏锐,陈煜,等.利用深井地下水动态研究大华北地区现今构造应力场状态[J].地震,2004,24(1):112-118.
    [55]王士荣,徐国锦,王建力,等.使用地震引致之地下水位异常变化推估应力异常区[J].气象学报,2006,46(3):1-17.
    [56]晏锐.影响井水位变化的几种因素研究[M].中国地震局地震预测研究所,2008.
    [57]晏锐,高福旺,陈颙 .由井—含水层系统的水位动态反演含水层体应变[J].地震研究,2004,27(2):126-133.
    [58] David R Montgomery,Michael Manga.Streamflow and water well responses to earthquakes[J].J. Appl. Phys,1941,(12):155-164.
    [59] Evelyn A.Roeloffs.Hydrologic precursors to earthquakes: a review[J].Pageoph,1988,126 (2-4):177-209.
    [60] Ge SM,Stover SC.Hydrodynamic response to strike- and dip-slip faulting in a half-space[J].Journal of geophysical research,2000,105(B11):25513-25524.
    [61] Koizum i N,Kitagawa Y,Takahashi M,et a1.Changes in ground water level and crustal strain in and around the Kinki district related to the 2001 Geiyo earthquake[J].Earthquake,2002,55(2):119-127.
    [62] YEE-PING CHIA,YUAN-SHIAN WANG,CHIH-CHAO HUANG,et al.Coseismic changes of groundwater level in response to the 1999 Chi-Chi earthquake[J].Western pacific earth science,2002,2(3):261-273.
    [63] Tsutomu Sato,Norio Matsumoto,Naoji Koizumi,et al.Changes in groundwater level associated with the 2003 Tokachi-oki earthquake[J].Earth planets space,2004,(56):395-400.
    [64] S.Ge and E. Screaton.Modeling seismically induced deformation and fluid flow in the Nankai subduction zone[J].Geophysical research letters,2005,32(L17301):173-179.
    [65] Samik sil and Jeffrey T.Freymueller.Well water level changes in Fairbanks, Alaska, due to the great Sumatra-Andaman earthquake[J].Earth planets space,2006,(58):181-184.
    [66]国家地震局科技监测司.地震地下流体观测技术[M].北京:地震出版社,1995.
    [67] Blanchard F.B. and P.Bycrly.A study of a well gage as a seismograph[J].Bulletion of the Seismological Society of America,1935,25:38-46.
    [68] Eayon J.P. and K. J.Takasakj.Seismological interpretation of earthquake-induced water level fluctuations in wells[J].Bulletion of the Seismological Society of America,1935,49:227-245.
    [69] Rexin E.E.,Jack Oliver,David Prentiss.Seismically-induced fluctuatons of the water level in the Nunn Bush well in Milwaukee[J].Bulletion of the Seismological Society of America,1962,52:17-25.
    [70] Cooper H.H.,J.D. Bredehoeft,et al.The response of well-aquifer systems to seismic waves[J].J. Geophys. Res,1965,70:3915-3926.
    [71] Kano, Y. and T. Yanagidani.Broadband hydroseismograms observed by closed borehole wells in the Kamiokamine, central Japan: Response of pore pressure to seismic waves from 0.05 to 2 Hz[J].J. Geophys. Res,2006,111(B03410):1-11.
    [72]张昭栋,迟镇乐,陈会民,等.井水位的振荡与地震波[J].地震研究,2000,23(4):418-425.
    [73]张子广,万迪堃,董守玉.水震波与地震面波的对比研究及其应用[J].地震,1998,18(4):399-404.
    [74]顾申宜,李志雄.海南地区五口井水位对汶川地震的同震记录及其频谱分析[J].国际地震动态,2008,(11):140.
    [75]邹泉生,陈正品,靖继才.降雨对井水位的“效应”[J].地震研究,1983,6(1):65-71.
    [76]施子岩.滇21井水位微动态特征研究[J].地震研究,1998,21(3):286-291.
    [77]简春林,孙振璈.高井村记录到的一次降雨荷载效应[J].中国地震,1995,11(2):181-190.
    [78]车用太,鱼金子,张大维.降雨对深井水位动态的影响[J].地震,1993,(4):8-14.
    [79]杨从杰,冯志生,范小平.苏05井数字化水位雨荷效应的处理与改正[J].华南地震,2004,24(3):18-24.
    [80]中国地震局监测预报司.地震地下流体理论基础与观测技术[M].北京:地震出版社,2007.
    [81]车用太,王吉易,李一兵,等.首都圈地下流体监测与地震预测[M].北京:气象出版社,2004.
    [82]李富.试论地下流体前兆复杂性及其机制[J].地震研究,2002,25(1):36-41.
    [83]王世芹,刘丽芳,付虹.云南地区地下水动态的地震源兆与场兆特征分析[J].地震研究,2004,27(2):126-133.
    [84]车用太,鱼金子.地下流体的源兆、场兆、远兆及其在地震预报中的意义[J].地震,1997,17(3):283-289.
    [85]郭增建,秦保燕,汤泉等.震源孕育模式的初步讨论[J].地球物理学报,16:43-48.
    [86]付承义.地震十讲[M].北京:科学出版社,1976.
    [87]马宗晋.华北地壳的多(应力集中)点场与地震[J].地震地质,1980,2(1):39-47.
    [88]王吉易,郑云贞,刘允清.水化前兆异常网格及唐山地震水化前兆异常分布特征的初步讨论[J].河北地震科学,1988,2(11):76-83.
    [89]郭增建,秦保燕.震源物理[M].北京:地震出版社,1979.
    [90]李宣瑚.水氡异常的扩散收缩现象[J].地震,1981,1(5):43-45.
    [91]郭增建.立交模式及其在地震预报中的应用[J].西北地震学报,1985,7(1):94-101.
    [92]梅世蓉.地震前兆场物理模式与前兆时空分布机制研究[J].地震学报,17(3):273-282.
    [93]车用太,鱼金子,黄振仪.唐山大震地下水位前兆场的特征及其形成与演化模式[J].地震,1994(增刊):33-39.
    [94]车用太,刘五洲,鱼金子,等.板内强震的中地壳硬夹层孕震与流体促震假设[J].地震学报,2000,22(1):93-101.
    [95]王吉易,宋贯一,曹志成,等.地下水诱发的浅层前兆异常及其机理与有关的地震预报问题(1)[J].华北地震科学,2002,20(2):28-40.
    [96]舒优良,张世民.周至深井水震波数字化记录与地震波记录的对比研究[J].地震地磁观测与研究,2003,24(5):26-31.
    [97] Wakita H.Water wells as possible indicators of tectonics strain[J].Science,1975,189, 553-555.
    [98] Quilty E. G., Roeloffs E. A.Water level changes in response to the December 20,1994 M4.7 earthquake near Parkfield, California[J].Bulletion of the Seismological Society of America,1997,87:310-317.
    [99] Brodsky E.E.,Roeloffs E.A.A mechanism for sustained groundwater pressure changes induced by distant earthquake[J].J Geophys Res,2003,108(B8):2390,doi:10.1029/2002JB002321
    [100]王道.天山地震活动区地下水同震、震后效应的研究[J].内陆地震,2000,14(3),252-259.
    [101]杨竹转.地震引起的地下水位变化及其机理初步研究[M].中国地震局地质研究所, 2004.
    [102]张昭栋,郑香媛,殷积涛.井水位振荡试验及其结果[J].地震地质,1992,14(2):183-188.
    [103]付虹,邬成栋,刘强,等.印尼巨大地震引起的云南水位异常记录及其意义[J].地震地质,2007,29(4):873-881.
    [104]李钦祖等.首都圈现代构造场特征[A].高文学,马瑾主编.首都圈地震地质环境与地震灾害[C].北京地震出版社:152.
    [105]顾国华,张晶,王武星.GPS观测得到的中国大陆地壳水平形变时空变化与地震活动关系[A].中国地震局分析预报中心.中国地震趋势预测研究[C].北京:地震出版社,251-261.
    [106]ZOBACK M.L.First-and second-order patterns of stress in the Lithosphere:the world stress map project[J].J.G.R.1997(B8):11703-11728.
    [107]汪素云,许忠准.由大量的地震资料推断的我国大陆构造应力场[J].地球物理学报,1989,32(6):636-647.
    [108]Yamakawa N.Stress fields in focal regions[J].J.Phys.Earth,1971,19:347-353.
    [109]Xu Zhong-huai and Wang Suy-un.A possible change in stress field orientation due to the 1976 Tangshan earthquake[J].PAGEOPH,1986,124:941-955.
    [110]许忠准.用滑动方向拟合法反演唐山余震区的平均应力场[J].地震学报,1985,7:349-362.
    [111]李方全,刘光勋.我国现今地应力状态及有关问题[J].地震学报,1986,8(2):156-171.
    [112]陈家庚,曹新玲,李自强.水力致裂法测定华北地下深部应力[J].地震学报,1982,4(4):350-361.
    [113]丁健民,梁国平.唐山、天津和沧州地区的油井水力压裂应力测量[J].地震学报,1985,7(4):363-373.
    [114]高建理,丁健民,梁国平,等.华北地区盆地内地壳应力随深度的变化[J].中国地震,1987,3(4):82-89.
    [115]王仁,黄杰藩,孙荀英,等.华北地震构造应力场的模拟[J].中国科学(B辑),1982,(4):337-344.
    [116]罗焕炎,宋惠珍,潘善德,等1980.渤海及其邻区现代地壳构造应力场与地震关系的数字模拟[A].张文佑主编,华北断块区的形成与发展[C].北京:科学出版社,252-260.
    [117]宋惠珍,高维安,孙君秀,等.唐山地震震源应力场的数值模拟研究[J].西北地震学报,1982,4(3):50-56.
    [118]汪素云,陈培善.中国及邻区现代构造应力场的数值模拟[J].地球物理学报,1980,23(1):35-45.
    [119]张东宁,高龙生.东亚地区应力场的三维数值模拟[J].中国地震,1989,5(4):24-33.
    [120]Johnson K,Kovach A G,Nur R L,et al.Pore pressure changes during creep events on the San Andreas fault[J].Geophysical Research,1973,78(4):851-857.
    [121]努尔.科瓦契.岩石中的水力流在地质构造过程中的作用及对圣安德烈斯断裂系的应用[A].北京:地震出版社,1980,73-75.
    [122]车用太,刘五洲,鱼金子,等.地震井水位对地壳应力—应变响应灵敏度的研究[J].地震,2003,23(3):113-120.
    [123]李同林.应用弹塑性力学[M].武汉:中国地质大学出版社,2002.
    [124]孙小龙.水位与水温对远场巨震同震响应的机理研究[D].中国地震局地壳应力研究所,2007.
    [125]薛禹群.地下水动力学[M].北京:地质出版社,1997:1-10.
    [126]车用太,鱼金子,赵苹.地震地下流体物理化学动态形成的基础理论问题[J].国际地震动态,1995,(12):6-10.
    [127]孙君秀,刘五洲,车用太.地下水对震源体应力、应变场的影响[J].地震地质,2000,22(2):179-186.
    [128]吴世跃.煤层中的耦合运动理论及其应用[M].北京:科学出版社,2009:23-24.
    [129]Biot M A. General theory of three-dimension consolidation[J]. J. Appl. Phys.,1941,(12):155-164.
    [130]Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. J. Appl. Phys.,1955,26:182-185.
    [131]Nur A, Byerlee J D. An exact effective stress law for elastic deformation of rocks with fluids[J]. J. Geophys. Res.,1971,76(26):6414-6419.
    [132]Rice,J.R.,and M.P.Cleary. Some basic stress diffusion solutions for fluid-saturated elastic porous mediawith compressible consitituents[J]. Res.Geophys.,1976,14:227-241.
    [133]Rudnicki,J.W. Slip on an impermeable fault in a fluid-saturated rock mass[J]. Geophysical Monograph,1986,37:81-89.
    [134]Rudnicki,J.W. Plane strain dislocation in linear elastic diffusive solids[J]. ASME J.Appl.Mech,1987,109:545-552.
    [135]M.Manga,C.Y.Wang.Earthquake Hydrology[M].University of California Berleley,2007.
    [136]Piombo A, Martinelli G, Dragoni M. Post-seismic fluid flow and Coulomb stress changes in a poroelastic medium[J]. Geophy J Int,2005,162(2):507-515.
    [137]周旭明.Parkfield地震预报试验概况和弹性多孔介质变形—流体扩散的研究现状—Roeloffs博士学术报告综述[J].地震学刊,1991,(3):16-28.
    [138]车用太,鱼金子,吴景云.我国深井水位气压效应研究[J].1990,(4):12-17.
    [139]巩浩波.地下水位微动态对应力的响应关系研究[D].吉林大学,2009.
    [140]吴庆鹏.重力学与固体潮[M].北京:地震出版社,1997.
    [141]方俊.固体潮[M].北京:科学出版社,1984.
    [142]籍利平.用EXCEL2000计算固体潮改正理论值[J].铁路航测,2002,(1):30-32.
    [143]北京大学地球物理系,武汉测绘学院大地测量系,中国科学技术大学地球物理教研室.重力与固体潮教程[M].北京:地震出版社,1982.
    [144]李胜乐、张雁滨.地震前兆信息处理与软件系统(EIS2000)[M].北京:地震出版社,2000.
    [145]C.E.Neuzil. Hydromechanical coupling in geologic processes[J]. Springer Berlin/Heidelberg, 2003,11(1):41-83.
    [146]田竹君,谷圆珠.地下水位微动态资料的分析与处理[J].地震地质,1985,7(3):51-59.
    [147]秦清娟,董守玉,贾化周,等.单井水位地震异常信息的提取与地震预报[J].华北地震科学,1992,10(2):67-72.
    [149]四川省地震局.四川省地震监测志[M].四川:成都地图出版社,2004.
    [150]云南省地震局.云南省地震监测志(上)(下)[M].北京:地震出版社,2005.
    [151]甘肃省地震局.甘肃省地震监测志[M].甘肃:兰州大学出版社,2005.
    [152]陕西省地震局.陕西省地震监测志[M].四川:成都地图出版社,2004.
    [153]张宗祜,李烈荣.中国地下水资源四川卷[M].北京:中国地图出版社,2005.
    [154]张宗祜,李烈荣.中国地下水资源南卷[M].北京:中国地图出版社,2005.
    [155]吴玮江,王念秦.甘肃滑坡灾害[M].甘肃:兰州大学出版社,2006.
    [156]张宗祜,李烈荣.中国地下水资源甘肃卷[M].北京:中国地图出版社,2005.
    [157]《中华人民共和国水文地质图集》编辑组.中华人民共和国水文地质图集说明书[M].北京:地图出版社,1980.
    [158]张宗祜,李烈荣.中国地下水资源陕西卷.北京:中国地图出版社,2005.
    [159]朱介寿.汶川地震的岩石圈深部结构与动力学背景[J].成都理工大学学报(自然科学版),2008,35(4):348-356.
    [160]车用太,刘成龙,鱼金子等.汶川Ms8.0地震的地下流体与宏观异常及地震预测问题的思考[J].地震地质,2008,30(4):828-836.
    [160]滕吉文,白登海,杨辉,等.2008汶川Ms8.0地震发生的深层过程和动力学响应[J].地球物理学报,2008,51(5):1385-1402.
    [161]徐锡伟,张培震,闻学泽,等.川西及其邻近地区构造基本特征与强化复发模型[J].地震地质,2005,27(3):446-461.
    [162]丁国瑜主编.中国岩石圈动力学概论[J].北京:地震出版社,1991.
    [163]陈章立,赵翠萍,王勤彩,等.汶川Ms8.0级地震发生背景与过程的研究[J].地球物理学报,2009,52(2):455-463.
    [164]邓起东,陈社发,赵小麟.龙门山及其邻区的构造和地震活动及动力学[J].地震地质,1994,16(4):389-403.
    [165]陈社发,邓起东,赵小麟.龙门山中段推覆构造带及相关构造的演化历史和变形机制(一)[J].地震地质,1994,16(4):404-412.
    [166]刘树根,田小彬,李智武,等.龙门山中段构造特征与汶川地震[J].大地测量与地球动力学,2008,35(4):388-397.
    [167]徐锡伟,闻学泽等.汶川8.0地震地表破裂带及其发震构造[J].地震地质,2008, 30(3):597-629
    [168]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993.
    [169]赵小麟,邓起东,陈社发.龙门山逆断裂带中段的构造地貌学研究[J].地震地质,1994,16(4):422-428.
    [170]车用太,鱼金子,等.地震地下流体学[M].北京:气象出版社,2006.
    [171]范雪芳,王吉易,陆明勇.汶川8.0级地震前典型流体中期前兆异常的初步研究[J].地震,2009,29(1):132-140.
    [172]车用太,鱼金子,等.地下流体典型异常的调查与研究[M].北京:气象出版社,2004.
    [173]兰双双,迟宝明.汶川地震近区深层井孔—含水层系统水位异常响应研究[J].水文地质与工程地质, 2010,37(232).
    [174]陆明勇,刘耀炜,房宗绯,等.汶川8.0级地震的地下流体长趋势变化特征及其机理初步探讨[C].湖南:中国地震学会地震流体专业委员会&湖南省地震学会,2009.
    [175]杨竹转,邓志辉,刘春国,等.中国大陆井水位与水温动态对汶川Ms8.0地震的同震响应特征分析[J].地震地质,2008,30(4):895-905.
    [176]尹祥础.地震预测新途径的探索[J].中国地震,1987,(3):1-7.
    [177]尹祥础,尹灿.非线性系统失稳的前兆与地震预报[J].中国科学(B辑),1991,21(5):512-518.
    [178]尹祥础,陈学忠,宋治平,等.加卸载响应比理论—一种地震预报方法[J].地球物理学报,1994,37(6):767-775.
    [179]张昭栋,王秀芹,董守德.加卸载响应比在体应变固体潮中的应用[J].地震,1999,19(3):217-222.
    [180]魏焕,张昭栋,耿杰,等.井水位气压加卸载响应比[J].西北地震学报,2003,25(1):82-85.
    [181]陈建民,张昭栋,杨林章,等.地下水位固体潮响应的地震异常[J].地震,1994,(1):73-78.
    [182]徐桂明,冯志生,唐振芳.江苏地区地下水固体潮加卸载响应比的时空演变特征及预测意义[J].地震学刊,2002,22(4):26-35.
    [183]车用太,鱼金子,张淑良,等.山西朔州井水位的“前驱波”记录及其讨论[J].地震学报,2002,24(2):210-216.
    [184]敬少群,王佳卫,童迎世,等.小波变换在少震、弱震区地下水位数据分析中的应用[J].华南地震,2002,22(2):9-15.
    [185]陈大庆,胡江辉.小波变换在数字化水位观测资料分析中的应用[J].华南地震,2008,28(4):75-81.
    [186]周龙寿,邱泽华,唐磊.汶川8.0级地震前驱波的统计检验[J].大地测量与地球动力学,2009,29(2):24-28.
    [187]车用太,鱼金子,刘五洲.华北北部地区3次强震前地下流体异常场及其形成与演化机理[J].中国地震,1999,15(2):139-150.
    [188]张淑良,程紫燕,唐垒黎,等.井水位前驱波现象与震源成核之间关系的研究[J].中国地震,2008,24(2):159-171.
    [189]兰双双,迟宝明,姜纪沂.地下水位对近震和远震异常响应的比较—以汶川Ms8.0级地震和苏门答腊Ms8.5级地震为例[J].吉林大学学报(地球科学版),已收录.
    [190]陈大庆,刘耀炜.我国在井—含水层系统对地震波同震响应方面的研究进展[J].国际地震动态,2006,(7):27-30.
    [191]付虹,刘丽芳,王世芹,等.地方震及近震地下水同震震后效应研究[J].地震,2002,22(4):55-66.
    [192]张昭栋.地下水潮汐分析[M].济南:山东大学出版社,1988.
    [193]张国民,杨军.潮汐现象和地震前兆观测[J].地震,1983,(1):1-6.
    [194]Melchior P.The tide of the planet earth[M].Pergmon press,1978:249-303.
    [195]曹井泉.唐山7.8级地震地下水动力环境模拟研究.[D].内蒙古农业大学,2008.
    [196]陈学忠,李艳娥,郭祥云.2008年5月12日四川汶川8.0级地震前后震源区应力水平估计[J].国际地震动态,2008,(6):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700